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ABSTRACT
Geographic ad hoc networks use position information for
routing. They often utilize stateless greedy forwarding and
require the use of recovery algorithms when the greedy ap-
proach fails. We propose a novel idea based on virtual repo-
sitioning of nodes that allows to increase the efficiency of
greedy routing and significantly increase the success of the
recovery algorithm based on local information alone.

We explain the problem of predicting dead ends which the
greedy algorithm may reach and bypassing voids in the net-
work, and introduce NEAR, Node Elevation Ad-hoc Rout-
ing, a solution that incorporates both virtual positioning
and routing algorithms that improve performance in ad-hoc
networks containing voids. We demonstrate by simulations
the advantages of our algorithm over other geographic ad-
hoc routing solutions.

Categories and Subject Descriptors: C.2.2 Computer
Systems Organization: Computer-Communication Networks
-Network Protocols

General Terms:Algorithms, Performance, Theory

Keywords:Ad-Hoc, Routing, Distributed, Elevation, Repo-
sitioning

1. INTRODUCTION
Ad-Hoc networks are infrastructure-less networks, made

up of mobile nodes, which are using their neighbors as a
means of communication with other nodes in the network.
Ad-hoc networks change their topology, expressed by the
node connectivity, over time, as the nodes change their po-
sition in space. Routing schemes of mobile ad-hoc networks
can be crudely divided into two groups: topology based
routing, and position-based routing. Topology based rout-
ing uses existing information in the network about links;
it includes table driven protocols, such as DSDV [1] and
CGSR [2], on demand protocols, such as AODV [3], DSR [4],
and more. Position-based routing, on the other hand, is
based on the nodes position in space and their local neigh-
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boring node position.
Geographic ad-hoc networks, using position-based rout-

ing, are targeted to handle large networks containing many
nodes. Such networks are unsuited to use topology based al-
gorithm as the amount of resources required would be enor-
mous. The advantage in geographic networks is the ability
to deliver a packet from its source to the destination based
as much as possible on local information without keeping
network-wide information [5]. While topology based algo-
rithms may be more efficient in delivering packets in terms of
delivery success probability and route optimality, position-
based routing has the advantage of modest memory require-
ment at the node and low control message overhead, which
also translate to more efficient use of power resources [6].
While this is not a full comparison between the two groups,
it emphasizes the will to center position-based routing algo-
rithms as much as possible on local information.

Position-based routing algorithms can employ either single-
path, multi-path, or flooding. Flooding protocols are usu-
ally restricted directional, such as DREAM [7] and LAR [8];
The flooding is done only in a section of the network, which
is selected based on the source and destination node loca-
tion. Multi-path protocols attempt to forward the message
along several routes towards its destination in order to in-
crease the probability of finding a feasible path. Single path
protocols,On the other hand, aim for a good resource con-
sumption to throughput ratio. Most common among the
single path protocols are those based on greedy algorithms.
The greediness criteria can be distance, minimum number
of hops, power (best usage of battery resources), etc.

A major issue in greedy routing algorithms is how to pro-
ceed when a concave node is reached, i.e., a node that is
closer than any of its neighbors to the destination [9]. The
simplest solution is to allow the routing algorithm to for-
ward the packet to the best matching neighbor, excluding
the sender itself. Such a solution can guarantee the packet
delivery, but can result in routing loops in algorithms that
are otherwise loop-free. Other solutions require switching to
a recovery algorithm which guarantee packet delivery. They
can be classified into memory-based and memory-free.

One routing algorithm that employs memory is the Greedy/
Flooding algorithm [10]. This algorithm, once reaching a
concave node floods the message towards the target. The
algorithm stores a list of all neighbor nodes that declare
their concavity, and avoid flooding to them. A different use
of the memory is done in Terminodes [11], where the routing
distinguishes between local and remote routing. While the



local routing is topology-based, the remote routing is greedy.
However, the remote routing has a forced list of anchoring
nodes, which the path should loosely traverse. The anchored
node list is stored in memory, and updated every time the
packet passes in the vicinity of the next anchor node.

Recovery algorithms without memory often use planar
graphs for routing (A planar graph is a graph that can be
drawn on a plane, such that no two edges intersect). One of
the first works in this area was “Compass Routing II” [12],
also called ”Face Routing”, proving that Delaunay triangu-
lations of point sets on the plane support compass routing
and guaranteeing delivery. This algorithm was the basis
for further suggestions, such as AFR [13] and GOFAR [14].
Another important algorithm is GPSR (Greedy Perimeter
Stateless Routing) [15]. It, too, requires the network to
be planar in order to accomplish successful routing. This
property is achieved by creating a Gabriel Graph (GG) or
a sub-set of it, Relative Neighborhood Graph (RNG). In
GPSR, a packet is initially routed using a greedy algorithm,
until reaching a concave node. It then switches to perime-
ter mode, traversing the face of the planar graph using the
right-hand rule, until it recovers from the local maxima, and
the greedy routing can continue.

One problem that recovery protocols do not prevent is
that the packet always needs to reach a concave node before
the recovery algorithm takes charge and delivers the packet
to its destination. This is problematic when the algorithm
enters a long cul-de-sac, as the retreat to a point where
an alternative path can be found is long. We propose a
novel scheme to deal with this problem by preventing the
routing algorithm from entering concave areas. Our scheme
is comprised of three contributions:

• A novel algorithm that uses local information to iden-
tify concave areas, not necessary only a single node.
The algorithm assigns virtual coordinates to nodes.

• A routing scheme which is based on the virtual coor-
dinates.

• An obstacle bypass procedure.

2. CONCAVE NODES
A concave node is a node that has no neighbors closer

to the destination other than itself [9]. The term ’closer’ is
somewhat fuzzy, as different greedy algorithms have differ-
ent closeness criteria. Since our ideas can be used with differ-
ent greedy routing algorithms, we define a concave node as a
node that has no neighbor that can make a greedy progress
towards the destination (for the routing algorithm in use).
Since position-based routing uses local information for for-
warding decisions, a concave node can not be predicted in
advance, based on the position of its neighbor nodes. Using
the 2-neighborhood information can indeed improve deci-
sions made during the algorithm, but cannot avoid reaching
concave nodes.

Assuming one uses a recovery algorithm that switches
back to greedy mode once recovered from the concave sit-
uation, the number of back-tracking packet transmissions
required to switch back to greedy mode can vary between
just a few hops to a very long retreat. Figure 1 shows an
example path to a concave node that is reached only after
numerous hops, only at this point the recovery process (not
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Reaching a Concave Node

Figure 1: A concave node with a recovery path. The
picture shows an enlarged part of a network with a
dominant void like the one depicted in Figure 5.

shown in the figure) begins. In addition, [16] reviews addi-
tional deficiencies of perimeter-based recovery algorithms:
network disconnection due to graph planarization, nodes
mobility causing routing loops, and routing in the wrong
direction causing error due to mobility or simply increasing
the number of hops.

We thus extend the definition of concavity. A concavity in
the wide sense means that none of the node’s neighbors to-
wards the destination can eventually lead to the destination.
A first degree concavity, is the same as the general definition
for concavity, a node that does not have a greedy next hop
to the destination. A concavity of the nth degree, is a con-
cavity where the smallest concavity degree of all neighbors
is n−1. By identifying regions of concave nodes in the wide
sense, our greedy algorithm can stop short of entering them,
and thus avoid long retreats.

3. OUR SOLUTION - THE NEAR ALGO-
RITHM

Many of the problems of position-based routing originate
from the fact that the shape of the network is unknown a
priori, and it is dynamically changing due to node mobility.
The lack of information prevents the network shape from
being considered a substantial part of the routing process,
and does not allow educated routing decisions. GPSR [15],
for example, switches from recovery mode back to greedy
mode when the current node is closer to the destination than
the node who switched to perimeter mode. However, there
is no guarantee that this node, or the next one, will not be
another concave node, a local maximum on the perimeter
face.

We suggest a way to virtually reposition nodes in the net-
work, so that greedy routing decisions can be wisely taken
and recovery process can be significantly improved or avoided
altogether. Node repositioning has several goals. The first
one is to identify and mark concave nodes. Identifying a
concave node is simple, as every node can do so locally by



Figure 2: A repositioning example.

analyzing its connectivity. If the angle between two adja-
cent node’s neighbors exceeds 180 degrees, then the node
is necessarily concave for routing in this direction (we will
see later that even here one must be cautious in deciding
about concavity). Our method indicates a concave node by
elevating it. In an N-dimension coordinate system, an N +1
dimension is added that indicates, if its coordinate is non-
zero, that the node is virtually repositioned. The rest of the
N dimension coordinates are updated as well to reflect the
node’s connectivity, as will be later described.

For simplicity let us assume that nodes has two coordi-
nates describing their X and Y coordinates. In this case
a concave node will be assigned a positive virtual Z coor-
dinate that reflects its distance from its neighbors. Figure
2 demonstrates a simple repositioning of a node. The fig-
ure represents a part of a network, with four well connected
nodes, on the left, and a fifth, right most, concave node. The
virtual position of the node after applying NEAR is shown
above the original nodes plane. Note that the reflection of
the node’s virtual coordinates on the X-Y plane lies between
its two neighbors. We shall term the virtually repositioned
nodes floating nodes. Every floating node is concave in the
wide sense.

A second goal of repositioning is to improve the greedy
routing. Our greedy algorithm avoids using the floating
nodes and thus does not get stuck in a concave area. This
way we can avoid switching to recovery mode in many cases.

The third purpose, which is derived from the implementa-
tion of the repositioning, is to improve the recovery process.
Though our greedy routing is improved, sometimes, reach-
ing a concave node cannot be avoided. However, an immedi-
ate effect of the repositioning is that every peninsula in the
shape of the network is elevated, and a smooth edge is sur-
rounding the routing void. We use addition distributed void
identification algorithm to help us identify the voids. Once
a void is identified, its smooth edge can be easily followed
with a minimal number of hops and without the entangle-
ment that plagues some of the other recovery algorithms.

We thus present as a solution, the NEAR (Node Elevation
Ad-hoc Routing) algorithm, which is comprised of several
algorithms that feed each other and are all distributed. At
network start up, we run the repositioning algorithm. This
algorithm is distributed, and local, and is executed periodi-
cally at low cost - due to its local nature. We also execute a
void identification algorithm which is performed around the
void. This algorithm is distributed as well, but it is executed
by all nodes at the void edge, and possibly their neighbors.
We thus define it to be a regional algorithm and its termi-
nation time depends on the number of nodes in the void

perimeter. Once a void is identified, the maintenance of its
identification is purely local. The output of these algorithms
is used by the routing algorithm which is a variant of pre-
viously published greedy routing algorithm and an efficient
recovery algorithm. In the next sections we will describe our
algorithms and their performance.

4. REPOSITIONING ALGORITHM
The node reposition algorithm is executed periodically by

every node. The repositioning calculation is done locally,
based on the node’s neighbor positions. If neighboring nodes
remain static, no repositioning is required. Otherwise, the
node checks its neighbor disposition, to see whether there is
any direction in which it is concave. The decision is based on
a threshold angle, α, which is essentially larger than 180◦. If
such a direction does exist, the node recalculates its position
and updates its n+1th dimension location. In addition, the
void maintenance algorithm is executed, making either of
two changes: insertion of the node to be part of the void
edge, or removal of the node and reconnecting its neighbors.

Figure 3 gives a formal description of the coordinate cal-
culation algorithm. We assume, for simplicity, that nodes
have two real dimensions, X and Y , and one virtual di-
mension, Z. A node v maintains a sorted array, CV , of
the coordinates of its neighbor nodes, Nv. We denote by
V = (vx, vy , vz) the virtual coordinates of node v, and by

P its real coordinates. a dotted variable, e.g., Ẇ , indicates
the value which has just been accepted (as opposed to the
stored value W ). The array CV is sorted by the angle be-
tween v and the neighbors. VN v denotes the list of void ids
that v is at most one hop away from.

Each node periodically receives coordinate updates (e.g.,
through a Hello protocol) and is aware of new neighbors or
a breaking of a connection (e.g., through timeout from the
last Hello message from this neighbor). The node looks for
a change in a neighbor disposition using maxangle, which
returns the two adjacent nodes having the largest angle be-
tween them. The two nodes must be either grounded or
below vz. In case of a change, the node recalculates its new
virtual coordinates by calling calc (in lines 5 and 15), and
immediately updates its neighbors. In addition, it maintains
the void surface by calling voidupdate (as will be explained
later). Note that node repositioning may either elevate a
node or pull it down.

Since the positioning update is done periodically, and de-
pends on the virtual position of the neighbor nodes, the
nodes adapt their position to changes in the network, and,
more importantly, reflect the position of other nodes as well.
Assume there is a piece of the network shaped as a penin-
sula, with the destination placed opposite of the area across
a void (see Figure 5). Though only very few of the nodes in
this area may be concave in the peninsula direction by the
narrow definition of concavity (depending on placement and
type of routing), a routed packet should still avoid entering
the peninsula area in order to prevent the routing algorithm
from entering recovery mode. Our node repositioning will
cause the tongue of land to role up to create a smooth surface
around the void, while gaining height in the n + 1th dimen-
sion. Assuming two real dimensions, the further the node
is into the tongue of land, the higher it is. This obviously
leads our routing algorithm to prefer ground-height nodes



Algorithm Node Reposition

For a new vector Ẇ from node w
1. if |W − Ẇ | > ε:
2. w ← ẇ
3. (s, t)← maxangle(resort(CV ))
4. if (t = NULL)||(∠s − ∠t > α)||(vz > 1)
5. chg ← calc(s, t)
6. else
7. chg ← false
8. V ← P
9. voidupdate(VN v, w)

10. if chg

11. Transmit new vector V̇ of v
For loosing connection to neighbor w

12. Nv ← Nv \ {w}
13. (s, t)← maxangle(CV )
14. if (t = NULL)||(∠s − ∠t > α)
15. chg ← calc(s, t)
16. else
17. chg ← false
18. voidupdate(VN v , w)
19. if chg

20. Transmit new vector V̇ of v

Figure 3: Repositioning algorithm for node v.

Algorithm Reposition calculation
calc(s, t)

1. if (sz = 0) and (vz = 0) and (t �= NULL)
2. v̇x,y ← avg(sx,y, tx,y)
3. v̇z ← min(sz, tz, Zmax − 1) + 1
4. else
5. v̇x,y ← avg(∀ux,y : uz = sz)
6. v̇z ← min(sz, Zmax − 1) + 1

7. if (|V − V̇ | < ε)

8. V ← V̇
9. return(true)

10. else
11. return(false)

Figure 4: Reposition calculation
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Figure 5: An example network topology before
repositioning
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Figure 6: AN example network topology after repo-
sitioning

over floating ones, and lower nodes over higher ones (within
a margin of error). The ”height” convention that we use
here should not be confused with the ”height” convention
of the TORA algorithm [17], which refers to a completely
different concept. Figure 5 and Figure 6 demonstrate the
repositioning effect for a sample network.

The repositioning depends on two important factors: The
network density and the threshold angle, α. Figure 7 shows
the effect of the network density on the percentage of repo-
sitioned nodes, as a function of α. The graph shows the re-
sults of calculations performed on static networks spread in
a square area of 2Km× 2Km. Nodes with transmission ra-
dius of 250m (as in IEEE 802.11 WaveLan) were uniformly
distributed in the area, where a horseshoe shaped area is
disallowed for positioning, thus creating a void (like the in-
stance in Figure 5). The first phenomenon that should be
pointed from the graph is that the repositioning is effective
in networks, with 13 neighbors or more per node. When
the network is sparser than that, the percentage of float-
ing nodes is high. Below this density the ad-hoc network
becomes less effective, regardless of the control algorithm
in use, since a meaningful percentage of the nodes become
disconnected from the large connected component as demon-
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Figure 7: The network density effect on reposition-
ing

strated in Figure 8. Note that the density in our discussion
always refers only to the populated node area, without voids,
so the overall density is lower. The optimal density in a mo-
bile ad hoc networks was the subject of some papers [14, 18]
and pointed to be 15 neighbors per node or more. Many
studies in this area [15, 19] were also performed on random
ad-hoc networks which were at least this dense. We can al-
low sparser networks (and risk disconnections) by manually
marking some areas or nodes as grounded (say at the edge of
the network coverage area), these nodes will halt the folding
process without hurting routing performance.

The second factor is the threshold angle, α. A minimal
angle of 180◦ is simply too low, and almost all nodes will
float. There is a clear threshold around α = 200◦ above
which the system is stable, with relatively enough routable
nodes. α = 210◦ − 230◦ was found to be best for various
scenarios. Using a wider angle threshold achieves less repo-
sitioned nodes, and completely misses the purpose of the
repositioning algorithm: concave nodes might not be repo-
sitioned and the faces of voids might not be smooth enough
to allow efficient routing.

5. ROUTING ALGORITHM
Position-based routing algorithms typically use Location

Services to obtain the destination’s current position. Flood-
ing [7, 8], quorum-based [20, 21], hierarchical [18] and flat [22,
23] hashing-based protocols are used for this purpose. We
assume that the NEAR implementation uses one such lo-
cation service when initiating a packet transmission, at the
source node, and receives the destination position before ap-
plying the NEAR algorithm.

The use of virtually repositioned nodes in network does
not contradict the use of standard greedy routing algorithms.
On the contrary - The use of greedy algorithms is a basis
of the routing, and the network virtual coordinates are in-
tended to increase the efficiency of greedy routing, compared
to the original geographic coordinates. The improvement in
greedy routing is demonstrated in Figure 9. In the graph,
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we plot the percentage of concave nodes that were elimi-
nated from the routing because of the repositioning. When
the network density is sufficiently high, 62 to 100 nodes per
Km2 (12 – 20 neighbors per node), up to 45% of the routes
which previously reached concave nodes, now complete their
routing procedure using only greedy routing.

However, our routing algorithm cannot be purely greedy
due to three reasons. First, as with previous work in this
area, we may reach a concave node and may need to switch
to recovery mode (though it is significantly infrequent in
our case). In addition, if either the source node and/or the
destination node are floating we will not use greedy routing
in the start phase or the final phase of the routing process,
respectively. While in greedy routing, there is one additional
rule for the next node selection: one may use only non-
floating nodes. This way, we avoid the concave areas until
we reach the destination or its vicinity.

A pseudo code of the routing algorithm is given in Figure
10. The algorithm receives as input six parameters car-
ried by the message: the destination node’s virtual and real
coordinates, D and Dp, respectively; the current routing
mode (greedy or perimeter), M; the starting point of cur-
rent perimeter routing, Vper; the current void bypass direc-
tion (cw or ccw), dir; and the current void bypassed id, id.
The last three parameters are non-null only when appropri-
ate. The node maintains several internal variables: P and
V are the node real and virtual coordinates, respectively;
Zmax is the maximum allowed height for routing; n stores
the next node to route to (and N is its coordinates vector);
VN v is the group of voids v participates in;

The routing algorithm first checks for the two special cases
described above, climbing to the destination and descending
from the source. The condition for climbing to the destina-
tion is (line 1) that both our virtual and physical coordinates
are close enough to the destination. This is the only part of
the algorithm that requires knowledge of the original physi-
cal coordinates, since in case more than a single tongue rolls
to the same virtual location we need to be able to identify,
which is the one we would like to climb. By setting the
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Figure 9: Elimination of concave nodes by Reposi-
tioning

maximal floating node height that may be accessed, Zmax,
appropriately, we force the greedy routing to climb or de-
scend. When the source node is floating Zmax will always be
set lower than the source node height, in order to force de-
scent towards ground level, and will be updated with every
hop until a non-floating node is reached. When a message
has to reach a floating destination, Zmax is set to the desti-
nation height.

If neither of the two conditions above is true we are rout-
ing the message only through non-floating nodes, and we can
be in either greedy routing mode or perimeter routing mode,
where the latter is our enhanced equivalent to recovery rout-
ing. Thus, the algorithm mostly spends time in line 7 where
it selects the next greedy node towards the destination. If
the greedy algorithm fails to find a next node, we switch to
perimeter mode (line 10). Here we are either part of the
void edge (line 11) or, since we are not using a transforma-
tion to a planner graph like other solutions [15, 24], have a
neighbor who is part of the void edge (line 17). In either
case we choose the best (based on the local angle) of the
two directions to travel along the void perimeter. While in
perimeter mode we check for the return to greedy mode on
every hop. The condition is simply that the current node
is closer to the destination than the node where we entered
perimeter mode.

Note that the void maintenance algorithm maintains a cy-
cle around a void which guarantees that voids are bypassed
successfully with a minimal number of hops. In rare cases,
we reach a concave node where a void bypass cycle is not
defined. In this case, we initiate a void discovery algorithm
(line 30) which is identical to the one used at network start
up. Our simulations have shown that this situation occurs
on the average only once per every 62,000 messages through
concave nodes, and their average traversal length was less
than ten hops, which is very short compared to average void
bypass length. In more than 80% of the simulated networks
all the voids were detected during the initialization process.
The success rate of void recognition during the initialization

Algorithm Message Routing
(D, Dp,M, Vper, dir, id)

For a new message M reaching node v
1. if (|P −Dp| < εphys) and (|V −D| < εvirt)
2. Zmax ← ZD

3. else if (vz > 0)
4. Zmax ← vz − 1
5. else
6. Zmax ← 0
7. if (M = greedy)
8. n← GreedyAlg(D,Zmax)
9. if (n = NULL)

10. M← perimeter
11. if VN v �= ∅
12. choose id ∈ VN v :
13. (∠VN id.ccw ≤ ∠D ≤ ∠VN id.cw)
14. dir ← minangle(dest,VN id)
15. Vper ← V
16. n← VN id.dir
17. else
18. n← minw∈CV,Wz≤Zmax{|∠W − ∠D|}
19. Vper ← V
20. id← NULL
21. dir ← minangle(dest,VN id)
22. else /* perimeter mode */
23. if (id �= NULL)
24. n← VN id.dir
25. else
26. if VNn �= ∅
27. choose id ∈ VNn :
28. (∠VN id.ccw ≤ ∠D ≤ ∠VN id.cw)
29. else
30. id← init void discovery(∠D)
31. n← VN id.dir
32. if |N −D| < |Vper −D|
33. M← greedy
34. Send message M(D,M, Vper, dir, id) to n

Figure 10: Message routing algorithm

and maintenance process can grow higher if we are ready to
use a better and more complicated discovery algorithm, but
we feel that we struck the right balance.

A pseudo code of the void discovery process is shown in
Figure 11. Only non-floating nodes may take part in the void
bypass cycle, besides one exception (bridge nodes) which will
be discussed soon. A node may enter the void discovery al-
gorithm in two ways: it can receive an init void discovery
message either from the routing algorithm or the reposi-
tioning algorithm. In the first case (line 4 in Figure 11)
the initiation call passes the angle, αD, which is a known
concave direction; in the latter no parameter is passed and
the node checks whether the maximal angle between any
of its two neighbors is greater than β, which indicates con-
cavity in that direction (line 6). The second way to enter
the algorithm is by receiving a void message (V M) which
is part of the void cycle creation process. The next step is



to create a record for the void bypass cycle, containing a
randomly generated void id (32 bit ids makes the probabil-
ity of misidentification negligible), and the next node in the
void bypass circle. A void creation message is then sent to
the next node (line 11) and v waits for the message to re-
turn on its other side. If the message fails to return within
a timeout a void creation message is sent in the opposite
direction. This is a rare event (one which we did not en-
counter in our simulations) since it is most likely that other
nodes will trigger the void discovery process concurrently.

A node that receives a void discovery message may be in
one of the following states. The node may not be part of
any processed void (line 28), in which case a new record is
created for the void bypass cycle and a void discovery mes-
sage is sent to a selected next node (line 30). A simplified
explanation of the next node selection is by a no-crossing
heuristic using the right hand rule. Though this selection
may succeed in over 99.5% of the time [25] we use additional
rules, such as information about the 2-neighborhood, to im-
prove further the process success probability (These rules
are omitted from this text). If the process fails, it is easily
detected, and an attempt in the other direction is made. A
second node state in which a void creation message may be
received, is when a void bypass cycle is complete (line 17),
and the message returns to the initiating node. In the third
state, the message is received by a node that is already part
of the void, but is not the initiation node, which indicates a
loop in the discovered void. This loop is corrected by back-
tracking (line 21). Finally, the void creation message may
be received by a node that has already started the same
void discovery process in parallel (as the algorithm is dis-
tributed). In this case, the two void bypass circles will be
merged (line 26), and share a single void id (using some
simple leader election like algorithm).

An interesting special structure in the virtual network is
the bridge. A bridge is a series of floating nodes connecting
two sides of a void. An example of such bridge is shown in
Figure 12. Bridge creation is fairly rare, since the thresh-
old angle we use is higher than 210◦, e.g., if the two bridge
nodes in Figure 12 would be closer in the X coordinate, they
would not float, and we will have two adjacent voids with-
out a bridge. Though the NEAR usually forbids routing
through floating nodes, the case of a bridge is different, as
it specifically may affect not just the efficiency, but also the
guarantee of delivery, e.g., when a river divides the network
to two sections connected by real physical bridges. Unlike
standard floating nodes, which do not take part in void tra-
versing paths, bridge nodes are not only part of the void
bypass, but also divide a single void to two parts, one on
each side of the bridge, with different void ids. This means
that the system is stable with respect to slight node repo-
sitioning since nodes in bridges act in the same manner as
non-floating nodes. Identifying a bridge is simple, since the
floating nodes X-Y coordinates are not close to the edge of
the void, above non-floating nodes, but just have a floating
height added with a small change of the X-Y coordinates (es-
pecially the bridge head(s)). The bridge head is the highest
repositioned node on the bridge, and it is the one to initi-
ate the void traversing process. Thus using the bridges the
NEAR efficiency is not damaged by repositioning. In case
of two bridge heads, one is elected to act as the head.

Algorithm init void discovery(αD)
For calling init void discovery(αD) in node v

1. if (Vz > 0)&&(v �= bridge head)
2. return()
3. if (αD �= NULL)||(angle(maxangle(CV ))) > β)
4. if (αD �= NULL)
5. (s, t)← minw∈CV (|∠αD − ∠W |)
6. else
7. (s, t)← maxangle(CV )
8. id← random()
9. VN id.cw ← t

10. VN id.ccw ← NULL
11. send message V M(cw, id) to t
12. start timer

For timeout
13. VN id.cw ← NULL
14. VN id.ccw ← s
15. send message V M(ccw, id) to s

For message V M(dir, id) received by v from w
16. if (∃VN id)
17. if (VN id.dir = NULL)
18. VN id.dir ← w
19. stop timer
20. return() /* void discovery completed */
21. else
22. VN id.dir ← next(dir,w,VN id.dir)
23. delete loop(id, w)
24. send message V M to VN id.dir(dir, id)
25. else
26. if ∃VN i : VN i.dir = w
27. merge voids(id, i)
28. else
29. VN id.dir ← w
30. VN id.dir ← next(dir,w, NULL)
31. send message V M(dir, id) to VN id.dir

Figure 11: The void discovery algorithm (simplified)
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Figure 12: A bridge example.



5.1 Simulation of the Routing Algorithm
An estimation of the algorithm efficiency in routing and

bypassing obstacles can be obtained by a comparison to
shortest path routing results. For this end we randomly
placed nodes in a 2Km×2Km square with variable network
density. we discuss two simulation scenarios. The first sim-
ulation, termed small void, examines the algorithm with
a randomly placed void, whose size does not exceed 10% of
the network size. The second simulation, termed dominant
void, examines the case of a void placed in the middle of the
network and which covers approximately 25% of the network
size. In addition, a tongue of land is entering the dominant
void (see Figure 5). Thus, The first simulation scenario is
intended to prove the concept in simple conditions, while
the second scenario stress tests the algorithm main goal of
void bypass over most of the routing paths. GEDIR [10] is
the greedy algorithm used in the simulations. Each result
is an average over twenty different network distributions.
Since our routing algorithm is based on a greedy routing al-
gorithm for standard routing, comparing performance with
a uniformly randomly selected node pairs obscures the focal
point of the work, bypassing obstacles. Thus, throughout
the paper, we filter out all the paths which use only greedy
routing.

Figure 13 shows a comparison of the ratio between the
route length in hops of the two algorithms, NEAR routing
and the GPSR [15] routing algorithm, to the shortest path
calculated by a central algorithm. We refer here to hops
ratio and not to the number of hops, as the effectiveness
of the routing should reflect the performance compared to
the best path possible. The compared routing areas are
both the dominant and the small void scenarios. Since both
NEAR and GPSR center on the recovery process, and share
greedy algorithms with the same performance for the rest of
the time, we examine here only routes with concave nodes,
where the greedy routing alone fails. We count the number
of hops from source to destination, and not only from the
concave node, as NEAR often does not reach a concave node
at all thanks to the repositioning. With the shortest path
being the optimal route, it out-performs NEAR by up to
40% at most, which translates to less than two hops on the
average. GPSR average number of hops is 3 to 4.5 times
the number achieved by shortest path, and 2.5 to 3.5 times
more than NEAR. Figure 14 compares between the same
algorithms, under the same scenarios, but with a criterion
of physical routing length ratio. Here too, the shortest path
is better than NEAR by up to 35% at most, and by 80%
to 140% than GPSR. It should be noted that while many of
the GPSR recovery routes are short almost as NEAR, some
are very long - which manifests in its confidence intervals.

Figure 15 shows the NEAR advantage over GPSR in yet
another important factor, the failure rate, tested under the
same scenarios as above. GPSR average delivery rate is 97%
to 99% in the small void scenario, and 94% to 96% in a dom-
inant void scenario, whereas NEAR delivers over 99% of the
packets in both scenarios, except for 94% delivery rate in
a sparse network with a dominant void. The GPSR algo-
rithm recovery algorithm suffers mostly in our simulation
from routing towards the edges of the network. As Karp
indicates in his dissertation [25], the GPSR realizes a node
is disconnected if a packet traverses the first edge it took on
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a certain face for the second time. Due to the topography of
the network, this sometimes happen in nodes on the border
of the simulated area even when they are not disconnected.
As previous works [25, 15] averaged the GPSR performance
overall scenarios, not looking at the problematic recovery
process, this was not noticeable.

6. DISCUSSION

6.1 The NEAR Algorithm Characteristics
As locality is a major issue in geographic ad-hoc networks

[9],[5], the NEAR solution maximizes the use of local infor-
mation while still keeping a notion of the network topogra-
phy and behavior thanks to the repositioning information.
A node may be aware only of its own place as well as its
neighbors’, but still know that in a certain direction it is
concave based on its neighbors height or the void routing
record it keeps. Certain routing algorithms cache routing
information of previous packets. While we can certainly
do this, our algorithm benefits only marginally from route
caching, since our routes are very good without it, and our
routing algorithm does not pay overhead per packet.
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The algorithm locality is expressed in several ways. The
first one is messaging: there are two types of messages re-
quired by NEAR, update messages from neighbors and void
maintenance. The update messages include the node’s vir-
tual and real position. In most cases the virtual coordinates
are sufficient, however, for routing between floating nodes
for more than a single hop, knowledge of the real neighbor
physical place is required. The void maintenance messages
are sent only around voids, thus their overhead is linearly
proportional with the number of nodes around voids. While
several nodes may start the void discovery process for the
same void by sending void discovery messages, a node that
already received such a message once is able to detect the
duplicity. If this happens, it can either drop the new mes-
sage, while updating backwards the already existing void
id, or forwarding it to replace the previous id (similar to
the leader election algorithm on ring networks). During the
network operation, the shape of the void may change and
nodes that were part of the void bypassing route may be
replaced by others. Every replacement is done locally, by
updating the records of the nodes that are placed in or out
of the bypass route and their immediate neighbors on the
route. Locality is also expressed in the amount of memory
required for the algorithm implementation. A node is re-
quired to store its neighbors real and virtual coordinates.
Nodes that participate in the void bypass routes store also
their immediate neighbors on the route (and not the entire
bypass route).

While NEAR can perform well in any area, it is some-
what sensitive to the threshold angle in networks that are
rather sparse. To improve its performance in sparse net-
works we can mark certain nodes or locations as ground
station- namely, these stations cannot float. This is benefi-
cial, for example, in network corners, say at the geographic
border of the network coverage due to law, regulation, or
physical obstacle. The non-floating nodes will prevent un-
necessary flotation of nodes in their surrounding. Another
solution is to adapt the angle threshold according to the net-
work density: increase it in sparse networks and decrease it
in dense ones. Failure to use the right threshold angle in
a sparse network (without ground stations) may cause the
network to wrap up. However, it is important to note that

when a network becomes too sparse the risk of losing con-
nectivity is high, thus we can expect ad-hoc networks to
be fairly dense, and pose no problem for the repositioning
stability, as indicated in section 3, Figure 7.

A known problem in recovery mode is that traversing the
graph based on the right hand rule alone does not guar-
antee tracing the boundary of a closed polygon, a problem
that is caused by crossing edges of the graph. A study of
this problem was done by Karp for GPP (Greedy Perimeter
Probing) [25]. GPP, which is based on the right-hand rule
with no-crossing heuristic rule, proved to succeed for over
99.5% of the routes - but not to guarantee delivery. Our
maintenance of void bypassing cycles annihilate the need
for planarization. The fact that the regional cycle creation
algorithm is executed only a single time per each void (af-
terwards maintenance is local) permits the usage of algo-
rithms with larger overhead, e.g., algorithms that employ
two neighbor lookahead, allow message backtracking, and
combine void creation messages from several sources to a
single void. A key idea in the void initialization algorithm
is that the originating node that started the process can
detect its failure when the packet fails to return from its
counter side thus initiating a bypass fixing process. On top
of all this, it should be remembered that the repositioning
process dictates a smooth shape to the void, therefore elim-
inating most of the obstacles that otherwise exist in other
routing solutions. A packet reaching an unmapped void can
either wait for the void traversing process to complete, or it
may be routed in the meanwhile using the right-hand rule
with high chances of success. The new void bypass route
discovery process will be executed independently.

NEAR does not guarantee the most efficient routing when
bypassing voids. When a message reaches a node on the
perimeter of a void, and the routing switches from greedy to
perimeter mode, the void traversing direction is determined
by the angle of the current node to the destination and
choosing the direction which seems to minimize it. Thus,
it may very well be that bypassing the void the other way
around may be shorter by hops or distance, yet based on
local information alone a wiser decision may not be made.
Another inefficiency stems from floating destinations. As
NEAR forbids routing through floating nodes, a decision
to climb through floating nodes towards the destination is
taken by a proximity rule. The threshold proximity is based
on the physical and virtual distance from the destination,
and it does not necessarily become true at the optimal node,
therefore sometimes increasing the route by several hops.

6.2 Mobility Effect on System Stability
Ad-hoc networks are a dynamic by nature, with node mo-

bility being their main feature. Thus, it is important to ver-
ify that the NEAR solution can cope with the network dy-
namics and maintain system stability. Keeping the amount
of elevated nodes at a constant level and quick positioning
adaptation to node movement is an utmost concern.

We have conducted a simulation of node movement, and
checked the effect on nodes positioning as well other con-
sequences. We used the simulation model described above,
and added movement elements quite similar to those de-
scribed in [26] and [27]: Every node in the system is assigned
a random direction and speed to which it advances. Nodes
are restricted from entering the forbidden zones that define
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the voids as well as crossing the system boundaries. The
velocity of a node is uniformly distributed (0, 25m/s]. This
models vehicular mobile nodes moving at a speed of up to
90Km/h with updating messages every second, or a person
with a mobile device walking at 4.5Km/h with messaging
updates every 20 seconds.

The system stabilizes very quickly after repositioning. It
requires less than 10 messaging cycles for the large void sce-
nario and less than five for the small void scenario (Figure
16). For the majority of the nodes in the network, stabi-
lization occurs much faster. This can be seen in Figure 17,
which shows the percentage of nodes that require i itera-
tions to stabilize (i ranging from 0 to 10) according to the
network’s density. The tail of the distribution with nodes
that require more than four iterations to converge contains
less than 1% for the large void scenario and less than 0.1%
for the small void scenario. The exception in very sparse
networks with an average of 16 neighbors per node when
the tail contains 2.25% and 1% for the large and small void
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scenarios, respectively. Figure 18 gives us an indication of
the low overhead of elevation messaging. The overhead is
comprised of one update message to every neighbor node
and additional update messages for every local node itera-
tion. As Figure 18 shows, this means less than 0.4 iterations
per node in the worst case of a dominant void and a sparse
network. It is expected that when a system has a dominant
void, more iterations will be required as the correction made
by repositioning is greater. The contribution to the overall
messaging in the network is therefore n·in ·N , where n is the
average number of neighbors per node, in the number of it-
erations per node, and N the number of nodes in the system.
Based on our results we can set a bound on the number of
update messages in the network by (1+in)·n·N < 1.4·n·N .

Figure 19 shows the average number of physical links up
or down between every update session per node. As the
change is not large and the number of broken links is quite
the same as the new connections made, the system’s ability
to stabilize grows. Figure 20 depicts the percentage of nodes
in the network that change their height as a result of the
movement. Even in the most challenging scenario, a sparse
network with a dominant void, less than 3.5% of the nodes
are affected, and the number of nodes elevated up or pulled
down is approximately the same (especially considering the
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confidence levels), the system ability to stabilize and quickly
adjust to nodes movement using NEAR is evident.

6.3 Comparison with Existing Solutions
The NEAR solution belongs to the group of recovery algo-

rithms, meant to handle routing through concave nodes, as
mentioned in section 1. An advantage of NEAR over most
solutions is the decrease in the percentage of concave nodes
in the virtual network, which increases the greedy routing
efficiency and reduce the need for recovery. An exception
in this case is the Terminodes [11] project, where concave
nodes are avoided by using a combination of globally defined
anchors and local table driven routing. However, Termin-
odes is significantly harder to implement compared to other
solutions and is medially robust against the failure of single
nodes [5].

A group of recovery algorithms, including GPSR [15],
GFG [24], GOAFR [14], and their variants have many simi-
larities to NEAR. They, too, start in a greedy routing mode,
and switch to recovery mode only when a concave node is
reached. The common denominator between these algo-
rithms is that their recovery process is based on travers-
ing the edge of a reached void, using different techniques
and are mostly based on planar graphs. The use of pla-
nar graphs requires the algorithms to maintain information
about the planarized graph connectivity, based on local in-
formation. When a node’s neighbor moves, the node has to
check whether the planar connectivity has changed and if
a vertex should be removed or added to the graph. Prac-
tically, the resources required for planarization and NEAR
are similar, however our solution’s performance is better.

There are two main advantages to NEAR over planariza-
tion algorithms: Its recovery routes are shorter and smoother
and it uses guaranteed bypass routes. The sometimes ”tan-
gling” of the routing when planarization is employed is due
to the rugged shape of the void edge. Whether the void is
due to a lake, an area without reception, or due to node
spreading one can not always expect to have a smooth edge.
All the planarization based algorithms mentioned above will
follow the rugged edge and penetrate peninsulas as they
occur (like in Figure 1) increasing the route length signifi-
cantly. NEAR, on the other hand, will reach the edge of this

area, and will not penetrate it because of the repositioning.
Zou et al. [28] were also trying to avoid reaching concave
nodes in sensor networks. Identifying concave nodes in their
sensor network context was simplified by the fact that all the
routing is destined to only a single base-station. The second
advantage is our employment of guaranteed bypass routes:
the void traversing paths of NEAR are known and guaran-
teed to bypass the void while being adaptive and sensitive to
changes in the network. It does not require each packet to
perform a face exploration of the graph, thus avoiding com-
plex routing and simplifying the computations. Note that
the repositioning algorithm can improve any of the other
planarization-based algorithm, even without the void dis-
covery process.

The second group of recovery algorithms refer to algo-
rithms which incorporate memory. Greedy/flooding [10] and
Terminodes were already introduced, and differ greatly from
NEAR. Two other solutions, closer to NEAR in their fea-
tures are INF [19] and SAGF [29]. INF (intermediate node
forwarding) is a probabilistic solution for routing around
voids using intermediate geographic locations. When a con-
cave node is reached, it randomly chooses an intermedi-
ate position through which to route the packet. If rout-
ing through the intermediate node fails, another interme-
diate node is chosen, and multiple intermediate nodes can
be used as well for the routing. INF keeps a table of des-
tination nodes and their intermediate nodes, which is pe-
riodically updated. Two disadvantages of this solution are
the fact that it requires a NAK message to start the INF
process, and it is based on random selection of the interme-
diate node, which is oblivious to network shape and does not
guarantee routing success in the first attempt. SAGF is a
spatial aware geographic forwarding solution suitable mainly
for networks with preassigned routes, e.g., nodes mounted
on cars driving along the highway system. It assumes that
each node possesses the model information of the geographic
space wherein it is located, keeping location information for
intermediate nodes. When a message has to be sent, a route
is calculated based on the spatial information, and using
algorithms such as Dijkstra. The algorithm’s complexity
here depends on the size of the model network and of the
ad-hoc network. As other solutions, SAGF also routes in
greedy mode until a concave mode is reached, and then cal-
culates its path according to the spatial model. The mem-
ory requirement here is expressed by the spatial awareness,
though it is also suggested in SAGF to use external informa-
tion sources, which then move the memory burden to extra
messaging. In both INF and SAGF the routing is based
on more than local information alone, and memory require-
ments scale up as the network grows; INF memory require-
ments scale with the number of nodes, and SAGF scales
with the number of vertices in the spatial graph. NEAR
memory requirements depend on the number of neighbors
and do not grow with the network size, yet NEAR remains
aware of the network topography.

To conclude, though the NEAR solution is no more com-
plex than other suggested algorithms, it outperforms them,
while taking into consideration network resources such as
memory, messaging, computations and routing efficiency.

6.4 Future Work
The NEAR work has focused so far on use of constant



radio range all across the network. As our work depends
only on connection awareness between two neighbor nodes
we expect no obstacles in adapting NEAR to work with
different transmission radii, while the most probable element
to be affected by the change is the thresholds.

We plan to extend further our dynamic scenarios, where
nodes roam the network . In particular, we intend to study
the effect of ’snapping’, nodes quick change of virtual place-
ment after losing a dominant neighbor, on the routing and
repositioning algorithm.

7. CONCLUSION
In this paper we presented the NEAR - a solution incor-

porating both positioning and routing aspects to improve
performance, based on local information alone.

We have shown how, by simple virtual repositioning of
nodes, the shape of voids can be smoothed and concave
nodes can be predicted by their added virtual height. The
virtual repositioning simplifies void detection and allows in
the repositioning process to discover void bypass routes,
which later need to be handled based on local changes alone.

In the routing section, simulations results were shown that
indicate improvement in greedy routing and decrease in the
number of concave nodes thanks to the use of virtual repo-
sitioning. The case of concave nodes and recovery was also
explained by the use of guaranteed void traversing paths,
which require nodes along the void to keep only log of the
next clockwise and counterclockwise hops.

We discussed the characteristics of NEAR in terms of
localization, memory requirements, weaknesses and advan-
tages compared to existing recovery algorithms as well as
future research and improvements.

NEAR is believed to improve ad-hoc networks’ ability to
deal with voids and concave nodes, by implementing a rev-
olutionary view of the positioning which allows local nodes
to sense part of the greater network without requiring extra
resources.
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