1336

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

Efficient QoS Partition and Routing
of Unicast and Multicast

Dean H. Lorenz, Ariel Orda, Fellow, IEEE, Danny Raz, Member, IEEE, and Yuval Shavitt, Senior Member, IEEE

Abstract—In this paper, we study problems related to supporting
unicast and multicast connections with quality of service (QoS) re-
quirements. We investigate the problem of optimal routing and re-
source allocation in the context of performance dependent costs.
In this context, each network element can offer several QoS guar-
antees, each associated with a different cost. This is a natural ex-
tension to the commonly used bi-criteria model, where each link is
associated with a single delay and a single cost. This framework is
simple yet strong enough to model many practical interesting net-
working problems.

An important problems in this framework is finding a good
path for a connection that minimizes the cost while retaining the
end-to-end delay requirement. Once such a path (or a tree, in the
multicast case) is found, one needs to partition the end-to-end QoS
requirements among the links of the path (tree). We consider the
case of general integer cost functions (where delays and cost are
integers). As the related problem is NP complete, we concentrate
on finding efficient e-approximation solutions. We improve on
recent previous results by Ergiin ef al. Lorenz and Orda, and
Raz and Shavitt, both in terms of generality as well as in terms
of complexity of the solution. In particular, we present novel
approximation techniques that yield the best known complexity
for the unicast QoS routing problem, and the first approximation
algorithm for the QoS partition problem on trees, both for the
centralized and distributed cases.

Index Terms—Approximation, multicast, QoS-dependent costs,
QoS, resource allocation, routing.

1. INTRODUCTION

need in broadband networks. Many modern applications

require better service than the Internet’s best effort
mechanism. There have been numerous suggestions for QoS
provisioning and it has been the focus of many recent studies.
Indeed, there is a growing consensus that QoS support in the
Internet is necessary. Almost any QoS framework requires a
QoS Routing (QoSR) mechanism, and this has been the subject

QUALITY OF SERVICE (QoS) support is a growing

Manuscript received May 21, 2003; revised January 5, 2005, and August 8,
2005; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor L. Gao.

D. H. Lorenz is with the IBM Haifa Research Laboratories, IBM, Mount
Carmel, Haifa 31905, Israel. Part of this work was done while he was with the
Department of Electrical Engineering, Technion, Haifa 32000, Israel (e-mail:
dean@il.ibm.com).

A. Orda is with the Department of Electrical Engineering, Technion, Haifa
32000, Israel (e-mail: ariel @ee.technion.ac.il).

D. Raz is with the Department of Computer Science, Technion, Haifa 32000,
Israel. Part of this work was done while he was with Bell Labs, Lucent Tech-
nologies (e-mail: danny @cs.technion.ac.il).

Y. Shavitt is with the Department of Electrical Engineering, Tel Aviv Univer-
sity, Ramat Aviv 69978, Israel. Part of this work was done while he was with
Bell Labs, Lucent Technologies (e-mail: shavitt@eng.tau.ac.il).

Digital Object Identifier 10.1109/TNET.2006.886323

of many proposals, as described in [1]-[3] and references
therein. QoSR aims at setting the connection topology for an
application, i.e., a path for unicast and a tree for multicast,
based on its QoS requirements and some optimization criteria.

Many of the QoSR algorithms first restrict the route selec-
tion to a set of feasible routes, which have sufficient resources
to guarantee the QoS requirements of the application, and then
choose an optimal route out of this set. The optimization cri-
terion is generally defined in terms of a “cost”, namely: there
is a cost associated with ensuring a specific QoS guarantee on a
specific route. Naturally, this cost is higher for more stringent re-
quirements, such as larger bandwidth or shorter delay. In many
cases, the cost is not explicitly given but rather implied. An im-
plied cost mechanism is quite flexible and may be used to incor-
porate different considerations.

Link considerations The cost may represent the consump-
tion of local resources that must be reserved on every link of the
route to support the QoS guarantee. These may include buffer
or bandwidth reservations.

Network considerations QoSR may be used to improve
overall network efficiency or enforce fairness. The cost may
represent the decrease in overall network performance from
establishing the selected connection. For instance, there may
be loss of revenue due to blocked future calls, or there may be
management costs.

User considerations There are several proposals for pricing
schemes for different QoS classes. Given such a pricing scheme,
the user would attempt to choose the cheapest feasible route.

Other considerations Other optimization criteria may be
expressed in terms of costs. For instance, where there is param-
eter uncertainty, the cost may represent the probability of a bad
estimate.

Identifying feasible routes may be a difficult task, and its
complexity corresponds to the intricacy of the QoS mechanisms
(scheduling, signaling, and resource reservation) and of the re-
quired QoS guarantee. The constraints on the feasible set may be
relaxed to include routes that are feasible with just “high” proba-
bility or that provide just statistical guarantees. The QoS guaran-
tees themselves may be imposed on the whole connection or on
each individual link. The latter typically requires mapping the
application’s end-to-end requirements into local requirements.

In this paper, we investigate a model in which a performance-
dependent cost is associated with each network link. The goal
of the QoSR process is to identify a route and a set of local
demands on its links as to minimize the overall cost incurred.
A feasible allocation of demands must satisfy the end-to-end
requirement of the application.

In order to illustrate the framework of our study, consider
a voice-over-IP session. Such an application requires a delay

1063-6692/$20.00 © 2006 IEEE

LORENZ et al.: EFFICIENT QoS PARTITION AND ROUTING OF UNICAST AND MULTICAST

1337

Level Cost Delay
Gold

Silver 6
Bronze 1

10

10ms
20ms
60ms

Level Cost Delay
Gold 3

20ms

Level Cost Delay
Gold 3 20ms
Silver 2 40ms

Bronze 1 60 “’

Level Cost Delay

Gold 10 20ms
S Silver 2 30ms
Bronze 1 40ms

Level Cost D
Gold 12
Silver 6

Bronze 1

Silver 2
Bronze 1

60ms
100m

Level Cost Delay
Gold 11 20ms
Silver 8 80ms
Bronze 1 100

Level Cost Delay
Gold 6 20ms

Level Cost Delay

Gold 10

Silver 2
Bronze 1

Fig. 1. Example: QoS routing and partition.

bound of say 120 ms in order to be at an acceptable quality level.
Assume further that the participants in the call are located at dif-
ferent locations and the links between them can travel through
different administrative domains. One could construct different
paths connecting the participants in the call, each resulting with
different QoS (delay) guaranteed by the different providers ac-
cording to the different service level agreements (SLAs) we
have with each. Even if the path is fixed (i.e., we cannot change
the routing), we could still decide to partition the delay “budget”
in various ways among the different providers. Among all such
partitions that guarantee the required QoS, we would seek to use
the one that is most cost-effective. Fig. 1 illustrates such a sce-
nario. Assume a voice session from node S to node T'. There
are several possible paths for this session, each using different
links that represent different ISPs. Each ISP offers three levels
of service (Gold, Silver, Bronze) each having a different QoS
(delay) guaranteed for a different cost (as described in the small
tables along each link). If our delay limit is 120 ms, then we can
choose the path S — B —T with service levels Bronze on the first
link and Gold on the second. This results in a guaranteed delay
of 120 ms at a cost of 12 units. However, we can also choose the
path S — A — C — T', with Silver levels at each of the links and
have the same guaranteed delay for a cost of only 10 units. As
we indicated above, even for a fixed path one can get different
costs for the same delay via different partitions. For example,
by choosing the service levels Gold, Bronze, and Gold, on the
respective links of the path S — A — C' — T, instead of Silver
levels at all links, we have a guaranteed delay of 100 ms for a
reduced cost of only 7 units.

The optimal solution must be chosen out of all combinations
of route and demand allocation, namely it is a combined routing
and resource allocation optimization problem. In order to asso-
ciate costs to delays, we employ integer functions, which better
fit practical purposes (see [4] and references therein). We also
focus on additive (e.g., delay) QoS requirements, which are typ-

Silver 3 40ms
Bronze 1 60ms

20ms
30ms
40ms

ically harder to solve for than bottleneck (e.g, rate) requirements
(see [5] for a more detailed discussion).

This model and related problems were recently addressed by
several works. Some studies assumed that the route (i.e., unicast
path or multicast tree) is given and only the resource allocation
part of the problem is solved. Heuristics for loss rate guaran-
tees on unicast connections were presented in [6]. Optimal so-
lutions for convex cost functions were discussed in [7] under the
broader scope of a general resource allocation problem. An op-
timal solution for (weakly) convex cost functions and improved
results for specific cost functions were presented in [4], [5], and
[8]. Heuristics for the resource allocation problem for multicast
connections were given in [9], and the problem was optimally
solved in [5]. A variant of this problem for rate guarantees was
studied in [10], and a more efficient solution was given in [11].!
Distributed optimal solutions were presented in [5], and a de-
tailed version for multicast connections was given in [4].

The combined problem of partition and routing of QoS re-
quirements was also addressed. Optimal multicast tree construc-
tion is a very complex problem even in simpler frameworks
(e.g., constrained Steiner tree [12]), thus the combined route se-
lection and resource allocation problem was solved only for uni-
cast connections. Optimal solutions were presented in [13] for
rate demands and rate-based delay requirements, and in [8] for
general (integer) delay requirements with convex cost functions.

Although these problems have been proven to be intractable,
efficient e-approximations may be derived. The approximate so-
lutions are e-optimal in the sense that their cost is within a factor
of 1 4 ¢ of the optimal cost. The running time is polynomial in
1/e, that is, there is a tradeoff between the accuracy of the solu-
tion and the computational effort needed to find it. An approx-
imation scheme for the combined routing and resource alloca-
tion problem was introduced in [8]. That approximation scheme

IRef. [11] presented efficient solutions for a broader family of optimization
problems, which includes the one discussed in [10].

1338

required several limiting assumptions, including convexity of
the cost functions. A fully polynomial approximation scheme
(FPAS) for general (integer) costs was recently obtained by [14].

A special case of practical interest was studied by [4]. That
study assumed discrete costs,2 meaning that each link offers
only a limited number of QoS guarantees (and costs) instead
of the complete spectrum of requirements. Under this assump-
tion, [4] presented strictly polynomial approximations for the
combined routing and resource allocation problem and for the
multicast resource allocation problem as well.

This paper presents efficient approximation schemes for gen-
eral integer cost functions and end-to-end delay requirements.
Previous approximation schemes [4], [8], [14] were all derived
from approximations to the restricted shortest path problem ob-
tained by [15] and were restricted only to either acyclic graphs
or nonzero costs. A more efficient approximation scheme for
that problem was proposed in [16]. We use similar techniques,
which apply to general (i.e., also cyclic) graphs and allow for
links with zero cost; in addition we present the first polyno-
mial time approximation scheme for the optimal resource al-
location problem on multicast trees with general integer cost
functions. Furthermore, our results improve upon the previous
ones in terms of time complexity, namely: they have a better
time complexity than the results of [14] for integer costs and
the results of [4] for discrete costs.

To illustrate the significance of this latter contribution, con-
sider a network of a moderate size, say 100 nodes, and suppose
the delay is measured in milliseconds, and the cost values range
from 1 to 1000. Then, in order to approximate the optimal solu-
tion within 1% (i.e., e = 0.01), the best previously known algo-
rithm would require an order of 100 instructions, while our al-
gorithm only needs an order of 10° instructions. In other words,
a solution of the same quality can now be achieved within sec-
onds rather than within hours. For networks of larger size, of
say 1000 nodes, our algorithm would require an order of 107
instructions, while the best previously known algorithm would
require an order of 102 instructions. Practical aspects of this
work and an evaluation of the actual (rather than worst-case)
running time and solution quality are out of the scope of this
study and can be found in [17].

The rest of this paper is structured as follows. Sections [I—V
discuss the combined path selection and resource alloca-
tion problem for unicast connections. Section II formulates the
model and problems and presents pseudo-polynomial solutions,
which are the basis for our approximations. In Section III, we
present approximation techniques, which rely on tight lower and
upper bounds on the cost of an optimal solution. The problem
of efficiently finding such bounds is solved in Section IV and
the full approximation process is given in Section V. Section VI
applies similar approximation techniques to solve the resource
allocation problem on multicast trees. Finally, concluding
remarks are given in Section VIIL.

II. PRELIMINARIES

In this section, we give a formal definition of the problem
and present simple dynamic programming pseudo-polynomial

2We follow the term used by [4].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

RSP: (G(V, E),{di,cihiecr, D,U)
1 forallv # s

2 D(v,0) < oo

3 D(s,0)« 0

4 fori=1,2,...,U

5 forveV

6 D(v,i) « D(v,i—1)

7 forl € {(u,v) | €(u,0) < i}

8 D(v,1) < min{D(v,1),d; + D(u,i — ¢;)}
9 ifD(t,i) <D
10 return the corresponding path
11 return FAIL

Fig. 2. Algorithm RSP.

solutions. These pseudo-polynomial algorithms are used as
“building blocks” for the approximation algorithms presented
in the rest of the paper. Similar (and more detailed) solutions
can be found in previous works [4], [5], [8].

The network is represented as a graph G(V, E), where |[V| =
n and |E| = m. There is a single source node s and a single
target node t. We denote an st-path by p, and its length (number
of hops) by |p|. Each link [€ FE offers different delays at dif-
ferent costs. The cost associated with a link is a (link-dependent)
function ¢;(d;) of the delay allocated to it. Each link cost func-
tion ¢;(d;) is nonincreasing with the delay and both the delays
and associated costs are assumed to be integers. We will further
assume that the minimal cost of any link is 1. However, we shall
relax these assumptions in Section V-B.

A delay partition on a path p specifies the delay allocated on
each link, i. e., is a set of link delays d = {d; };ep. The cost of
a partition d on a path p is defined as the sum of all link costs,
namely cost(p,d) = >, ci(di).?

A. Restricted Shortest Path

The Restricted Shortest Path Problem (see e.g., [15]) can be
viewed as a special case of our problem. Each link [€ F offers
a single delay and cost, which are denoted by d; and ¢; respec-
tively, and are assumed to be integers; In other words, the cost
function is only defined for a single delay value. We define the
cost of a path as ¢(p) = 3, & and the delay of a path by
delay(p) = > 1cp i

Problm RSP—Restricted Shortest Path: Given a network
G(V,E), a delay/cost pair for each link {d;, ¢ }icp, and an
end-to-end requirement D. Find the minimal cost path among
all paths that satisfy delay(p) < D.

Algorithm RSP (Fig. 2) is a pseudo-polynomial dynamic pro-
gramming algorithm that solves RSP.

The parameter U is an upper bound on the cost of the solution.
The algorithm returns the minimal cost path that satisfies the
delay requirement if the cost of this path is no greater than U,
otherwise it fails.

Complexity For each 4, each link is examined at most once,
thus the overall complexity is O(mU). If a solution is found then
the complexity is O(mc*), where ¢* is the cost of the optimal
solution.

Note If some links have a zero cost, then the updates in line 8
may not be performed in an arbitrary order. For acyclic graphs,

3The minimal link cost is assumed to be 1.

LORENZ et al.: EFFICIENT QoS PARTITION AND ROUTING OF UNICAST AND MULTICAST

OPQR (G(V, E), {cl(d)}leE; D, U)

1 forallv # s

2 D(v,0) o0

3 D(s,0) «0

4 fort=1,2,...,U

5 forveV

6 D(v,1) + D(v,i—1)

7 forl € {(u,v) |v eV}

8 forj =1,'2,...,4

9 di(j) = min{d| ¢/(d) < 5}

10 D(U5i) Hmin{D(v,i)adl(j)+D(uai_j)}
11 if D(t,3) < D

12 return the corresponding path and partition.

13 return FAIL

Fig. 3. Algorithm OPQR.

the “natural” partial order induced by the graph ensures correct-
ness, however establishing a correct update order for general
graphs requires a shortest path computation at each iteration of
the algorithm and adds to the complexity.

B. Optimal QoS Partition and Routing

We now generalize the results for integer cost functions. Each
link may offer different (integer) delay guarantees, d;, each as-
sociated with a (integer) cost ¢;(d;). The cost of a path p with a
given delay partition {d; },p is defined as c(p) = >, ci(di).

Problem OPQR—Optimal QoS Partition & Routing: Given
a network G(V,E), a delay/cost function for each link
{ci(d)hiep, and an end-to-end requirement D. Find the
minimal cost path p and partition {d;};cp that satisfies the
end-to-end delay requirement D.

We denote the optimal path by p* and the optimal partition
by d* = {d} }1cp- with optimal cost c*.

The following dynamic programming algorithm (Fig. 3)
solves Problem OPQR. The general idea behind the algo-
rithm is to view each link [as a set of links {l1,ls,...,ly}
corresponding to all possible costs on the link. The dynamic
program iteratively considers cost values. For each such cost
value (¢) and for each node in the network, we compute the
minimum delay that can be obtained from the source to that
node, incurring a cost of at most ¢ units. Note that, in general,
the nondecreasing cost function may have several delay values
associated with the same cost value. Hence, in line 9, for each
cost value, we chose among all delay values that correspond to
this cost, the smallest one. The delay associated with each of
these links is the minimal delay that achieves the specified cost
(line 9). The algorithm iteratively considers increasing cost
values, and halts upon the first cost value for which the minimal
possible delay between source and destination does not exceed
the end-to-end requirement D.

Complexity For each possible cost value 4, each link is ex-
amined 4 times (in line 8), i.e., O(Uz) examinations overall. In
each examination in line 9, we need to find the minimal delay
that has a cost no greater than j, which requires O(log D) steps,
implying an overall complexity of O(mU?log D). If we save
the d;(j) values and compute it only for new values of j, then
repeated examinations can be done in O(1). At most U new
computations (each requiring O(log D)) are required per link.

1339

The overall complexity would then be O(mU? +mU log D) =
O(mU (U+log D)). If a solution is found, then the overall com-
plexity is O(mc*(¢* + log D)), where ¢* is the cost of the op-
timal solution.

Note 1 In some cases the complexity of the computation in
line 9 can be done in less than O(log D). For instance, if the
inverse functions {d;(c)},cg are available (e.g., they have an
explicit analytic expression which has an inverse form) then it
can be computed in O(1) and the log D can be eliminated from
the complexity.

Note 2 If the cost functions are (weakly) convex, then Algo-
rithm OP-MP of [8] can be applied.# The resulting complexity
is O(mU(logU + log D)).

III. SAMPLING AND SCALING

In this section, we present approximation techniques based on
sampling and scaling. The two methods are used in succession
at a preliminary stage to produce an instance of either Problem
RSP or Problem OPQR with smaller integer parameters. We
then find an approximated solution by calling the appropriate
pseudo-polynomial algorithm presented in the previous section.
Since the complexities of Algorithm RSP and Algorithm OPQR
depend on their integer input parameters, reducing the values of
these parameters improves the complexity.

On the other hand, both sampling and scaling introduce an
error in the cost on every link, because they affect the granularity
of the parameters. There is a tradeoff between the accuracy of
the obtained solution and the complexity of the algorithms. We
seek an e-approximation, namely a solution with cost no greater
than a factor of (1 + ¢) from the optimum. The value of ¢ is
an input to the algorithms and the complexities polynomially
depend on 1/e.

In this section, we assume that an upper bound and a lower
bound on the optimal solution are given. In the next section,
we show how to efficiently obtain these bounds. Note that the
tighter these bounds are, the lower is the complexity of finding
a solution.

A. Logarithmic Sampling

In this section, we employ logarithmic sampling on the cost
functions. The idea is not to check the cost functions for every
possible cost, as is done by Algorithm OPQR. Instead, we check
delays that correspond to specific costs on a logarithmic scale.
Specifically, we check delays that correspond to costs of 1, (14
€),(1+¢)?%,...,U, where U is an upper bound on the maximal
cost. We replace each link with a set of links, each corresponding
to a specific delay (and cost), and then we solve Problem RSP.
Algorithm L-OPQR (Fig. 4) finds an e-approximation to OPQR.

Lines 1-7 select the delays on logarithmic scale costs, line8
calls Algoithm RSP, and lines 10-13 compute the partition in
terms of the original problem.

Complexity Let /i = mI¢ = O(mlogU/e). Initializing G
requires O(m log D). Calling Algorithm RSP requires O(mU).
The overall complexity is therefore O((mlogU/e)(log D +
U)).

4Without the additional assumptions of [8] (e.g., bounds on the cost of each
link).

1340

L-OPQR.’ (G(V,E),{Cl(d)}leE,D,U,&‘)
I I¢ = [logy . U]
2 foreachl € E

3 foreachj =0,1,...,I¢

4 dij < min{d|¢;(d) < (1+¢)’}

5 clj (1 + E)j

6 E={lj|l€E,j=0...I¢}

7 U0=Q0+¢eU

8 p <« RSP (G(Va E)’ {dljaclj}leE‘3D’ U)
9 if p = FAIL then return FAIL

10 (else) p « {l|3lj € P}

11 foreachl € p

12 G« {jlijen}

13 return p, {d;;, }iep

Fig. 4. Algorithm L-OPQR.

Note If I° > U then logarithmic scaling does not im-
prove the complexity, and an exact solution can be found in
O(mU(log D + U)) by using Algorithm OPQR.

Theorem 1: 1f Algorithm L-OPQR returns FAIL then ¢* >
U. Otherwise the returned path p and its corresponding partition
are a feasible solution to Problem OPQR with cost

c(p) < (14 ¢)min{c*,U}

namely p is an 1 + ¢ approximate solution.
Proof: For each | € p*, let j;' = [log; . cj].5 Obviously

¢ <1+l <(1+e)q. e

From the definition of line 4, and since ¢ = ¢/(df) < (1 +
)i, we get dijy < df. Thus, 37, dij» < D, ie., the path
{lj] }1ep+ is a feasible solution on G. By the same definition
(line 4), ¢y < (1 4 ¢)7i . Inserting this into (1) and summing
we get

¢t = Z cjr < Z(l +e) =(1+¢e)c". 2)

lep* lep*

If U > ¢ then j; < I¢ and from (2) & < (1 +¢)U = U.
Therefore, the feasible path {/j; };cp+ must be examined by the
call to Algorithm RSP, and thus Algorithm L-OPQR will not
return FAIL. Hence, Algorithm L-OPQR may return FAIL only
ifc* > U.

Algorithm RSP finds the minimal cost feasible path on G,
with cost at most U, therefore ¢(p) < min{é*,U}. Using
U = (1 +¢)U and (2) we get ¢(p) < (1 + &) min{c*,U}, as
claimed.]

B. Linear Scaling

Here we present an approximation based on linear scaling of
the costs. Scaling is applied to all costs to produce an instance
of Problem OPQR with smaller costs. We then call Algorithm
L-OPQR to find the optimal solution.

SNote that the assumption ¢; > 1 is needed here.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

S'OPQR (G(V'a E)3 {cl (d)}leE, D7 U7 La E)
1S« ke

2 foreachl € E

3 define &(d) = |ei(d)/S] +1

4 U« [U/S]+n

5 return L-OPQR(G‘(V, E),{&(d)}icr, D, U, e)

Fig. 5. Algorithm S-OPQR.

We use the lower bound L to compute a scale factor S that in-
troduces an overall error no greater than a fraction of € from L.
If the lower bound is valid (L < ¢*), then this ensures the accu-
racy of the obtained solution. The tightness (ratio) of the upper
and lower bounds determines the complexity of the algorithm.
Algorithm S-OPQR (Fig. 5) uses scaling to find an e-approxi-
mation to Problem OPQR.

Complexity The complexity is dominated by the
call to Algorithm L-OPQR (line 5), which requires
O((mlogU/e)(logD + U)). Let « = U/L. Then,

U = O(an/e) and the overall complexity is

0] (% log% (logD—l— %)) .

Note Since L is used only for scaling, it does not have to
be a valid lower bound for the algorithm to produce a solution.
However, it does affect the accuracy of the solution, namely we
get an e-approximation only if L < ¢*.

Theorem 2: If Algorithm S-OPQR returns FAIL then c* > U.
Otherwise, the path p returned and its partition are a feasible
solution to Problem OPQR and

c(p) < (14 ¢)(min{c*, U} +¢L).

Thus, if L < ¢* < U then ¢(p) < ¢*(1 + €)%, ie., pis an
(1 + €)% ~ 1 + 2¢ approximate solution.

Proof: For each | € E we have ¢;(d) < S¢(d) < ¢(d) +
S. Summing for all links we get for any path p:

c(p) < Sé(p) < c(p) +nS. (€)

If U > c*, then

&(p*) < %+n§ {%W +n=0.
This implies that, if U is indeed an upper bound on G, then so
is U on G (namely, with cost functions {¢(d) };c). Therefore,
if Algorithm S-OPQR returns FAIL (i.e., Algorithm L-OPQR
returned FAIL), then U < c*. Let ¢* be the cost of the optimal
solution to Problem OPQR on G. Since p* is a feasible partition

on G we must have

o2

* < pY) < % +n.)

LORENZ et al.: EFFICIENT QoS PARTITION AND ROUTING OF UNICAST AND MULTICAST

The path p returned by Algorithm L-OPQR must satisfy ¢(p) <
(1 4+ &)min{¢*, U}. Inserting into (3) and (4) we get

) ~
e)min{c*,U}
)min{é(p*),ﬁ}
S(1+ &) min {% +n, ﬁ}
(14 ¢) (min{c*, U} + (n+1)9)
(14 ¢) (min{c*,U} +¢L)

IN N
»nn »n »n

c(p)
(1+
(1+

IN - IA

ININ

as claimed. [|

Remark 1: 1t is possible to replace the call to Algorithm
L-OPQR on line 5 with a call to Algorithm OPQR. The overall
complexity will then be O(m(an/e)(log D + (an/e))), which
may be an improvement if ¢ is very small (log(an/e) > an).
If a path p is returned by Algorithm S-OPQR then it satisfies
¢(p) < min{c*,U} 4 L. The proof is similar to that of The-
orem 2.

Remark 2: For convex cost functions, it is possible to apply
scaling to the exact algorithm MP-OP of [8]. That is, in line 5 of
Algorithm S-OPQR, Algorithm MP-OP of [8] is called instead
of Algorithm L-OPQR. The overall complexity in this case is
O(m(an/e)(log D+log(an/e)), which is an improvement un-
less D > an/e > 2°".

IV. FINDING UPPER AND LOWER BOUNDS

In this section, we present algorithms for finding upper and
lower bounds on the solution to Problem OPQR. We seek tight
bounds, i.e., with &« = U/L as small as possible. We can then
use these bounds in the approximation algorithms of the pre-
vious section.

A. General Idea

We follow the method proposed by Hassin [15]. Suppose we
have a test procedure, TEST A, that checks whether A is a valid
upper bound. We can call TEST A for all A € {1,2,4,8,...}.
If for some *, TEST * returns FAIL and TEST (2A*) succeeds
then A* < ¢* < 2)*. Clearly, since TEST A returns FAIL for all
A < c*, then if TEST(1) returns FAIL such a A* will be found in
O(log ¢*) tests.

Now, suppose that all we have is an approximated test proce-
dure in the following sense.

Definition 1: A test procedure, TEST (A), is an f-approxi-
mated test procedure if it satisfies the following:

1) if TEST (\) returns FAIL then A < ¢*, otherwise

2) TEST()) returns f(A) and f(\) > ¢
TEST() either returns a valid upper bound f(\) > ¢* or FAIL.
If TEST(A) returns FAIL then A is not a valid upper bound (i.e.,
¢* >)\, meaning that \ is actually a lower bound). If TEST())
returns f(\) then it is a valid upper bound, but A may not be a
valid upper bound.

1341

BoOuND: (TEST(), L,U)

if TEST(L) does not return FAIL then
return [L, f(L)]

if TEST(U) returns FAIL then
return ERROR

[+« f(U)

l+logL

u « logU

whilew —1 > 1
£« 2+u)2

10 if TEST(A) returns FAIL then

11 l <+ log A

12 else

13 u < log A

14 fe O

15 return [2, f)

0NN A WN—

o

Fig. 6. Algorithm BOUND.

Note that the above definition is a generalization of Hassin’s
approximated test procedure. By setting f(z) = (1 +)z, one
obtains Hassin’s e-approximation test procedure [15].

We can apply the above method and call TEST(A) for all
A€ {1,2,4,8,...}. If for some A*, TEST(A*) returns FAIL and
TEST(2X*) returns f(2)*) then A* < ¢* < f(2X*). Again, if
TEST(1) returns FAIL then such a A* must be found in O(log ¢*)
tests. Otherwise, if TEST(1) returns f(1) then 0 < ¢* < f(1).

If f(A) is a monotonic increasing function of A\ and there
are some known (possibly trivial) lower and upper bounds L <
c* < U, then the following algorithm (Fig. 6) may be used.

Algorithm BOUND performs a binary search on a logarithmic
scale. This can be viewed as a search for A* on the group
{L,2L,4L,...,U}. The quality of the bounds we get (see line
14) depends on the accuracy of the test procedure, namely on
f(A). Specifically, the returned bounds [L, U] must satisfy

U _ L)

L<c" <UK<[f2L),ie.
<UL, ie, o= <1

a=
If, for instance, f(A\) = A, then the bounds satisfy L < ¢* <
U<2L,ie,a < 2.

Complexity The number of calls to TEST(A) is of order
log(u — 1) with the initial /, u, that is

O (log(logU —log L)) = O <log log %) = O(loglog a).

Note The initial lower bound L is assumed to be valid. On
the other hand, U does not have to be a valid upper bound,
but TEST(U) must not FAIL (i.e., f(U) should be a valid upper
bound). A valid upper bound could be chosen as the initial U in
which case TEST(U) would not FAIL, however, this would be a
pessimistic bound with relatively high complexity. It is better to
choose the smallest known U for which TEST(U) does not FAIL.

Altogether, we have proven the following theorem.

Theorem 3: Given an f-approximated TEST() procedure, an
upper bound, U, and a lower bound, L, such that L < ¢* <
f(U), Algorithm BOUND finds correct upper and lower bounds,
w and [, such that

f2l)

< —
-1

~|

1342

Procedure TEST1: (M)
I p (_S'OPQR(G(‘/’ E)s {Cl(d)}IEEa D, A, 1)

2 If p= FAIL
3 return FAIL
4 else

5 return ¢(p)

Fig. 7. Procedure TESTI.

Procedure TEST2: (\)

1 foreachl € E
2 di(A) =min{d | ¢(d) < A}
3 p « Shortestst Path (G(V,E),{d; }icE)
4 if delay(p) > D
5 return FAIL
6 else
7 return ¢(p)

Fig. 8. Procedure TEST2.

An obvious valid initial lower bound is 1.6 A slightly better
bound is min;e g ¢;(D), which is actually a lower bound on the
cost of any link. This bound can be improved by computing the
length of the shortest st-path with {¢;(D)};cE as link lengths,
since the cost of each link / on any feasible partition is at least
ci(D). A valid upper bound is 37, ci(D/|p|) for some ar-
bitrary st-path p, because {D/|p|}iep is a feasible partition.
Therefore, a valid upper bound is the length of the shortest
st-path with {¢;(D/n)} ek as link lengths.

B. The Test Procedures

In this section, we present two test procedures that can be used
with Algorithm BOUND. We assume that the test procedures are
aware of the problem instance, i.e., G(V, E), {ci(d) }ier, D.
For notation simplicity, we omit the problem instance from the
test procedure description.

The first test (Procedure TEST1, Fig. 7) is based on Algorithm
S-OPQR. It is very accurate (f(A) < 4)), however, it has rela-
tively high complexity.

Complexity Using the complexity expression for Algorithm
S-OPQR, we get (a« = 1,e = 1)

O (mlogn(log D +n)).

Accuracy By Theorem 2, if TESTI returns FAIL then ¢* >
U = \;and if it returns a path p, then ¢(p) < (1+¢)(U+eL) =
(1+ 1)(A+ A) = 4. Obviously, f(A) = ¢(p) is a valid upper
bound, and we have f(\) < 4\

The second test (Procedure TEST2, Fig. 8) is based on a “stan-
dard” shortest path computation. It is less accurate than TESTI,
but has better complexity. The idea is to bound the highest cost
incurred on any single link of the optimal solution.

6Recall that this is assumed to be the minimal cost of any link.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

e-OPQR: (G(Va E)’ {Cl(d)}leEa D7 €)

1 U + maxjegc(D/n)

2 Ly < cost of Shortestsi Path (G(V, E), {c;(D)}icE)
3 [L2,Us2] + BOUND(TEST2, L1,U1)

4 [L3,Us] + BOUND(TESTI, L2, Us)

5 return S-OPQR(G(V, E), {¢;(d)}ier, D, L3,Us,¢)

Fig. 9. Algorithm -OPQR.

Complexity Computing d;(\) requires O(log D) for each
link. Computing the shortest path requires O(m+mn logn).” The
overall complexity is thus

O(mlog D 4 nlogn).

Note If G is connected then TEST2(max;ecg ci(D/n))
cannot FAIL. Therefore, max;cg ¢;(D/n) can be used as an
initial upper bound for Algorithm BOUND with TEST2. An even
better bound can be found by computing A such that G(V, E()\))
has an st-path, where E()) is defined as {l|¢;(D/n) < A}.
Such a A can be found in O(n logm) by sorting the links and
then running O(logm) connectivity tests.

Theorem 4: Procedure TEST2 is a valid test procedure with
() < n

Proof: 1f a feasible path p is found by the call to SHORTEST-
PATH then by definition ¢; < A forall [€ p, implying an overall
cost c(p) < nA. Since {d;(A)}iep is a feasible partition we must
have ¢* < ¢(p) < nA. In other words f(A) < An.

Consider now the optimal solution to Problem OPQR. If A >
c¢* then since ¢* > ¢} for every | € p*, we have

Vi € p*.

Therefore, 3. di(A) < >3y df < D, namely p is a fea-
sible path w.r.t. {d;(A\) }ic £ and the algorithm cannot fail. Thus,
if the algorithm returns FAIL then A < c*. |

V. PUTTING IT ALL TOGETHER

We can now present (see Fig. 9) a fully polynomial approxi-
mation algorithm to Problem OPQR.

Complexity L; is a valid lower bound and TEST2(U;)
cannot return FAIL. Thus, L;, U; are a valid input to Al-
gorithm BOUND in line 3. Computing both these bounds
requires O(m + mnlogn). Algorithm BOUND requires
O(loglog B) calls to TEST2, where (8 is the ratio of the
initial bounds.®8 Thus, the overall complexity up to line 3 is
O(loglog f(mlog D + nlogn)).9

L5 and U, are valid bounds on ¢* and therefore are valid input
to Algorithm BOUND. Since Us /Lo < 2n the call to Algorithm

TUsing Dijkstra’s algorithm.
8Note that 3 is bounded by the maximal cost of any single link.

9Even if U, is replaced by the better bound suggested in the note in Sec-
tion IV-B the complexity of finding the initial bounds is still dominated by the
rest of the algorithm.

LORENZ et al.: EFFICIENT QoS PARTITION AND ROUTING OF UNICAST AND MULTICAST

BOUND in line 4 requires O(log log n) calls to Procedure TESTI
and an overall complexity of O(loglog n(mlogn(log D+n))).

L, Us are valid bounds on ¢* and therefore are valid input to
Algorithm S-OPQR. Us/Ls < 8, hence the call to Algorithm
S-OPQR requires

0] (@logg—n (logD—l— 8_n>> .
€ € €

The overall complexity is therefore

O ((mlog D + nlogn)loglog
+ mlogn(log D + n)loglogn

+Tlog L (logD + E))
€ € €

1
=0 <m log D <log log 3 + log nloglog n— 10g(n/5)>
€
+nlogn(loglog f + mloglogn)

+Ei2mn10g<n/€)> .

Note 1 For very small values of ¢, replacing log(n/e) by n
may improve the complexity (see Remark I in Section III-B).

Note 2 The complexity can also be improved for the case of
convex cost functions (see Remark 2 in Section III-B).

Correctness As explained, U; and L, are valid bounds.
Using Theorem 3 and Theorem 4 we get that Us and L, are
also valid bounds. Applying Theorem 3 again with TESTI,
together with Theorem 1 establish the algorithm correctness.

A. Discrete Cost Functions

In this section, we discuss the application of our approx-
imation techniques to the more restricted case of discrete
cost functions. This case, which was studied by [4], admits a
strictly polynomial approximation scheme, meaning that the
complexity does not depend on either loglog 3 or log D. We
follow [4] and use the term discrete to refer to cost functions
with at most ¢ discrete (delay, cost) values, where ¢ is given as
input. Next, we derive an improved complexity for the solution
of Problem OPQR for discrete cost functions.

We first observe that computing the inverse cost function
(e.g., in line 9 of Algorithm OPQR) can be done in O(log q)
instead of O(log D). This reduces the complexity of Algorithm
OPQR to O(mU(logU + logq)). Alternatively, each link
can be replaced by O(g) links corresponding to its offered
services. After this substitution, Algorithm RSP can be used
with a complexity of O(mqU). Our second observation is that
we can reduce the number of calls to TEST2 by Algorithm
BOUND. Instead of searching through the whole range of costs
we can limit the search to the O(mgq) discrete cost values,
which requires only O(log(mgq)) calls to TEST2. The initial sort
requires additional O(mqlog(mgq)) operations, however using
techniques for searching in arrays with sorted columns [18], the

1343

additional number of operations can be reduced to O(m log q).
The overall complexity, assuming ¢ = O((1/¢)log(n/¢€)),10 is

O ((mlog q + nlogn)log(mgq)
mqn
+mlogn(logq+ n)loglogn + —) .
€
This is a significant (above n?) improvement over the
O(mgn?log(mgq)/e) approximation obtained in [4].

B. Zero and Noninteger Costs

We shall now relax the assumption that the minimal cost
on every link is at least 1. As noted in Section II-A, if there
are links that have a zero cost and the graph contains cycles,
then a shortest-path computation is required in every iteration of
the exact pseudo-polynomial solution. This increases the com-
plexity of Algorithm RSP by a factor of logn, and adds to the
complexity of all the approximations.

Both Algorithm OPQR and Algorithm L-OPQR assume a
minimal cost of 1 on every link. On the other hand, these algo-
rithms are called only through Algorithm S-OPQR, which as-
signs costs that cohere with this assumption. The rounding in
line 3 of Algorithm S-OPQR ensures that the minimal cost as-
signed on any link is at least 1. The only requirement is that the
scaling factor S is greater than zero. The scaling factor would
be zero only if either L or ¢ is zero. If e = 0, then we actu-
ally require an exact solution and therefore Algorithm S-OPQR
cannot be used. We can still use Algorithm OPQR, as is, for
acyclic graphs, or modify it (with increased complexity) to in-
clude a shortest-path computation in every iteration.

If L = 0, then the approximation scheme requires infinite
time anyway, since in this case @ = co. On the other hand, for
any positive L, Algorithm S-OPQR works fine, with the same
complexity, even if L < 1. Also, Algorithm BOUND only re-
quires L > 0, hence Algorithm e-OPQR only requires L; > 0.
The case of ¢* = 0 can be easily checked by calling TEST2 with
A = 0. Note that, in this case, any feasible path returned by
TEST2 is an (exact) optimal solution. If ¢* > 0 but L; = 0, then
some assumption (e.g., Ly > 1) must be made. Except from
its dependency on log log (3, Algorithm e-OPQR is totally inde-
pendent of the cost values. Specifically, the costs do not need to
have integer values.

VI. M-OPQ

In this section, we solve the multicast resource allocation ver-
sion of Problem OPQR. We assume that the multicast tree is
given and that the problem is to find the optimal resource allo-
cation (delay partition) on it.

To illustrate this problem consider the multicast tree depicted
in Fig. 10. The tree has been defined over the network of Fig. 10,
in which the source is node .S and the multicast target group is
the set {C, T'}. Assume that the end-to-end delay requirement is
120 ms. This means that the guaranteed end-to-end delay over
each of the paths S — B —T and S — B — D — A — C should
not exceed 120 ms. One way to achieve this is by choosing Gold
service atlinks B— D, B—T,and D — A, Silver service at link

10 This determines whether Algorithm OPQR or Algorithm RSP are used.

1344

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

Level Cost Delay
Gold

Silver

Bronze 1

Level Cost Delay
Gold 3 20ms

Level Cost Delay
Gold 3 20ms

Silver 2 40ms
N
Level Cost Delay

Bronze 1 60 "g
Gold 10 20ms

S Silver 2 30ms
Bronze 1 40ms

Level Cost D
Gold 12 20my
Silver 6 40ms
Bronze 1 60ms

Silver 2 60ms
Bronze 1 100ms

Level Cost Delay
Gold 11 20ms
Silver 8 80ms
Bronze 1 100ms|

Level Cost Delay
Gold 6 20ms

Bronze 1

Fig. 10. Example: Multicast QoS partition.

A — C, and Bronze service at link S — B, incurring a total cost
of 38 units. However, the delay requirements can be met also by
choosing Gold service at S — B, Silver service at A — C, and
Bronze sevice at all other links, incurring a total cost of only
21 units. Note that for the unicast partition problem defined on
the path S — B — T, the optimal partition is different, namely
Bronze at S — B and Gold at B — T'.

We denote a multicast tree by T" and the multicast target group
by M = {t1,t2,...}. We denote a path from the source s to a
node v by p*. The cost of a tree is defined as ¢(T") = >, -
The delay of a tree is defined as the maximal delay of a path
from the source to any member of the multicast group, namely
delay(T) = max,enr delay(p?).

Problm M-OPQ—Multicast Optimal QoS Partition: Given
a tree T, a delay/cost function for each link {¢;(d)}ier, and
an end-to-end requirement D. Find the optimal partition
d = {d;}ieT that satisfies the end-to-end delay requirement
delay(T) < D.

We present exact and e-approximate solutions that apply to
any integer cost functions. We assume all parameters (costs and
delays) are integers.

A. Exact Solution

We solve Problem M-OPQ using the same techniques we
used for Problem OPQR. We start with Algorithm M-OPQ
(Fig. 11), which is an exact pseudo-polynomial solution.
Without loss of generality, we assume a binary tree. The tree
can be made binary by splitting each nonbinary node with x
children to — 1 binary nodes. This adds a constant factor to the
complexity. For a tree T', let TV and T~ be the corresponding
left and right subtrees of T'. As before, n, m(= n — 1) denote
the number of nodes and links in the tree. The height (depth) of
the tree is denoted by H.

Algorithm M-OPQ (Fig. 11) finds the optimal partition on the
whole tree by combining optimal partitions on the sub-trees. W,
X.,Y, and Z are tables of size U which hold the best delay

Level Cost Delay
Gold 10
Silver 2

Silver 3 40ms
Bronze 1 60ms

20ms

30ms
40ms

M'OPQ (Ta {Cl (d) }lETa -Da U)
Y «M-OPQ(TY,{ci/(d)}ie1v,D,U)
Z «M-OPQ(T*,{ci(d)}ieT=, D, U)
W «MERGE(Y, Z, U, max)
forc=1...U

X(c) + min{d | cz(d) < ¢}
X +MERGE(X,W,U,X)
it X(U)>D

return FAIL(exit recursion)
X (all except root)
min{c | X(c¢) < D} and the cor-
responding partition.

01NN B W -

O

(else) return {

(root only)
Procedure MERGE: (A(c), B(c), U, op)
1 forc=0...U

2 D(c) = minlSmSC op{A(z), B(c — 2)}
3 return D

Fig. 11. Algorithm M-OPQ.

achieved for each and every cost. Such a table is computed
for each sub-tree and for each link. The algorithm recursively
merges tables of sub-trees (and links) until it reaches the root of
the tree. As indicated in Fig. 11, the table Y contains the best
delay achieved, for each cost ¢ between 1 and the upper bound
U with respect to the left subtree of T, including the cost of
the link that connects the subtree to the rest of the tree. Simi-
larly, the table Z contains the best delay achieved for each cost
with respect to the right subtree of 7" (and its connecting link.
The values in this table are calculated recursively, so when we
compute the table X containing the best delay achieved for each
cost with respect to the full tree T, their values are already avail-
able. The first step (Line 3) is combining tables Y and Z, into
a single table; this table (W) contains for each cost ¢ the min-
imum over all 7 < ¢ of the maximum of Y () and Z(c — i) (see
the code for Procedure MERGE in Fig. 11). The next step is to
build the table X containing the delay data for the link z going
up from the tree T'. Then, X is updated. This is done by com-
puting for each cost value ¢ the minimum over all = < c of the

LORENZ et al.: EFFICIENT QoS PARTITION AND ROUTING OF UNICAST AND MULTICAST

SM-OPQ.’ (T, {Cl(d)}l€T7 D, U, L, E)
1§« nlfl

2 foreachl € T

3 define &(d) = |e(d)/S] +1

4 U« [U/S]+n
5

return M—OPQ(T, {@(d e, D, 0,6)

Fig. 12. Algorithm SM-OPQ.

sum of W (i) and X (¢ —) (see the code for Procedure MERGE
in Fig. 11). Clearly, if both Z and Y contains the correct values
for the subtrees, X contains the correct minimum delay value
for the combined tree. Thus, when eventually we calculate the
cost for the root, we get the correct minimal delay for the entire
tree, T'.

Complexity Each call to Procedure Merge requires O(U?).
There are two such calls for every node in the tree. Calculating
X (¢) in line 5 requires O(U log D). The overall complexity is
therefore O(nU(log D 4+ U)). A distributed algorithm which
uses parallel calls to sub-trees (see [4] for detailed description)
has a time complexity of O(HU (log D + U)).

B. Approximation

We can use Algorithm S-OPQR to find an e-approximation
to Problem M-OPQ. To that end, it suffices to replace the call
to Algorithm L-OPQR in line 5 of Algorithm S-OPQR with a
call to Algorithm M-OPQ. Algorithm SM-OPQ (Fig. 12) is the
modified version.

Complexity The complexity is dominated by the call to Al-
gorithm M-OPQ (line 5), which requires O(nU(log D + U)),
where U = O(an/e), as in Algorithm S-OPQR. Thus, the
overall complexity is

0 (nag_n (logD—i— %)) =0 <aTn2 (10gD+ 0;_n)> .

The overall complexity for the distributed case is
0] (H% (logD + %» .
€ €

Note As for Algorithm S-OPQR, L does not have to be a
valid lower bound, but it affects the accuracy of the solution.

Theorem 5: If Algorithm SM-OPQ returns FAIL then ¢* > U.
Otherwise the partition d(T') returned is a feasible solution to
Problem M-OPQ and

¢(d(T)) < min{c*,U} + ¢L.

The proof is similar to that of Theorem 2.

We can find lower and upper bounds to Problem M-OPQ
using Algorithm BOUND and apply Algorithm e-OPQR with a
few modifications (see Fig. 14). First, the initial bounds are

1 I}leagwl(JH), Ly ;01()

Second, we replace the call to Algorithm S-OPQR in Procedure
TESTI with a call to Algorithm SM-OPQ); and third, we use
the following Procedure TEST3M (Fig. 13) instead of Procedure
TEST2.

1345

TEST2M: ()
foreachl € T
di(A) = min{d | ¢;(d) < A}
if delay(T) < D then
return H)\
else
return FAIL

AW —

Fig. 13. Algorithm TEST2M.

e-M-OPQ: (T) {Cl(d)}leTa D, £)

1 U1 + maxjer¢(D/H)

2 L + ZIGT Cl(D)

3 [L2,Us2] + BOUND(TEST2M, L1,Uy)

4 [L3,Us] < BOUND(TESTI, L2, Us)

5 return SM-OPQ(T', {¢;(d) }ieT, D, L3, Us, €)

Fig. 14. Algorithm ¢-M-OPQ.

Complexity O(nlog D); and O(H log D) for a distributed
implementation.

The fully polynomial approximation algorithm to Problem
M-OPQ is presented in Fig. 14.

Complexity Combining the complexity expressions of Al-
gorithm SM-OPQ and the modified test procedures, we get the
overall complexity of finding an e-approximation to Problem
M-OPQ:

O (nlog Dloglog 3 + n*(log D + n)loglog H

n2 n
+—(log D + —)

€ €

where

D/H
max a(D/H)
> a(D)

leT

p=

For the distributed case, the complexity is

O (H log Dloglog 8 + nH (log D + n)loglog H

+% (logD + g)) .

Correctness Similar to the unicast case.

VII. CONCLUSION

In this paper, we studied efficient approximations to optimal
routing and resource allocation in the context of performance-
dependent costs.

We established fully polynomial approximation schemes for
the following problems.

Problem OPQR The combined optimal routing and parti-
tion problem for unicast connections.

Problem M-OPQ Optimal partition of end-to-end QoS re-
quirements on a multicast tree, including a distributed imple-
mentation. We also presented improved results for the two im-
portant special cases of convex cost functions and discrete cost
functions.

We presented the first fully polynomial approximation
scheme (FPAS) for Problem OPQR that is not limited to either

1346

acyclic networks or links with nonzero costs. Our approxima-
tions are valid for general costs, and in particular to nonconvex
cost functions. In addition, we presented the first FPAS for
Problem M-OPQ that applies to general cost functions.

Our results significantly improve upon previous results, in
every context of cost functions that has been investigated.
Specifically:

General costs The approximation scheme of [14] achieves
an overall complexity of O(X (mn/e)loglog(nC™*)), where
C™2% js a trivial upper bound on the cost of any link and X =
min{D, (log C™**/e) + log D, (n/e) + log D}. Our approx-
imation scheme provides a significant improvement in terms
of computational complexity. The exact comparison involves a
cumbersome algebra and is thus omitted; as an indication to the
extent of the improvement, we note that our approximation out-
performs that of [14] by a factor of more than either log log 3 or
n/e, depending on the relative order of magnitude of the input
parameters.

Convex costs For Problem OPQR, efficient approximations
for convex cost functions were studied in [8]. However, that
approximation requires several more assumptions on the cost
functions, e.g., that the maximal cost on any link is bounded.
Those assumptions were reasonable in the context studied in [8],
namely uncertainty of network parameters, but they are too re-
strictive for the general case considered here. In contrast, our re-
sults do not rely on those assumptions. On the other hand, when
only QoS partitioning is considered (i.e., the routing is given),
the convexity assumption allows for exact polynomial solutions
for both unicast and multicast [5]; moreover, the (exact) solu-
tion of [5] for Problem M-OPQ outperforms our approximation
also in terms of complexity.

Discrete costs We improved the results of [4] for discrete
cost functions (see Section V-A). Our approximation has a sig-
nificantly better (above n?) time complexity for both unicast and
multicast connections.

Future research should focus on the open problem of mul-
ticast routing in this framework. Future work should also
consider the application of our methods to specific cost func-
tions, in particular those that arise in practical QoS applications.
Such an investigation would potentially allow for more effi-
cient approximations. We also believe that simple cases (e.g.,
uniform or linear cost functions) should simplify the task of
multicast routing. The problems studied in this work handle
a single connection request. This corresponds to the typical
scenario in which sessions appear sequentially hence should
be handled one at a time. Nevertheless, the case in which
multiple concurrent sessions can be handled simultaneously
also deserves attention and is left for future work.

REFERENCES

[1] G. Apostolopoulos, R. Guérin, S. Kamat, A. Orda, T. Przygienda, and
D. Williams, “QoS Routing mechanisms and OSPF extensions,” In-
ternet RFC 2676, Aug. 1999.

[2] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework
for QoS-based routing in the Internet,” Internet RFC 2386, Aug. 1998.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

[3] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1234-1288, Sep. 1996.

[4] D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” in Proc. IEEE INFOCOM 2000, Tel Aviv, Is-
rael, Mar. 2000, pp. 613-622.

[5] D. H. Lorenz and A. Orda, “Optimal partition of QoS requirements on
unicast paths and multicast trees,” in Proc. IEEE INFOCOM’99, New
York, Mar. 1999, pp. 246-253.

[6] R.Nagarajan, J. F. Kurose, and D. Towsley, “Allocation of local quality
of service constraints to meet end-to-end requirements,” presented at
the IFIP Workshop on the Performance Analysis of ATM Systems,
Martinique, Jan. 1993.

[7] T. Ibaraki and N. Katoh, Resource Allocation Problems, the Founda-
tions of Computing. Cambridge, MA: MIT Press, 1988.

[8] D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain
parameters,” [EEE/ACM Trans. Netw., vol. 6, no. 6, pp. 768-778, Dec.
1998.

[9] V.Firoiu and D. Towsley, “Call admission and resource reservation for
multicast sessions,” in Proc. IEEE INFOCOM’96, San Francisco, CA,
Apr. 1996, pp. 94-101.

[10] M. Kodialam and S. Low, “Resource allocation in a multicast tree,” in
Proc. IEEE INFOCOM’99, New York, Mar. 1999, pp. 262-266.

[11] D. S. Hochbaum, “Lower and upper bounds for the alloction problem
and other nonlinear optimization problems,” Math. Oper. Res., vol. 19,
no. 2, pp. 390-409, 1994.

[12] V.P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Multicast routing
for multimedia communication,” IEEE/ACM Trans. Netw., vol. 1, no.
3, pp- 286292, Jun. 1993.

[13] R. Guérin and A. Orda, “QoS-based routing in networks with inaccu-
rate information: theory and algorithms,” IEEE/ACM Trans. Netw., vol.
7, no. 3, pp. 350-364, Jun. 1999.

[14] F. Ergiin, R. Sinha, and L. Zhang, “QoS routing with performance-de-
pendent costs,” in Proc. IEEE INFOCOM 2000, Tel Aviv, Israel, Mar.
2000, pp. 137-146.

[15] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Math. Oper. Res., vol. 17, no. 1, pp. 36-42, Feb. 1992.

[16] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme

for the restricted shortest path problem,” Oper. Res. Lett., vol. 28, no.

S, pp. 213-219, Jun. 2001.

F. A. Kuipers, A. Orda, D. Raz, and P. Van Mieghem, “A compar-

ison of exact and £-approximation algorithms for constrained routing,”

in Proc. IFIP Networking 2006, Coimbra, Portugal, May 2006, pp.

197-208.

G. N. Frederickson and D. B. Johnson, “The complexity of selection

and ranking in X' + Y and matrices with sorted columns,” J. Comput.

Syst. Sci., vol. 24, pp. 197-208, 1982.

[17]

[18]

Dean H. Lorenz received the B.Sc. degree (summa
cum laude) in computer engineering and the Ph.D.
degree in electrical engineering from the Tech-
nion—Israel Institute of Technology, Haifa, Israel, in
1995 and 2004, respectively.

He was an officer in the Israeli Defense Force
and a team member in a project dealing with dis-
tributed real-time information system (1986-1991),
a Systems Analyst and Consultant at Sysware Tech-
nologies, Haifa, Israel (1993-1995), and a Senior
Developer at Akamai Technologies, Cambridge, MA
(1999-2000). He was a summer visitor at the Mathematics of Networks De-
partment at Lucent Bell Laboratories, Murray Hill, NJ (1998) and a DIMACS
visitor at the Department of Network and Services Management, Lucent Bell
Labs, Holmdel, NJ (1999). Since 2001, he has been a Researcher at the System
Architecture Group in the Scale-out System Technologies Department of the
IBM Research Laboratory in Haifa, Israel. His research includes QoS routing,
multicasting and optimization (Technion), grid computing, autonomous com-
puting, group services, and scale-out technologies (IBM).

Dr. Lorenz received the Gutwirth Award for outstanding distinction in 1998
and 1999.

LORENZ et al.: EFFICIENT QoS PARTITION AND ROUTING OF UNICAST AND MULTICAST

Ariel Orda (S’84-M’92-SM’97-F’06) received the
B.Sc. (summa cum laude), M.Sc., and D.Sc. degrees
in electrical engineering from the Technion—Israel In-
stitute of Technology, Haifa, Israel, in 1983, 1985,
and 1991, respectively.

Since 1994, he has been with the Department of
Electrical Engineering at the Technion. His current
research interests include network routing, surviv-
ability, QoS provisioning, wireless networks, the
application of game theory to computer networking
and network pricing.

Dr. Orda received the Award of the Chief Scientist in the Ministry of Com-
munication in Israel, a Gutwirth Award for Outstanding Distinction, the Re-
search Award of the Association of Computer and Electronic Industries in Is-
rael, the Jacknow Award for Excellence in Teaching, an ICNP 2004 Best Paper
Award, and the 2005 Klein Award for Excellence in Research. He served as
Program co-chair of IEEE INFOCOM 2002, and is an Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING and of the Journal of Computer Networks.

Danny Raz (M’98) received the Doctoral degree
from the Weizmann Institute of Science, Israel, in
1995.

From 1995 to 1997, he was a Postdoctoral Fellow
at the International Computer Science Institute,
(ICSI) Berkeley, CA, and a visiting Lecturer at the
University of California, Berkeley. Between 1997
and 2001, he was a Member of Technical Staff at
the Networking Research Laboratory at Bell Labs,
Lucent Technologies. In October 2000, he joined the
faculty of the Computer Science Department at the
Technion, Israel. His primary research interest is the theory and application of
management-related problems in IP networks.

1347

Yuval Shavitt (S’89-M’96-SM’00) received the
B.Sc. degree in computer engineering (cum laude),
the M.Sc. degree in electrical engineering, and the
D.Sc. degree from the Technion—Israel Institute of
Technology, Haifa, Israel, in 1986, 1992, and 1996,
respectively.

From 1986 to 1991, he served in the Israel Defense
Forces, first as a System Engineer and the last two
years as a Software Engineering Team Leader. After
graduation, he spent a year as a Postdoctoral Fellow at
the Department of Computer Science at Johns Hop-
kins University, Baltimore, MD. Between 1997 and 2001, he was a Member
of Technical Staff at the Networking Research Laboratory at Bell Labs, Lu-
cent Technologies, Holmdel, NJ. Since October 2000, he has been a faculty
member in the School of Electrical Engineering at Tel Aviv University. His re-
cent research focuses on Internet measurement, mapping and characterization,
and QoS routing and traffic engineering.

Dr. Shavitt served as a TPC member for IEEE INFOCOM 2000-2003 and
2005, IWQoS 2001 and 2002, ICNP 2001, IWAN 2002-2005, and other con-
ferences, and on the executive committee of INFOCOM 2000, 2002, and 2003.
He was an editor of Computer Networks, and served as a guest editor for the
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS and the Journal of
the World Wide Web.

