
Minimizing Recovery State in
Geographic Ad Hoc Routing

Noa Arad and Yuval Shavitt, Senior Member, IEEE

Abstract—Geographic ad hoc networks use position information for routing. They often utilize stateless greedy forwarding and require

the use of recovery algorithms when the greedy approach fails. We propose a novel idea based on virtual repositioning of nodes that

allows to increase the efficiency of greedy routing and significantly increase the success of the recovery algorithm based on local

information alone. We explain the problem of predicting dead ends, which the greedy algorithm may reach and bypassing voids in the

network, and introduce Node Elevation Ad hoc Routing (NEAR), a solution that incorporates both virtual positioning and routing

algorithms that improve performance in ad hoc networks containing voids. We demonstrate by simulations the advantages of our

algorithm over other geographic ad hoc routing solutions.

Index Terms—Ad hoc, routing, distributed, elevation, repositioning.
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1 INTRODUCTION

1.1 Ad Hoc Networks

AD hoc networks are infrastructureless networks, made
up of mobile nodes, which are using their neighbors

as a mean of communication with other nodes in the
network. Ad hoc networks change their topology, ex-
pressed by the node connectivity, over time, as the nodes
change their position in space. Routing schemes in mobile
ad hoc networks can be crudely divided into two groups:
topology-based routing, and position-based routing. To-
pology-based routing uses existing information in the
network about links; it includes table driven protocols such
as DSDV [1] and CGSR [2] and on demand protocols such
as AODV [3], DSR [4], and more. Position-based routing,
on the other hand, is based on the nodes position in space
and their local neighboring node position.

1.2 Position-Based Routing

Geographic ad hoc networks using position-based routing
are targeted to handle large networks containing many
nodes. Such networks are unsuited to use topology-based
algorithms as the amount of resources required would be
enormous. The advantage in geographic networks is the
ability to deliver a packet from its source to the destination
based as much as possible on local information without
keeping networkwide information [5]. While topology-
based algorithms may be more efficient in delivering packets
in terms of delivery success probability and route optimality,
position-based routing has the advantage of modest mem-
ory requirement at the node and low control message
overhead, which also translate to more efficient use of power
resources [6]. While this is not a full comparison between the

two groups, it emphasizes the will to center position-based
routing algorithms as much as possible on local information.

Position-based routing algorithms can employ either
single path, multipath, or flooding. Flooding protocols are
usually restricted directional, such as DREAM [7] and LAR
[8]; the flooding is done only in a section of the network,
which is selected based on the source and destination node
location. Multipath protocols such as c-GEDIR [9] attempt
to forward the message along several routes toward its
destination in order to increase the probability of finding a
feasible path. Single path protocols, on the other hand, aim
for a good resource consumption to throughput ratio. Most
common among the single path protocols are those based
on greedy algorithms. The greediness criteria can be
distance, minimum number of hops, power (best usage of
battery resources), etc.

Position-based routing algorithms typically use Location
Services to obtain the destination’s current position. Flooding
[7], [8], quorum-based [10], [11], hierarchical [12] and flat
[13], [14] hashing-based protocols are used for this purpose.

1.3 The Concavity Problem and Solutions

A major issue in greedy routing algorithms is how to
proceed when a concave node is reached, i.e., a node that is
closer than any of its neighbors to the destination [15] (see
Section 2 for an exact definition). The simplest solution is to
allow the routing algorithm to forward the packet to the
best matching neighbor, excluding the sender itself. Such a
solution can guarantee the packet delivery but can result in
routing loops in algorithms that are otherwise loop free.
Other solutions require switching to a recovery algorithm
that guarantees packet delivery. They can be classified as
memory based and memory free.

Definition 1.1. Recovery is the routing mode taken when a
concave node is reached through greedy routing. In the
recovery stage, the message is transmitted from the concave
node toward the destination according to a nongreedy
algorithm. A node may exit recovery mode if it is not concave,
so greedy routing can be resumed.
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One routing algorithm that employs memory is the
Greedy/Flooding algorithm [16]. This algorithm, once
reaching a concave node floods the message toward the
target. The algorithm stores a list of all neighbor nodes that
declare their concavity, and avoid flooding to them. A
different use of the memory is done in Terminodes [17],
where the routing distinguishes between local and remote
routing. While the local routing is topology-based, the
remote routing is greedy. However, the remote routing has
a forced list of anchoring nodes, which the path should
loosely traverse.

An anchor is a point, described by geographical
coordinates. It does not, in general, correspond to any node
location [17].

The anchored node list is stored in memory and updated
every time the packet passes in the vicinity of the next
anchor node. Among other algorithms that incorporate
memory, we can find the INF [18] and SAGF [19]
algorithms. Intermediate node forwarding (INF) is a
probabilistic solution for routing around voids using
intermediate geographic locations, and SAGF is a spatial
aware geographic forwarding solution suitable mainly for
networks with preassigned routes.

Definition 1.2. Void is an area free of nodes that cannot be
routed through. A void diameter is larger than a node’s
transmission radius.

Multilevel-clustering approaches such as Landmark [20],
LANMAR [21], L+ [22], and Safari [23] elect certain nodes as
cluster heads called Landmarks. These cluster heads in turn
select higher level cluster heads, up to some desired level.
The cluster heads are later used to forward the packet to its
destination based on the destination address.

Recovery algorithms without memory often use planar
graphs for routing (A planar graph is a graph that can be
drawn on a plane, such that no two edges intersect). One of
the first works in this area was “Compass Routing II” [24],
also called “Face Routing,” proved that Delaunay triangula-
tions of point sets on the plane supports compass routing
and guarantees delivery. This algorithm was the basis for
further suggestions such as AFR [25] and GOAFR [26].

Bose et al. [27] introduced an improved face routing
algorithm, FACE-2, which combined with the GEDIR [16]
algorithm form the GFG algorithm.

An important algorithm similar to GFG is Greedy
Perimeter Stateless Routing (GPSR) [28]. It, too, requires
the network to be planar in order to accomplish successful
routing. This property is achieved by creating a Gabriel
Graph (GG) or a subset of it, Relative Neighborhood Graph
(RNG). In GPSR, a packet is initially routed using a greedy
algorithm until reaching a concave node. It then switches to
perimeter mode, traversing the face of the planar graph
using the right-hand rule, until it recovers from the local
maxima, and the greedy routing can continue.

Definition 1.3. Perimeter Routing is a recovery routing mode
in which a packet traverses the face of a routing obstacle.

The PAGER [29] algorithm represents a different
approach to the recovery problem but in sensor networks
where all messages are destined to a single node. It divides
a sensor network graph into functional subgraphs and
provides each node with message forwarding directions
based on these subgraphs. PAGER defines concave nodes as
“Shadow Nodes” and a group of shadow nodes as a
“Shadow Area.” It later routes messages through the graph
using cost gradients of the shadow areas.

Fang et al. [30] also suggested an algorithm for sensor

networks, called BOUNDHOLE. The algorithm builds

routes around holes, which they define as connected

regions of the network with boundaries consisting of all

the stuck nodes. The routes can be found on demand or in a

preprocessing phase, based on the TENT rule that checks

for stuck angles [30].

One problem that recovery protocols do not prevent is

that the packet always needs to reach a dead end before the

recovery algorithm takes charge and delivers the packet to

its destination. This is problematic when the algorithm

enters a long cul-de-sac, as the retreat to a point where an

alternative path can be found is long. This work proposes a

novel scheme to deal with this problem by preventing the

routing algorithm from entering concave areas. The scheme

is comprised of three contributions:

. A novel algorithm that uses local information to
identify concave areas, not necessary only a single
node. The algorithm assigns virtual coordinates to
nodes.

. A routing scheme that is based on the virtual
coordinates.

. An obstacle bypass procedure.

2 THE CONCAVITY PROBLEM

Definition 2.1. A Concave node is a node that has no neighbor
that can make a greedy progress toward some destination (for
the greedy routing algorithm in use).

Our definition is slightly more accurate than the common

one [15]. Since position-based routing uses local informa-

tion for forwarding decisions, a concave node cannot be

predicted in advance, based on the position of its neighbor

nodes. Even using the information of the 2-neighborhood

cannot prevent reaching concave nodes, though can

improve decisions made during the algorithm.

Assuming one uses a recovery algorithm that switches

back to greedy mode once recovered from the concave

situation, the number of backtracking packet transmissions

required to switch back to greedy mode can vary between

just a few hops to a very long retreat. Fig. 1 shows an

example path to a concave node that is reached only after

several hops, and only at this node that the recovery process

(not shown in the figure) begins. In addition, [31] reviews

additional deficiencies of perimeter-based recovery algo-

rithms: network disconnection due to graph planarization,

nodes mobility causing routing loops, and routing in the

wrong direction causing error due to mobility or increasing

the number of hops.
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We thus extend the definition of concavity:

Definition 2.2. A node has wide sense concavity if some

destination cannot be reached by any of the node’s neighbors

using only greedy progress.

We say that a concave node (not in the wide sense) has a

first degree concavity. A concave node in the wide sense is

said to have a concavity of the nth degree, if the smallest

concavity degree of its neighbors is n� 1.

3 THE NEAR ALGORITHM

Many of the problems of position-based routing originate

from the fact that the shape of the network is unknown a

priori, and it is dynamically changing due to nodes mobility.

The lack of information prevents the network shape from

being considered a substantial part of the routing process

and does not allow educated routing decisions. GPSR [28],

for example, switches from recovery mode back to greedy

mode when the current node is closer to the destination than

the node who switched to perimeter mode (Definition 1.3).

However, there is no guarantee that this node, or the next

one, will not be another concave node, a local maximum for

the greedy algorithm on the perimeter face.
We suggest a way to virtually reposition nodes in the

network, so that greedy routing decisions can be wisely

taken and the recovery process can be significantly

improved or avoided altogether. Node repositioning has

several goals. The first is to identify and mark concave

nodes. Identifying a concave node is simple, as every node

can do so locally by analyzing its connectivity. If the

angle between two adjacent node’s neighbors exceeds

180 degrees, then the node is necessarily concave for routing

in this direction (we will see later that even here one must be

cautious in deciding about concavity). Our method marks a

concave node by elevating it. In an N-dimension coordinate

system, an N þ 1 dimension is added that indicates, if its

coordinate is nonzero, the node is virtually repositioned.

The rest of the N coordinates are updated as well to reflect

the node’s connectivity, as will be later described.

Definition 3.1. Elevation is the process of virtually reposition-
ing nodes, at the end of which a node is assigned an N þ 1
dimension with a nonzero value.

Definition 3.2. Virtual coordinates are the coordinates
assigned to a node by the elevation process, reflecting its
position in N þ 1 dimensions.

For simplicity, let us assume that nodes have two
coordinates, describing their X and Y coordinates. In this
case, a concave node will be assigned a positive virtual Z
coordinate that reflects its distance from its neighbors. Fig. 2
demonstrates a simple repositioning of a node. The figure
represents a part of a network, with four nonconcave nodes,
on the left, and a fifth, right most, concave node. The virtual
position of the node after applying NEAR is shown above
the original nodes plane. Note that the projection of the
node’s virtual coordinates on the x-y plane lies between its
two neighbors.

Definition 3.3. A Floating node is a node, which was elevated.
Every floating node is concave in the wide sense.

A second goal of repositioning is to improve greedy
routing. Our greedy algorithm avoids using the floating
nodes and thus does not get stuck in a concave area. This
way, we can avoid switching to recovery mode in many
cases.

The third purpose, which is derived from the imple-
mentation of repositioning, is to improve the recovery
process. Though NEAR improves greedy routing signifi-
cantly, reaching a concave node is sometimes unavoidable.
However, an immediate effect of the repositioning is that
every peninsula in the network is elevated, and a smooth
edge is surrounding the routing void. We use an additional
distributed void identification algorithm to help us identify
the voids. Once a void is identified, its smooth edge can be
easily followed with a minimal number of hops and
without the entanglement that plagues some of the other
recovery algorithms.

Definition 3.4. A perimeter of the void region, which is free from
peninsulas and other obstacles that may require backtracking
or extending the routing path is a smooth edge.

We thus present as a solution, the Node Elevation Ad Hoc
Routing (NEAR) algorithm, which is comprised of several
algorithms that feed each other and are all distributed. At
network start-up, we run the repositioning algorithm. This
algorithm is distributed and local and is executed periodi-
cally at low cost due to its local nature. We also execute a
void identification algorithm, which is performed around
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Fig. 1. A concave node requiring a recovery path. The picture shows an

enlarged part of a network with a dominant void (like the one depicted in

Fig. 5a).

Fig. 2. A repositioning example.



the void. This algorithm is distributed as well, but it is
executed by all the nodes at the void edge, i.e., the perimeter
of the void and possibly their neighbors. We thus define it to
be a regional algorithm, and its termination time depends on
the number of nodes on the void perimeter.

Definition 3.5. Termination time is the number of iterations
required to complete a distributed algorithm in units of
nonsimultaneous transmitted messages, without any external
changes occurring in parallel.

Once a void is identified, the maintenance of its
identified perimeter is purely local. The output of these
two algorithms is used by the routing algorithm, which is a
variant of previously published greedy routing algorithm,
and by an efficient recovery algorithm. In the next sections,
we will describe our algorithms and their performance.

3.1 Repositioning Algorithm

The node reposition algorithm is executed periodically by
every node. The repositioning calculation is done locally,
based on the node’s neighbor positions. If neighboring
nodes remain static, no repositioning is required. Other-
wise, the node checks its neighbor disposition to see
whether there is any direction in which it is concave. The
decision is based on a threshold angle, �, which is
essentially larger than 180 degrees.

Definition 3.6. Let node v has two adjacent neighbors, u and w.
Given a threshold angle, �: If ffuvw > �, then the sector
covered by ffuvw is concave from the perspective of node v.

If the above condition holds, the node recalculates its
position and updates its nþ 1th dimension location. In
addition, the void update algorithm is executed, which may
result in the removal of the node from the void edge and the
reconnection of its neighbors.

3.1.1 Detailed Algorithm Description

The repositioning algorithm is called upon the arrival of a
coordinate update from a neighboring node. These updates
are periodically sent (e.g., through a Hello protocol) in an
asynchronous manner by every node to its neighbors. The
rate of the updates depends on the nature of the network
(handheld devices, vehicular, etc.) and the transmission
radius. When a coordinates update is received from a nodew,
the algorithm compares it with the previous known position
of this node. Only if the change in the position is not
negligible, the repositioning algorithm continues. The
purpose of this condition is to save resources (mainly
computations) and possibly reduce temporal effects; how-
ever, it is not mandatory. The repositioning algorithm is also
initiated at the node due to a significant change in its own
position or if a connection with a neighbor node is lost (e.g.,
using time-out from the last Hello message).

Definition 3.7. The angle between a node v and its neighbor
nodew is determined as the arctangent of ðwy � vyÞ=ðwx � vxÞ,
in the range of �� to � radians.

The algorithm maintains an array of its neighbors’ position,
sorted by angle. As a node w moves, its place in the array is
being updated to reflect its new relative position. Next, the

algorithm finds the maximal angle in the sorted array
between two adjacent nodes and compare it to the threshold
angle �. If it is greater than �, the node is concave in the
direction of the segment defined by the angle. We later
prove (Lemma 3.4.) that � must be greater than � for
repositioning to work. However, setting � > � also means
that the greedy algorithm will fail to select the next hop if a
message is sent to a destination that falls within the sector
defined by the angle. The reason is that any decision will
take the message further from the destination than its
current location (We disregard here a minority of greedy
algorithms that allow such a decision). When looking for the
maximal angle in the array, we consider only nodes with
height (Z dimension) zero. Nodes whose height is nonzero
are indicated to already be concave in the wide sense. If the
node v finds itself to be concave, due to the calculation above
or if it has less than two nonconcave neighbors, it elevates.

The elevation is being carried out by a repositioning
calculation. If the elevation is due to the maximal angle
between two adjacent nodes with zero height, then its new
ðx; yÞ position will be in the middle of the segment
connecting these two, and its height will be one above
them unless elevation is forbidden (e.g., the maximal node
height, Zmax, is set to zero). If all the node’s neighbors are
floating, then the new node’s position will be the average
position of all nodes with minimal height, and its new
height will be one unit above them or the maximal allowed
node height. We refer in this case to all minimal height
nodes, as the elevation process made the angle criterion
irrelevant and as it has given best elevation results. The
selection of a simple average of nodes position here leads to
proper role up of concave areas and creates a smooth edge
to the void. Other methods, such as choosing the projection
on the axis between the two neighbors causes the concave
area not to elevate to a smooth shape and causes a difficulty
when the destination node has an elevation height of more
than one. If the change between current and new
recalculated position of the node is not negligible, it is
stored. The result of this reposition calculation is that a node
is always at most one unit above his minimal-height
neighbor. An equivalent statement is that the nodes height
is equal to its concavity degree (see Lemma 3.3).

Another reason for a node to change its virtual position
is if it becomes nonconcave, meaning the maximal angle
between two adjacent nonfloating neighbors of it is below
the threshold angle. In such a case, the virtual position of
the node will be set to be its real (physical) coordinates.

If the node changed its virtual position due to the
reposition algorithm, it sends an update to all its neighbors
with its new position. The reposition algorithm also calls
for the void_update algorithm, which will be described in
Section 3.2.

3.1.2 Formal Algorithm Description

Fig. 3 gives a formal description of the node reposition
algorithm. We assume, for simplicity, that nodes have two
real dimensions, X and Y , and one virtual dimension, Z. A
node v maintains a sorted array, CV , of the coordinates of
its neighbor nodes, N v. We denote by V ¼ ðvx; vy; vzÞ the
stored virtual coordinates of node v and by P its stored real
coordinates. A dotted variable, e.g., _P indicates the up to
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date real coordinates of node v. In a similar manner, _W
indicates a value, which has just been accepted in a message
(as opposed to the stored value W ). The array CV is sorted
by the angle between v and the neighbors. VN v denotes the
list of void ids that v is at most one hop away from.

Each node periodically receives coordinate updates (e.g.,
through a Hello protocol) and is aware of new neighbors or
a breaking of a connection. It is also aware of significant
changes in its own position or in the position of a current
neighbor (in lines 1 and 15).

The node looks for a change in a neighbor disposition
using maxangle (lines 4 and 17), which returns the two
adjacent nodes having the largest angle between them. The
two nodes must be either nonfloating or below vz. In case a
concave sector is found, the node recalculates its new
virtual coordinates by calling calc (in lines 6 and 19) or if it
is no longer concave (line 10) by setting its virtual
coordinates to be the physical ones, and immediately
updates its neighbors (lines 15 and 24). In addition, it
maintains the void edge by calling void_update (lines 13 and
22, as will be explained later). Note that node repositioning
may either elevate a node or pull it down.

Fig. 4 gives a formal description of the node reposition-
ing calculation. When called, this algorithm calculates the
new virtual position of a node. The algorithm receives
pointers to two adjacent neighbor nodes, s and t. If t is not
null, and the nodes are nonfloating (line 1), the node will
get the average position of s and t (line 2) and vz will be set
to one (line 3). Otherwise, the node virtual position will be
set to the average of all nodes with the same height as s
(line 5). The height of the node will then be set to one above

the height of its lowest neighbor unless reaching Zmax
(line 6). If the change of the node’s virtual position is not
negligible, and elevation is not forbidden ðZmax ¼ 0Þ the
new position will be stored (line 7).

3.1.3 Additional Repositioning Aspects

Lemma 3.1. Repositioning. A node changes its virtual position

only due to a change in its immediate neighbor virtual position

or its own position.

Proof. Elementary from the algorithm. tu
Fact 3.2. Distributed. The algorithm is distributed and local.

Proof. The algorithm is distributed—elementary. The
algorithm is local:

. Each node is aware only of its own position, and
its neighbors positions.

. All the decisions taken are based on this
information alone and do not require querying
nor storing of more information.

. Any update of a node’s position is sent only to its
immediate neighbors and is not relayed further in
the network.

. Any change in the network is reflected to the
node only through its neighbors position. tu

Since the positioning update is done periodically and
depends on the virtual position of the neighbor nodes, the
nodes adapt their position to changes in the network and,
more importantly, reflect the position of other nodes as

well. Assume there is a piece of the network shaped as a
peninsula, with the destination placed opposite of the area
across a void (see Fig. 5a). Though only a small number of
the nodes in this area may have first degree concavity in the
peninsula direction by Definition 2.1 (depending on
placement and type of routing), a routed packet should
still avoid entering the peninsula area in order to prevent
the routing algorithm from entering recovery mode. Our
node repositioning will cause the peninsula to role up in the
nþ 1th dimension and create a smooth edge around the
void. Assuming two real dimensions, the further the node is
into the tongue of land, the higher it is. This obviously leads
our routing algorithm to prefer ground-height nodes over
floating ones and lower nodes over higher ones (within a
margin of error).
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Lemma 3.3. Elevation height. The maximal elevation height of
a node is N , where N is the number of hops to the closest node
with concavity degree of zero (where N < Zmax).

Proof. By simple induction, stemming from the fact that a
node height is one above the direct neighbor with the
lowest height. tu

The “height” convention that we use here should not be
confused with the “height” convention of the TORA algo-
rithm [32], which refers to a completely different concept.

Fig. 5 demonstrates the repositioning effect for a sample
network.

Lemma 3.4. Setting threshold angle. The minimal threshold
angle must be greater than �.

Proof omitted due to space limitation and can be found in [33].

3.2 Routing Algorithm

Before the source emits a packet, NEAR uses a location
service such as those described in the introduction to obtain
the destination position.

The use of virtually repositioned nodes does not contra-
dict the use of standard greedy routing algorithms. On the
contrary, greedy routing is a basic element of NEAR, and
the network virtual coordinates are intended to increase the
efficiency of greedy routing. However, our routing algo-
rithm cannot be purely greedy due to two reasons. First, as
with previous work in this area, we may reach a concave
node and may need to switch to recovery mode (though it is
significantly infrequent in our case). In addition, if either
the source node and/or the destination node are floating,
we will not use greedy routing in the start phase or the final
phase of the routing process, respectively. While in greedy
routing, there is also one additional rule for the next node
selection: one may use only nonfloating nodes. This way,
we avoid the concave areas until we reach the destination or
its vicinity.

Even though NEAR significantly reduces the need for
recovery state, it cannot completely eliminate it. NEAR uses
predefined paths, called Void bypass, as a mean to recover
from dead ends.

Definition 3.8. Void bypass is a path traversing the void edge,
connecting every two nodes on the void’s edge.

3.2.1 Detailed Void Bypass Description

The void bypass discovery algorithm is called as part of the
network start-up, after the node reposition algorithm was
executed. The purpose of the discovery algorithm is to a
priori identify routing obstacles and find recovery paths
around them using perimeter routing. The knowledge
obtained during the repositioning is used to identify voids:
if a nonfloating node v has an angle between any two
adjacent neighbor nodes (denoted by s and t), which is
greater than � (� � � < �, usually � ¼ �), then it is concave
in the direction of the sector defined by this angle. Though
we know this node is concave, it is not elevated to avoid
excessive node elevation (see Section 4). Next, the node
selects a random id for the void (32-bit ids make the
probability of misidentification negligible). The id is used to
distinguish between different voids, as a single node may
participate in two different void bypass routes. Node v
transmits a void discovery message to one of the other
neighbors on the void’s edge, either s or t. We determinis-
tically select the clockwise neighbor, say, t. Node t, in its
turn, will forward the void discovery message to its
neighbor node adjacent to v in the sorted neighbors array
(and in the discovery routing direction) and so forth until
the discovery message will traverse the entire face of the
void and return to its origin, v. A simplified explanation of
the next node selection is by a no-crossing heuristic using
the right hand rule. Though this selection may succeed in
over 99.5 percent of the times [34], we can use additional
rules such as information about the 2-neighborhood to
further improve the process success probability . Every node
in the network maintains an array of the void bypasses in
which it takes part. For every void bypass, it keeps its id, the
next hop for routing in a clockwise direction, and the next
hop for routing in a counterclockwise direction.

During the discovery process, several special scenarios
may occur. Most common is when several nodes may
initiate a void discovery process for the same void. This can
be easily identified, and one of the void ids is selected. Due
to space constrains the full discussion on this and some
other rare problems is removed and can be found in [33].

3.2.2 Detailed Routing Description

The routing algorithm uses two routing modes: greedy
routing and perimeter routing, where the latter is our
enhanced equivalent to recovery routing. In the greedy
routing mode, almost any type of position-based greedy
algorithm can be used, with NEAR being oblivious to the
greediness criteria. For perimeter routing, NEAR’s prede-
fined void bypass routes are used. A message routing starts in
greedy routing mode. In this mode, the greedy algorithm uses
the nodes’ virtual coordinates, and NEAR does not intervene
in the greedy algorithm decisions, except for preventing it
from forwarding to elevated nodes. In addition, there are two
additional exceptions. The first is the case of a floating
message’s source node, where we allow the greedy algorithm
to route through floating nodes, as long as every hop is one
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height unit lower than the previous one until a nonfloating
node is reached. This scenario is called descending.

Definition 3.9. Descending (Climbing) means transmitting a
packet from node v to node w, where vz > wz ðvz < wzÞ.

In a second scenario, the destination node is floating. Here,
the greedy algorithm must be allowed to route through
floating nodes in order to reach the destination. We refer to
this scenario as climbing to the destination. It should be
noted that when we reach the very close vicinity of the
destination, we sometimes allow the greedy algorithm to
use the nodes’ real coordinates, since floating neighbor
nodes may share similar virtual coordinates.

In the rare cases where we reach a concave node, we
abandon greedy routing for perimeter mode. In this mode,
the node first searches in its void bypass array for a void that
is in the same direction as the message’s destination. This
node may be on the edge of this void or the void may be one-
hop away. If no matching void is found, a void discovery
process is initiated and a void bypass is created. Our
simulations have shown that this situation occurs on the
average only once per every 62,000 messages through
concave nodes, and their average traversal length was less
than 10 hops, which is very short compared to the average
void bypass length. In more than 80 percent of the simulated
networks all the voids were detected during the initialization
process. The success rate of void recognition during the
initialization and maintenance process can grow higher if we
are ready to use a better and more complicated discovery
algorithm, but we feel that we struck the right balance.

The direction to traverse the face of the void, clockwise
or counterclockwise, is selected when switching to peri-
meter mode based on the minimal angle between cw or ccw
next hop and the destination. The message will then follow
the void bypass route until it reaches a node that is closer
(in the criterion of the greedy algorithm) to the destination
than the node that switched to perimeter mode. From this
point on, greedy routing will continue until another
concave node or the destination is reached.

3.2.3 Formal Routing Description

A pseudocode of the routing algorithm is given in Fig. 6.
The algorithm receives as input six parameters carried by
the message: the destination node’s virtual and real
coordinates, D and Dp, respectively; the current routing
mode (greedy or perimeter),M; the starting point of current
perimeter routing, Vper; the current void bypass direction
(cw or ccw), dir; and the current void bypassed id, id. The
last three parameters are nonnull only when appropriate.
The node maintains several internal variables: P and V
are the node real and virtual coordinates, respectively; Zmax
is the maximum allowed height for routing; n stores the
next node to route to (and N is its coordinates vector); and
VN v is the group of voids v participates in.

The routing algorithm first checks for two special cases
described above, climbing to the destination and descend-
ing from the source. The condition for climbing to the
destination is (line 1) that both our virtual and physical
coordinates are close enough to the destination.

The virtual coordinates should be within less than the
transmission radius, and the physical coordinates should be

within the destination height times the transmission radius.
These parameters ensure that the message is within the
proximity of the destination.

This is the only part of the algorithm that requires
knowledge of the original physical coordinates, since in case
more than a single tongue rolls to the same virtual location,
we need to be able to identify, which is the one we would like
to climb. By setting the maximal floating node height that
may be accessed, Zmax, appropriately, we force the greedy
routing to climb or descend. When the source node is
floating (line 3),Zmax will always be set lower than the source
node height in order to force descent toward ground level
and will be updated at every hop until a nonfloating node is
reached (line 5). When a message has to reach a floating
destination, Zmax is set to the destination height (line 2).

If neither of the two conditions above is true we are
routing the message only through nonfloating nodes, and
we can be in either greedy or perimeter routing mode. Thus,
the algorithm mostly spends time in line 7 where it selects
the next greedy node toward the destination. If the greedy
algorithm fails to find a next node, we switch to perimeter
mode (line 10). Here, the node is either part of the void edge
(line 11) or, since we are not using plannerization like other
solutions [28], [27], have a neighbor who is part of the void

ARAD AND SHAVITT: MINIMIZING RECOVERY STATE IN GEOGRAPHIC AD HOC ROUTING 7

Fig. 6. Message routing algorithm.



edge (line 17). In either case, we choose the best (based on
the local angle) of the two directions around the void. While
in perimeter mode, we check if we can return to greedy
mode on every hop. The condition is simply that the current
node is closer to the destination than the node where we
entered perimeter mode (line 32).

Note that the void update algorithm maintains a cycle
around a void, which guarantees that voids are bypassed
successfully with a minimal number of hops. In rare cases, we
reach a concave node where a void bypass cycle is not defined.
In this case, we initiate a void discovery algorithm (line 30),
which is identical to the one used at network start-up.

3.3 Bridging

An interesting special structure in the virtual network is the
bridge.

Definition 3.10. A bridge is a series of floating nodes connecting
two sides of a void.

An example of a bridge is shown in Fig. 7. Bridge creation is
fairly rare, since the threshold angle we use is usually higher
than 210 degrees, e.g., if the two bridge nodes in Fig. 7
would be closer in the X coordinate, they would not float,
and we will have two adjacent voids without a bridge.
Though NEAR usually forbids routing through floating
nodes, the case of a bridge is different, as it specifically may
affect not just the efficiency, but also the guarantee of
delivery, e.g., when a river divides the network to two
sections connected by real physical bridges. Unlike standard
floating nodes, which do not take part in void traversing
paths, bridge nodes are not only part of the void bypass, but
also divide a single void to two parts, one on each side of the
bridge, with different void ids. This means that the system is
stable with respect to slight node repositioning since nodes
in bridges act in the same manner as nonfloating
nodes. Identifying a bridge is simple, since the floating
nodes X-Y coordinates are not close to the coordinates of the
neighboring nonfloating nodes. Thus, using the bridges
NEAR efficiency is not damaged by repositioning.

Definition 3.11. A bridge head is the highest repositioned node,
which is part of a bridge, and is the one to initiate void
traversing process. A bridge head has at least 2-neighbor nodes.

A bridge head is identified by the following conditions.
First, the distance between the real and virtual coordinates
should be smaller than some threshold �TH . In addition, the
node height should be at least 2 and not lower than the
height of any of its neighbors. If two nodes are at the same

height and obey the other conditions to become a bridge
head, one is selected arbitrarily, based on the nodes’ id.

Lemma 3.5. Bridge head. In every bridge, a single bridge head is
selected.

The proof is omitted due to space limitations and can be
found in [33].

4 THE NEAR ALGORITHM CHARACTERISTICS

As locality is a major issue in geographic ad hoc networks
[15], [5], the NEAR solution maximizes the use of local
information while still keeping a notion of the network
topography and behavior thanks to the repositioning
information. A node is aware only of its own location as
well as its neighbors’ but still know that in a certain direction,
it is concave based on its neighbors height or the void routing
record it keeps. Certain routing algorithms cache routing
information of previous packets. While we can certainly do
this, our algorithm benefits only marginally from route
caching, since our routes are very good without it, and our
routing algorithm does not pay overhead per packet.

The algorithm locality is expressed in several ways. The
first one is messaging: there are two types of messages
required by NEAR, update messages from neighbors and
void maintenance. The update messages include the node’s
virtual and real position. In most cases, the virtual
coordinates are sufficient, however, for routing between
floating nodes for more than a single hop, knowledge of the
real neighbor physical place is required.

The void establishment messages are sent only around
voids, thus their overhead is linearly proportional with the
number of nodes around voids. While several nodes may
start the void discovery process for the same void by
sending void discovery messages, a node that already
received such a message once is able to detect the duplicity.
If this happens, it can either drop the new message, while
updating backwards the already existing void id or forward
it to replace the previous id (similar to leader election
algorithms on ring networks). The shape of the void may
change over time and nodes that were part of the void
bypassing route may be replaced by others. Every replace-
ment is done locally by updating the records of the nodes
that are placed in or out of the bypass route and their
immediate neighbors on the route. Locality is also ex-
pressed in the amount of memory required for the
algorithm implementation. A node is required to store its
neighbors real and virtual coordinates. Nodes that partici-
pate in the void bypass routes also store their immediate
neighbors on the route (and not the entire bypass route).

While NEAR can perform well in any area, it is
somewhat sensitive to the threshold angle in networks that
are rather sparse. To improve its performance in sparse
networks we can mark certain nodes or locations as
grounded station.

Definition 4.1. A grounded station is a special node whose
virtual coordinates are always the same as its physical
coordinates.

This is beneficial, for example, in network corners, say at
the geographic border of the network coverage due to law,
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regulation, or physical obstacle. The nonfloating nodes will
prevent unnecessary flotation of nodes in their surround-
ing. Another solution is to adapt the angle threshold
according to the network density: increase it in sparse
networks and decrease it in dense ones. Failure to use the
right threshold angle in a sparse network (without
grounded stations) may cause the network to wrap-up.

Definition 4.2. A System wrap-up happens if all the nodes in
the system are floating.

However, it is important to note that when a network
becomes too sparse the risk of losing connectivity is high,
thus we can expect ad hoc networks to be fairly dense, and
pose no problem for the repositioning stability, as indicated
in Section 5, Fig. 8.

A known problem in recovery mode is that traversing
the graph based on the right-hand rule alone does not
guarantee tracing the boundary of a closed polygon, a
problem that is caused by crossing edges of the graph. A
study of this problem was done by Karp for Greedy
Perimeter Probing (GPP) [34]. GPP, which is based on the
right-hand rule with the no-crossing heuristic rule, proved
to succeed for over 99.5 percent of the routes but not to
guarantee delivery. Our maintenance of void bypassing
cycles annihilate the need for planarization. The fact that the
regional cycle creation algorithm is executed only once per
each void (afterwards, maintenance is local) permits the
usage of algorithms with larger overhead, e.g., algorithms
that are based on the node’s 2-neighborhood, allow message
backtracking, and combine void creation messages from
several sources to a single void. A key idea in the void
initialization algorithm is that the originating node that
started the process can detect its failure when the packet
fails to return from its counter side, thus initiating a bypass
fixing process. On top of the above, it should be
remembered that the repositioning process dictates a
smooth shape of the void, therefore eliminating most of
the obstacles that otherwise exist in other routing solutions.

A packet reaching an unmapped void can either wait for
the void traversing process to complete, or it may be routed
in the meanwhile using the right-hand rule with high
chances of success. The new void bypass route discovery
process will be executed independently.

NEAR does not guarantee the most efficient routing
when bypassing voids. When a message reaches a node on

the perimeter of a void and the routing switches from
greedy to perimeter mode, the void traversal direction is
determined by the angle of the current node to the
destination: choosing the direction which seems to mini-
mize it. This does not guarantee optimality, yet based on
local information alone, a wiser decision may not be made.
Another inefficiency stems from floating destinations. As
NEAR forbids routing through floating nodes, a decision to
climb through floating nodes toward the destination is
taken by a proximity rule. The threshold proximity is based
on the physical and virtual distance from the destination,
and it does not necessarily become true at the optimal node,
therefore sometimes increasing the route by several hops.

5 SIMULATION

5.1 Simulation Environment

The NEAR solution properties and characteristics have been
simulated for the following aspects: Repositioning, Mobility
Effect, Greedy Routing, and Recovery Routing. For this end,
we randomly placed nodes with transmission radius of
250 m (as in IEEE 802.11 WaveLan) in a 2 Km� 2 Km square
with variable network density. We discuss two simulation
scenarios. The first scenario, termed small void, examines
the algorithm with a randomly placed void, whose size does
not exceed 10 percent of the network size. The second
simulation, termed dominant void, examines the case of a
void placed in the middle of the network and which covers
approximately 25 percent of the network size. In addition, a
tongue of land is entering the dominant void (see Fig. 5).
Thus, The first simulation scenario is intended to prove the
concept in simple conditions, while the second scenario
stress tests the algorithm main goal of void bypass over most
of the routing paths. GEDIR [16] is the greedy algorithm
used in the simulations. Each result is an average of more
than 20 different network distributions. Since our routing
algorithm is based on a greedy routing algorithm for
standard routing, comparing performance with a uniformly
randomly selected node pairs obscures the focal point of the
work, bypassing obstacles. Thus, in the routing section, we
filter out all the paths that use only greedy routing.

5.2 Repositioning Simulations

5.2.1 Network Density and � Threshold

The repositioning depends on two important factors: The
network density and the threshold angle, �. Fig. 8 shows the
effect of the network density on the percentage of
repositioned nodes, as a function of �. The graph shows
the results of calculations performed on dominant void

scenario (like the instance in Fig. 5) and on small void

scenario. The first phenomenon that should be pointed from
the graph is that the repositioning is effective in networks
with 13 neighbors or more per node. When the network is
sparser than that, the percentage of floating nodes is high.
Below this density, the ad hoc network becomes less
effective, regardless of the control algorithm in use, since
a meaningful percentage of the nodes become disconnected
from the largest connected component, as demonstrated in
Fig. 9. Note that the density in our discussion always refers
only to the populated node area, without voids, so the
overall density is lower. The optimal density in a mobile
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ad hoc networks was found by previous papers [35], [12] to
be 14 neighbors per node or more. Many studies in this area
[28], [18] were also performed on random ad hoc networks
which were at least this dense. We can allow sparser
networks (and risk disconnections) by manually marking
some areas or nodes as grounded (say, at the edge of the
network coverage area), these nodes will halt the folding
process without hurting routing performance.

The second factor is the threshold angle, �. A minimal
angle of 180 degrees is simply too low, and almost all nodes
will float. There is a clear threshold around � ¼ 220 degrees
above which the system is stable, with relatively enough
routable nodes. Though it seems that large void scenarios
require threshold angle, which is 5 degrees-10 degrees
higher than small void scenarios to get the same percentage
of floating nodes, it should be recalled that a higher amount
of nodes is expected to be elevated in the large void
scenario by design. � ¼ 225-230 degrees was found to be
best for the various scenarios. Using a wider angle thresh-
old achieves less repositioned nodes, and completely misses
the purpose of the repositioning algorithm: concave nodes
might not be repositioned and the faces of voids might not
be smooth enough to allow efficient routing.

5.2.2 Mobility Effect on Stability

Ad hoc networks are dynamic by nature, with node mobility
being their main feature. Thus, it is important to verify that
the NEAR solution can cope with the network dynamics and
maintain system stability. Keeping the amount of elevated
nodes at a constant level and quick positioning adaptation
to node movement is an utmost concern.

We have conducted a simulation of node movement and
checked the effect on nodes positioning, as well as other
consequences. We used the simulation model described
above and added movement elements quite similar to those
described in [36] and [37]: every node in the system is
assigned a random direction and speed to which it
advances. Nodes are restricted from entering the forbidden
zones that define the voids, as well as crossing the system
boundaries. The velocity of a node is uniformly distributed
(0, 25 m/s). This models vehicular mobile nodes moving at
a speed of up to 90 Km/h with updating messages every
second, or a person with a mobile device walking at
4.5 Km/h with messaging updates every 20 seconds.

The system stabilizes very quickly after repositioning. It
requires less than 10 messaging cycles for the large void
scenario and less than five for the small void scenario
(Fig. 10a). For the majority of the nodes in the network,
stabilization occurs much faster. This can be seen in Fig. 11,
which shows the percentage of nodes that require
i iterations to stabilize (i ranging from 0 to 10) according
to the network’s density. The tail of the distribution with

nodes that require more than four iterations to converge
contains less than 1 percent for the large void scenario and
less than 0.1 percent for the small void scenario. The
exception in very sparse networks with an average of
16 neighbors per node when the tail contains 2.25 percent
and 1 percent for the large and small void scenarios,
respectively. Fig. 10b gives us an indication of the low
overhead of elevation messaging. The overhead is com-
prised of one hello message to every neighbor node and
additional repositioning update messages for every local
node iteration. As Fig. 10 shows, this means an average of
less than 0.4 repositioning update messages per node in the
worst case of a dominant void and a sparse network. It is
expected that when a system has a dominant void, more
repositioning update iterations will be required as the
correction made by repositioning is greater. The contribu-
tion to the overall messaging in the network is therefore
n � in �N , where n is the average number of neighbors per
node, in the number of repositioning iterations per node,
and N the number of nodes in the system. Based on our
results, we can set a bound on the number of update
messages in the network by ð1þ inÞ � n �N < 1:4 � n �N .
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Fig. 12a shows the average number of physical links up or
down between every update session per node. As the change
is not large and the number of broken links is quite the same
as the new connections made, the system’s ability to stabilize
grows. Fig. 12b depicts the percentage of nodes in the
network that change their height as a result of the movement.
Even in the most challenging scenario, a sparse network with
a dominant void, less than 3.5 percent of the nodes are
affected, and the number of nodes elevated up or pulled
down is approximately the same (especially considering the
confidence levels), the system ability to stabilize and quickly
adjust to nodes movement using NEAR is evident.

In our movement simulation, we have also studied the
case of losing a dominant neighbor or gaining a new one.
The simulation results are consistent with results above, i.e.,
the system stabilizes quickly with minimal number of
iterations per node.

5.3 Routing Simulations

5.3.1 NEAR Effect on Greedy Routing

The goal of NEAR is to improve the performance of greedy
routing and minimize the usage of recovery algorithms.
One way to achieve that is to reduce the number of concave
nodes in the network. In Fig. 13, we plot the percentage of
concave nodes that were eliminated from the routing

because of the repositioning. When the network density is
sufficiently high, 62 to 100 nodes per Km2 (12-20 neighbors
per node), up to 45 percent of the routes that previously
reached concave nodes, now complete their routing
procedure using only greedy routing.

An additional concern is to make sure that nodes
repositioning does not harm greedy routing.

Fig. 14 shows the effectiveness of NEAR compared to the
original greedy algorithm path. When both source and
destination nodes are not floating, the routes taken are
almost identical—on the average, there is less than
0.5 percent difference in the number of hops and distance
between pure greedy routing and routing using NEAR.
This translates to no more than 2 hops difference in the
worst case due to the change in the network topography.
When floating source or destination nodes, placed in a
concave areas, are being taken into account as well, there
may be a variance of up to 5 percent hops (an average of
half additional hop) and 3 percent distance in sparse
networks, and less than 1 percent hops and length in more
dense networks. The reason for this is the different routing
rules applied in concave areas. In all the cases described
above, routing success is guaranteed. In several cases,
NEAR even outperformed the greedy algorithm, as the
network topography was changed by the repositioning.

5.3.2 Comparison with the Shortest Path, GOAFR, and

GPSR

A measure of the algorithm efficiency in routing and
bypassing obstacles is obtained by a comparison to the
shortest path routing results.

Fig. 15a shows a comparison of the ratio between the
route length in hops of the two algorithms, NEAR and
GPSR [28] routing algorithm, to the shortest path calculated
by a central algorithm. We refer here to hops ratio and not
to the number of hops, as the effectiveness of the routing
should reflect the performance compared to the best path
possible. Both the dominant and the small void scenarios
were used for comparison. Since both NEAR and GPSR
center on the recovery process and share greedy algorithms
with the same performance for the rest of the time, we
examine here only routes with concave nodes, where the
greedy routing alone fails. We count the number of hops
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from source to destination and not only from the concave
node, as NEAR often does not reach a concave node at all
thanks to the repositioning. With the shortest path being the
optimal route, it out-performs NEAR by up to 40 percent at
most, which translates to less than two hops on the average.
GPSR average number of hops is 3 to 4.5 times the number
achieved by shortest path, and 2.5 to 3.5 times more than
NEAR. Fig. 15b compares between the algorithms, under
the same scenarios, but with a criterion of physical routing
length ratio. Here, the shortest path is better than NEAR by
up to 35 percent at most and by 80 percent to 140 percent
than GPSR. It should be noted that while many of the GPSR
recovery routes are short almost as NEAR, some are very
long—which is manifested in its large confidence intervals.

Fig. 16 shows the NEAR advantage over GPSR in yet
another important factor, the failure rate, tested under the
same scenarios as above. GPSR average delivery rate is
97 percent to 99 percent in the small void scenario and
94 percent to 96 percent in a dominant void scenario, whereas
NEAR delivers over 99 percent of the packets in both
scenarios, except for 94 percent delivery rate in a sparse
network with a dominant void. The GPSR recovery algorithm
suffers mostly in our simulation from routing toward the
edges of the network. As Karp indicates in his dissertation
[34], GPSR realizes a node is disconnected if a packet traverses
the first edge it took on a certain face for the second time. Due
to the topography of the network, this sometimes happen in
nodes on the border of the simulated area even when they are
not disconnected. As previous works [34], [28] averaged the
GPSR performance overall scenarios, not looking at the
problematic recovery process, this was not noticeable.

Simulation of GOAFR algorithm under the same
scenarios resulted in 100 percent packet delivery;

however, the performance of GOAFR was worse than
GPSR’s: 1.1 to 1.8 GPSR’s distance in small void scenarios
and 2.05 to 2.25 GPSR’s distance in large void scenarios.
For the clarity of the graphs this was omitted in Fig. 15.

5.3.3 Bernoulli Graphs

When connectivity between nodes is severely harmed by
obstacles, close nodes may not be able to communicate, and
there is a question whether geographical routing can work
[38]. Thus, we conducted a set of simulations to check the
performance of NEAR in such a scenario. Connectivity
problems in ad hoc networks are frequently represented as
Bernoulli graphs.

Definition 5.1. A Bernoulli graph Bðn; pðnÞÞ is a graph
consisting of n nodes, in which edges are chosen independently
and with probability pðnÞ [39].

Here, an edge may exist between two nodes ðv;wÞ if and
only if they are within transmission range. 1� pðnÞ
represents the probability for link failure between two
nodes within transmission range, and we assume no hidden
terminals. Using the same simulation scenarios described in
Section 5 and adapting it to the Bernoulli model, meaning
removing links between neighbor nodes with probability p,
we tested NEAR. Variable values of p were used to examine
the effect of link failure on repositioning stability and
further more routing success. While the link failure
probability does affect the connectivity in the network, it
does not affect the graph’s repositioning stability as
strongly. In all the cases that were simulated the reposition-
ing succeeded and the elevation was not as strong as in a
network that is p-dense. The reason is that while some nodes
may have broken links between them, other neighbor nodes
within the transmission range compensate for them in the
repositioning process. The success rate of routing using a
Bernoulli graph model is shown in Fig. 17. Except for the
sparsest case, the success rate was over 97 percent. It should
also be noted that the link failure rate commonly considered
is less than 10 percent [40], [41], still NEAR performs
adequately with higher failure rates as well.

5.3.4 Repositioning and Void Bypass Contribution to

NEAR

The NEAR solution is constructed from two major parts: the
repositioning part and the void bypass. Each of these parts
contributes to NEAR performance, almost equally. We
investigated the contribution of each part: to test the
performance of repositioning alone, we ran the GPSR
algorithm on scenarios where the repositioning algorithm
was applied. Only slight modifications where made to the
algorithm in order to be able to reach floating nodes. We
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Fig. 15. Comparison between NEAR, GPSR, and the shortest path by
distance and hops ratio.

Fig. 16. Comparison between NEAR and GPSR success rate.

Fig. 17. Routing success, Bernoulli graph.



refer to this modified algorithm as “Repositioned Nodes
Perimeter Routing—RNPR.” To test the performance of
void bypass alone, we ran NEAR without applying the
repositioning algorithm. Fig. 18a shows RNPR and Void
Bypass performance (by hops ratio) compared to NEAR
and shortest path. Fig. 18b shows the distance ratio
performance for the same scenarios. The results indicate
that both the repositioning and the void bypass contribute
to NEAR performance and that none of them alone
performs as good as their combination. Like NEAR, the
performance of Void Bypass does not vary significantly
with network density. In a small void, it shows a
performance that is a bit better for higher densities,
presumably as the contribution of the greedy algorithm
here is higher than the bypass itself. RNPR, on the other
hand, is erratic—the performance varies as density rises.
The simulation has shown that it depends on the network
scenario topography and the adaptations made to the GPSR
algorithm. The performance range from 20 percent to 140
percent worse than the shortest path. It is still always better
than GPSR alone by hops and is about the same as GPSR in
the distance for high network densities.

One outcome of these simulations is that none of the
algorithms (RNPR, Void Bypass) performed as was expected
in terms of message delivery success. We have already
mentioned the modifications to the GPSR required to meet
the repositioning effect, but Void Bypass is affected as well.
The void bypass algorithm is based on several assumptions
on the topography of the network after repositioning and the
selection of void edge nodes is based on that. When no
repositioning takes effect, the bypass discovery sometimes
fails, and sometimes, it is just not good enough. RNPR and
Void Bypass manage to deliver about 10 percent messages
less than NEAR, which currently makes them unusable. We
believe that with further work RNPR, the combination of
repositioning and GPSR, can prove to be stable and still
more efficient than GPSR, though not with the same
performance as NEAR. Void bypass, on the other hand, is
not recommended for use without repositioning.

6 COMPARISON WITH EXISTING SOLUTIONS

The NEAR solution belongs to the group of recovery
algorithms, meant to handle routing through concave

nodes, as mentioned in Section 1. An advantage of NEAR
over most solutions is the decrease in the percentage of
concave nodes in the virtual network, which increases the
greedy routing efficiency and reduces the need for recovery.
An exception in this case is the Terminodes [17] project,
where concave nodes are avoided by using a combination of
globally defined anchors and local table driven routing.
However, Terminodes is significantly harder to implement
compared to other solutions and is medially robust to a
failure of a single node [5].

A group of recovery algorithms, including GPSR [28], GFG
[27], GOAFR [26], and their variants have many similarities to
NEAR. They, too, start in a greedy routing mode and switch
to recovery mode only when a concave node is reached.
The common denominator between these algorithms is that
their recovery process is based on traversing the edge of a
void using different techniques and are mostly based on
planarization. The use of planar graphs requires the algo-
rithms to maintain information about the planarized graph
connectivity, based on local information. When a node’s
neighbor moves, the node has to check whether the
planar connectivity has changed and if an edge should be
removed or added to the graph. Practically, the resources
required for planarization and NEAR are similar; however,
our solution’s performance is better in dense networks.

There are two main advantages to NEAR over planar-
ization algorithms: Its recovery routes are shorter and
smoother, and it uses guaranteed bypass routes. The
“tangling” of the routing sometimes happened when
planarization is employed is due to the rugged shape of
the void edge. Whether the void is due to a lake, an area
without reception, or due to nodes spreading, one cannot
always expect to have a smooth edge. All the planarization-
based algorithms mentioned above will follow the rugged
edge and penetrate peninsulas as they occur (like in Fig. 1),
increasing the route length significantly. NEAR, on the
other hand, will reach the edge of this area and will not
penetrate it because of the repositioning. The second
advantage is our employment of guaranteed bypass routes:
the void bypass paths of NEAR are known and guaranteed
to bypass the void while being adaptive and sensitive to
changes in the network. It does not require each packet to
perform a face exploration of the graph, thus avoiding
complex routing and simplifying the computations. Note
that the repositioning algorithm can improve any of the
other planarization-based algorithms, even without the
void discovery process, as was shown in Section 5.

The second group of recovery algorithms refer to
algorithms that incorporate memory. Greedy/flooding [16]
and Terminodes were already introduced and differ greatly
from NEAR. Two other solutions, closer to NEAR in their
features are INF [18] and SAGF [19]. INF (intermediate node
forwarding) is a probabilistic solution for routing around
voids using intermediate geographic locations. When a
concave node is reached, it randomly chooses an inter-
mediate position through which to route the packet. If
routing through the intermediate node fails, another
intermediate node is chosen, and multiple intermediate
nodes can be used as well for the routing. INF keeps a table
of destination nodes and their intermediate nodes, which is
periodically updated. Two disadvantages of this solution
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are the fact that it requires a NAK message to start the INF
process, and it is based on the random selection of the
intermediate node, which is oblivious to network shape and
does not guarantee routing success in the first attempt.
SAGF is a spatially aware geographic forwarding solution
suitable mainly for networks with preassigned routes, e.g.,
nodes mounted on cars driving along the highway system. It
assumes that each node possesses the model information of
the geographic space wherein it is located, keeping location
information for intermediate nodes. Before a message is
sent, a route is calculated based on the spatial information
using algorithms such as Dijkstra. The algorithm’s complex-
ity here depends on the size of the model network and of the
ad hoc network. As other solutions, SAGF also routes in
greedy mode until a concave mode is reached, and then
calculates its path according to the spatial model. The
memory requirement here is expressed by the spatial
awareness, though it is also suggested in SAGF to use
external information sources, which then move the memory
burden to extra messaging. In both INF and SAGF, the
routing is not based on local information alone, and memory
requirements scale up as the network grows; INF memory
requirements scale with the number of nodes, and SAGF
scales with the number of vertices in the spatial graph.
NEAR memory requirements depend on the number of
neighbors and do not grow with the network size, yet NEAR
remains aware of the network topography.

Multilevel-clustering approaches (Landmark [20],
LANMAR [21], L+ [22], and Safari [23]) are best suited to
scenarios involving group mobility, as it heavily relies on
the cluster heads. The approach is mostly table driven,
hence, it employs memory, and as the above schemes have
explicit cluster heads, and all addresses are therefore
relative to these, they are likely to have to change if a
cluster head moves away [42]. In addition, its memory
requirements make it less scalable than NEAR.

An algorithm with some resemblance lines to NEAR is
PAGER [29], a sensor networks algorithm that identifies
“Shadow Areas” in the network that include concave nodes,
and later applies cost gradients to avoid these areas. One
can refer to the shadow areas and cost gradient as an analog
to the repositioning in NEAR. However, since PAGER is
designed to sensor networks, the destination node is always
the base station. Clearly, Pager answers the recovery
problem for a single destination, but its algorithm cannot
be applied to a multiple destination dynamic system, as the
ad hoc network in which NEAR operates.

NEAR void bypass algorithm has some similarity to the
BOUNDHOLE [30] algorithm, as both algorithms discover
voids and find bypass routes around them. While
BOUNDHOLE also uses stuck angle as the basis for void
discovery, the criterion for such an angle is different, and
can be as low as 120 degrees (since repositioning implica-
tions do not apply). The main drawback of the
BOUNDHOLE algorithm is the lack of packet delivery
guarantee [43], as it fails when the destination node lies
within the hole and requires restricted flooding to deliver
the packet. Unlike NEAR BOUNDHOLE also caches the
entire boundary of a void, which increases the memory
requirements and reduces scalability [43]. In addition, as
BOUNDHOLE targets sensor networks, it addresses node
failure but may not be adequate for mobile networks. The

algorithm periodically checks for node failure and redis-
covers the entire boundary of the hole if a node on the
boundary failed. NEAR, on the other hand, is immediately
aware of such changes and rediscovers only the minimal
section of the void bypass that was affected. This is
especially important in networks with high mobility where
the nodes on the edge of a void rapidly change. As a result,
BOUNDHOLE tends to impose higher load on nodes near
the hole boundaries [43].

To conclude, though the NEAR solution is no more
complex than other suggested algorithms, it outperforms
them in dense networks, while taking into consideration
network resources such as memory, messaging, computa-
tions, and routing efficiency.

7 CONCLUSION

This work presented NEAR, a solution incorporating both
positioning and routing aspects to improve performance,
based on local information alone. It was shown that by
simple virtual repositioning of nodes the shape of voids can
be smoothed and concave nodes can be predicted by their
added virtual height. The virtual repositioning simplifies
void detection and allows discovering void bypass routes
during the repositioning process. The bypass routes are
then maintained based on local changes alone.

In the routing section, simulations results showed an
improvement in greedy routing and a decrease in the
number of concave nodes thanks to the use of virtual
repositioning. The case of concave nodes and recovery was
also explained by the use of guaranteed void traversing
paths, which require nodes along the void to keep only the
ids of their immediate neighbors in the bypass path.

We discussed the characteristics of NEAR in terms of
localization, memory requirements, weaknesses and ad-
vantages compared to existing recovery algorithms, as well
as future research and improvements.

NEAR can improve ad hoc networks’ ability to deal with
voids and concave nodes, by implementing a revolutionary
view of repositioning that allows local nodes to sense part
of the greater network without requiring extra resources.
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