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Although computer viruses cause tremendous economic
loss, defence mechanisms fail to adapt to their rapid
evolution. Previous immunization strategies have been
characterized as being static and centralized, which has
made virus containment difficult or even impossible. We
suggest, instead, to propagate the immunization agent as
an epidemic. The main problem with epidemic vaccine
propagation is that it is bound to lag behind the virus. We
suggest giving the vaccine an advantage over the virus
by allowing it to leapfrog through a separate, overlapping,
partially correlated network. This enables the antivirus
to contain the epidemic efficiently. We systemize this
concept with a ‘honey-pot’ architecture that achieves both
early virus discovery and rapid antivirus dissemination. We
present analytic, as well as simulation, results for a set
of realistic topologies that illustrate the effectiveness of

this approach.
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properties', such as a diameter that grows logarithmically

with network size* and a non-existent percolation threshold?,
implies that for predominant epidemic models the epidemic will
not stop by immunizing any finite subset of nodes.

However, current immunization strategies®! focus on removing
nodes from the network a priori by immunizing them before
the epidemic outburst. In the absence of complete knowledge of
the network topology, these strategies are confined to a random
character. Thus, these strategies require, in most cases, the removal
of almost all of the nodes, and in all cases’ the removal of at least a
quarter of the nodes.

In contrast, we introduce a dynamic distributed immunization
strategy, where the vaccine development and immunization
processes depend on, and interact with, the virus dissemination
process itself, thus creating a codependency between virus
dissemination and immunization.

In the context of traditional biological epidemiology, there
was little sense in considering dynamic, distributed immunization
strategies. This is mainly owing to the fact that the timescale
gap between epidemic outburst and vaccine creation is very large,
and that there is no ‘infectious’ delivery mechanism available for
biological vaccines.

The world of computer viruses has characteristics that are
diametrically different. First, new viruses emerge at an increasing
pace. Second, computer viruses are much less complex than their
biological counterparts, and are much easier to analyse and to
characterize'*”. Thus, vaccine development can be achieved on
a timescale comparable to that of the infection process. On the
negative side, however, the viral process possesses an inherent lead-
time advantage: it appears before the vaccine, as a new vaccine
can be created only after the new virus has started percolating the
network. This fact, in itself, imposes strong constrains on the
usability of dynamic approaches. However, as we will demonstrate
below, one can devise design principles that compensate for the

The realization that network models possess non-trivial
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Figure 1 Comparing infection process evolution with (bottom) and without (top)
immunization edges. On the top the network is being infected fully by the virus. On
the bottom the virus cluster is reduced by more than half by introducing
immunization edges. The blue (dark green) edges represent the original network
(further immunization) edges. During the spread, an edge is coloured in red
(turquoise) if it was used to infect (immunize) a node. In both cases we present four
snapshots of each network in different times. In addition, we present the time (t)
varying graphs for the cluster development over time. The blue, red and green lines
are used to present the size of the susceptible, infected and immunized clusters,
respectively. Note that in the bottom set, initially in snapshots 1 and 2, the virus
cluster develops uninterruptedly until the immunization agent manages to escape
the border of the virus cluster, in snapshot 3, and start immunizing the network;
therefore the agent manages to immunize most of the network even though the
virus had a head start.

lead-time advantage of the virus and that support the deployment
of efficient dynamic immunization systems.

We discuss the concrete example of the e-mail network. In this
network, an e-mail account constitutes a node whereas the directed
edges of the network are the entries in the account’s address
book. The virus spreads through the account address book with a
timescale that ranges from several hours to a number of days. This
timescale is an upper bound of the vaccine generation timescale for
any effective epidemic containment solution. Studies™" show that
this network’s degree distribution (that is, the distribution, P(k),
which governs the probability that a node will have degree k, or,
in other words have k edges attached to it) is very broad and can
be modelled by a scale-free network, which is a network with a
power-law-degree distribution. We verified this through a survey
of 502 individuals, which we also used to calibrate the parameters
of our simulations.

In the past few years, virus spreading on such networks has been
studied intensively using the static percolation framework''. The
dynamics that we introduce stem from this framework and allow
for a richer set of effects.

DISTRIBUTED IMMUNIZATION

In the present article we define a framework for the study of
immunization strategies that react in real time to the emergence
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Figure 2 Relative virus cluster size as a function of immunization link density
(log-log scale). The dependence of the relative infected cluster size on the relative
edge addition g, resulting from simulations over uncorrelated, scale-free networks
with power exponent —3, mean degree 4 and network size in the range
50,000-200,000 nodes. The ratio dependence shows a power-law form, with an
exponent close to —4/3. The error bars present the 95% confidence interval.

and propagation pattern of a virus. The objective is to find the
strategies that minimize the size of the infected cluster. The size
of the virus cluster is the portion of infected nodes after a time
period that we take to infinity. The size of the immunized clusters is
defined consistently as the aggregate number of immunized nodes.
The underlying assumptions of our model are as follows. (a) As in
the susceptible, infected, removed (SIR) epidemiologic model'®"7, a
node can be in one of three modes with respect to a specific virus:
susceptible, infected or immunized (removed).

However, unlike the SIR model, a node cannot change its
mode once it is either infected or immunized during the relevant
timescale. This model is in close agreement with the behaviour
observed on the Internet today, as an increasing number of viruses
shut down security-related software on infecting a new node.
(b) An infected node releases the virus to all of its neighbours with
a delay time that is either deterministic or stochastic. The virus is
transmitted to all neighbours and not a stochastic subset, which
makes fighting the virus harder. (c) Some nodes, in accordance with
a given probability function, may recognize their own infection,
identify its characteristics and create an immunization agent, as
the infection process progresses'>'®. The agent then spreads to
all neighbours and immunizes the susceptible ones. In addition,
we define: (i) the average infection delay, also known as the
disease-generation time, f,, as the average time required by a
virus in a given node to infect a neighbouring node; (ii) the
average immunization delay, t;,,, as the average time required by an
immunization agent in a given node to immunize a neighbouring
node; (iii) the average development delay, t,.,, as the average time
required by an infected node to develop an immunization agent.

In essence, the described dynamics involve a competition
between two types of branching process on a network', where
the first type creates a connected virus cluster and the second
creates a collection of immunized clusters. Unlike centralized
approaches, this approach nullifies the need for a global knowledge
of the topology. We consider the deterministic case, where the
various delays associated with the infection, agent creation and
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Figure 3 Relative virus cluster size as a function of system size for different
honey-pot densities. The simulations ran over uncorrelated, scale-free networks
with power exponent —3, mean degree 4 and network size in the range
25,000-200,000 nodes. The virus cluster is multiplied by the square of the
honey-pot density to cancel its effect in accordance with equation (1). The curves
show a power-law dependence with exponent equal to —1.08, compared with the
expected exponent of —1. The error bars present the 95% confidence interval.

immunization are all constant, and where all neighbouring nodes
become infected or immunized simultaneously. The resulting
dynamics show a sharp transition at the point where &t = i + fgev-
In the deterministic case, when t,¢ is below this threshold, the virus
infects the entire network, whereas when above it, the dynamics
are governed by the agent development pace and the network
topology characteristics. This sharp transition around the critical
value also remains true when the delays are stochastic variables.
In the discrete-time simulations we present below, all of the time
parameters equal one time step, which in turn gives the virus a
head start of one time step. As presented in Fig. 1, this difference
is enough to let the virus infect the entire network when the virus
and immunization agent spread on the same network.

PARTIALLY CORRELATED NETWORKS

To unleash the potential of the immunization system, we offer a
slight modification to the problem by introducing a relatively small
number of edges to the network topology. These immunization
edges, which are used exclusively by the immunization agents, have
a dramatic effect on the ability of a dynamic scheme to contain
the virus by offering access to a parallel network with identical
nodes and almost identical edges as the original network. These
edges connect the node that produced the immunization agent to
nodes that are beyond its immediate neighbourhood as defined
by the initial network. In our example, the parallel network is
the phone-book network, which is strongly correlated with the
e-mail network.

The study of networks that connect the same nodes but
have different sets of links is only in its infancy***'; however,
even now it is clear that such networks are qualitatively different
from each of their components taken separately. This is owing
to the complete change in the topology and the metrics that
are induced in each of the networks through their interaction.
In practical terms, this means that the immunization agents
are effectively deployed ‘behind enemy lines, unconstrained by
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Figure 4 Relative virus cluster size as a function of honey-pot density for
different system sizes. The simulations ran over uncorrelated, scale-free networks
with power exponent —3, mean degree 4 and network size in the range
25,000-200,000 nodes. The virus cluster is multiplied by the network’s size to
cancel its effect in accordance with equation (1). The curves show a power-law
dependence with exponent equal to —1.8, compared with the expected exponent
of —2. The error bars present the 95% confidence interval.

the boundaries of the surrounding virus cluster. Once in this
position, they can alter the topology of the space remaining at
the virus’s disposal by immunizing nodes that otherwise would
have belonged to the infected cluster. In Fig. 1 we illustrate the
difference between a network with no extra immunization edges
and a network that does possess several of these edges. The
difference in the dynamics is further illustrated in Supplementary
Information, Video S1.

The effect of introducing extra immunization edges, along
with the original network, amounts to the generation of a pair of
partially correlated networks*>*, which we define as follows: two
given networks G, = (V,E)), G, = (V, E,) are partially correlated
with overlap p if p=|E, NE,|/max(|E,|, |E,|) is greater than zero.
Here, V represents the set of nodes in a network and E the number
of edges.

Starting with our initial network G,, we create a new network
G, for the immunizing agent by adding to G, a set of edges e, that
do not belong to G,. Using the relative edge addition, g = [e,|/|E, |,
the overlap will be

Bl Bl 1

T |E| T |E\Ue|  1+4q

We then alter the distributed immunization dynamics in the
following way. The virus spreads through the original network G,
whereas the immunizing agent is deployed through the partially
correlated network G,, which is obtained by randomly adding g|E; |
edges to G,. By doing so, we enable the immunizing agent to break
through the virus cluster and to immunize the network.

In the Methods section we show analytically that for the
discrete-time deterministic model the relative size of the infected
cluster (that is, the ratio of infected to immunized clusters), as a
function of the relative edge addition g, has a power-law upper
bound with a —1 power exponent.

In addition, we have studied the problem through network
simulations. In Fig. 2 we present simulation results that
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Figure 5 Comparison of virus cluster sizes for the random-edge and the
honey-pot architectures. The different sets present different relative edge
additions, g. The clusters in the random case are always larger than the clusters in
the honey-pot case; as the network size grows, so does the gap between the two
architectures. The reason behind this is that, whereas in the random case the cluster
size remains fairly constant as we vary the network size, in the honey-pot case as
the network grows, so does the effectiveness of the honey pots. This effect is mostly
noted in the middle range of the density values where the immunization has an
effect but the virus cluster is not extremely small. The error bars present the 95%
confidence interval.

show a power-law ratio dependence with an exponent that
approaches —4/3.

Thus, we can conclude that dynamic immunization, which is
used over partially correlated networks, can reduce the size of a
virus cluster considerably with negligible costs.

HONEY POTS

To systemize and improve our scheme we present the honey-pot
architecture' (the name originating from their function as traps).
This architecture has two main benefits over the random solution.
First, it is much more realistic and technically feasible. Second,
it is considerably more efficient than a random deployment of
immunizing edges, and, given the same immunization edge budget,
it minimizes the virus cluster to sizes that can be as small as a fourth
of the respective cluster in the random-edge case. These features
make this architecture an attractive alternative to current immune
systems.

The aim of this architecture is to introduce a virtual superhub
that transforms the shortcomings of a scale-free network, which
is considerably impaired when its largest hubs are removed’, into
an advantage.

The honey-pot architecture is constructed in the following
manner. We exclusively implant the ability to develop an immunizing
agent into a set of nodes called honey pots. The honey pots are
embedded randomly within the network such that any virus that
spreads through the network will be likely to reach them promptly.
Finally, all honey pots are connected in a complete graph topology
using special edges that only allow the immunizing agents to
traverse along them.

Initially, the virus spreads freely, until it infects the first honey
pot and thus triggers an immunization agent development process.
By this time, the expected size of the virus cluster equals the size
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Figure 6 The dependence of the virus cluster on the degree distribution power
exponent. We ran a sensitivity analysis where we varied the power exponent of the
Pareto degree distribution characterizing the underlying topology between 1.8 and 3,
which includes all degree distributions found in real scale-free networks. As can be
seen, the effectiveness of the immunization process grows with the power
exponent, owing to the fact that lower exponents entail a higher density of edges,
which allows the virus to advance faster. However, this variation is still minor
compared with variations in the relative edge addition, g, and in the architecture
type, which are illustrated by the different data sets presented. The error bars
present the 95% confidence interval. HP = honey pot.

of the network divided by the number of honey pots. As the virus
continues to spread, all honey pots are informed of the new virus,
and each honey pot then begins to function as the root of a separate
infectious immunization process. The honey pots have the effect
of a superhub, with a degree that is the sum of the degrees of the
separate honey pots.

In the Methods section we calculate an upper bound for the
relative virus cluster using the honey-pot architecture. We show
that if the number of honey pots, as a function of the network
size N, f(N), grows faster than /N, the size of the virus cluster
will approach a zero portion of the network, as the network size
approaches infinity. In the case where f(N) = BN (where f is some
finite constant), we get

ViN) 1
im = .
i~ A(N) BN

where o is a characteristic constant of the topology, V,(N) is
the size of the virus cluster and A,(N) is the aggregate size
of the immunized clusters after time step f, as a function
of network size N. When f(N) = +/N, the relative special
edge addition due to the honey pots is kept constant in the
infinite size limit. This analytic estimation is validated through
simulations, and is presented in Figs 3 and 4 and illustrated in
Supplementary Information, Video S2. Comparing the random
architecture with the honey-pot architecture, we observe in Fig. 5
a significant improvement owing to the honey pots that grows with
network size.

In Fig. 6 we address the question of robustness of these
approaches to different topology characteristics, presenting an
analysis of the effect of varying the degree distribution power

(0[—1), (1)
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exponent on the virus cluster; we show that it is minor compared
with the dependence on the immunization edge density.

DEPLOYMENT AND FEASIBILITY

Faced with the systematic defeats in the war against computer
viruses, a paradigm shift may be required. We propose such a shift
from the current, static, centralized immunization strategies to a
dynamic-distributed-immune-system approach. We demonstrate
the effectiveness of such an architecture in protecting large
networks, both when built randomly or when designed artificially.
Although the presentation of a practical system design is outside
the scope of this article, such a system is certainly deployable. In
the past, it has been shown that distributed systems that monitor
the Internet in real time*** are not only feasible but are also
very effective. Shifting the focus of an antivirus system from
cleaning a single machine to containing the epidemic enables the
introduction of accurate automatic triggering within a timescale
of less than a minute, which allows such a system to surpass the
binf = bimm + faev Darrier. This enables the system to compete with
and defeat the spread of the epidemic. The architectures we have
presented constitute a starting point that can be further improved,
for example, by designing algorithms for the placement of the
honey pots’.

METHODS

ANALYSIS OF THE RANDOM-EDGE EFFECT

Given a network with degree distribution P(k), let us calculate an upper bound
on the rate of growth of the virus cluster, V;(N), where N is the network’s size
and t is the time index. Let us examine the portion of the t+ 1 time layer, /;;,
with degree k:

kP(k
e (= eSSk -C-(K = 1) =
.

kP(k)
S kP(K) m
where m is the average node degree, k' is a summation index over all degrees
and C holds the topological clustering properties of the network, which reduce
the number of effective neighbours. Even though, in general, C may be a
complicated expression, and may also depend on k, in our mean-field
approximation we refer to it as a constant of the topology. As the sum does not
depend on k, we can calculate it independently and call it a,;. Then,
I;11(k) = as41 kP(k). Substituting in (2), gives us
S /
ha® =kt Y P8 oo,
= m

D LK)-C-(K=1), (2)
%

We call the outcome of the new sum «. As it does not depend on k, we find that
11 =1 - . If o is larger than 1 we get an exponential growth. If N is large
enough so that finite-size effects are irrelevant we get

a1
ViN)=(1+a+o’+-+a')= =

Let us turn to the immunized cluster(s). Define A,(N) to be the aggregate
size of the immunized clusters at time step t as a function of N. Given a relative
edge addition g and an average node degree m, the expected number of
immune specific edges is gm, and each may initiate an immunized cluster. Once
started, the immunized clusters also grow with ratio «. Thus, A; when N is
large enough is

A(N)=gm[(t—1) a2+ (t—2)-a" >+ +1],

which can be compacted to
AN =qm[£ _ E]
a—1 (x—1)2
The ratio of the size of the virus cluster to that of the immunized clusters is
Vi(N) 1 @' =D (a—1)
ANN) q;[(t—l)af—tat’l+l]’

from which we get an upper-bound (as all our assumptions were in favour of
the virus cluster), power-law dependence with exponent —1 on ¢ for the
discrete-time, deterministic model.
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ANAIYSIS OF THE HONEY-POT ARCHITECTURE FFFECT

We would like to calculate an upper bound for the ratio V,(N)/A,(N) for very
large N's and when f approaches infinity.

Let us assume that there are f(IN) honey pots distributed randomly in the
network, all connected in a complete graph using immunization edges. Then,
clearly, the expected virus cluster size when a honey pot is infected with a virus
for the first time is N/f (N). At that time, the boundary outside the virus cluster
will have (N/f(N))(a — 1) nodes. At the next time step, f (IN) nodes will be
‘infected’ with the immunization agent. From this point forward, we assume
that (in the deterministic case) the virus cluster and the immunized clusters
grow as an uninterrupted geometric series. Then, with increasing t, their

ratio approaches
VN INFNI-@-1) N
(a—1).

AN fN)-[(@ =D/(@=D]  f(N)?
From this equation we can see that whenever f(N) grows faster than /N the

size of the virus cluster will approach a zero portion of the network, as the
network size approaches infinity. In the case where f(N) = BN, we get

V) 1

A(N) BN
which means that we have a power-law relation between this ratio and the
relative amount of honey-pot nodes, B, with an exponent equal to —2. This
result is not surprising, as f (N) = \/ITI is the function for which the relative
special edge addition due to the honey pots is kept constant in the infinite
size limit.
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