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Abstract. Traffic engineering tools are applied to design a set of paths, e.g., us-
ing MPLS, in the network in order to achieve global network utilization. Usually,
paths are guaranteed long-term traffic rates, while the short-term rates of bursty
traffic are not guaranteed. The resource allocation scheme, suggested in this paper,
handles bursts based on maximal traffic volume allocation (termed TVAfB) instead
of a single maximal or sustained rate allocation. This translates to better SLAs to
the network customers, namely SLAs with higher traffic peaks, that guarantees
burst non-dropping. Given a set of paths and bandwidth allocation along them,
the suggested algorithm finds a special collection of bottleneck links, which we
term the first cut, as the optimal buffering location for bursts. In these locations,
the buffers act as an additional resource to improve the network short-term be-
havior, allowing traffic to take advantage of the under-used resources at the links
that precede and follow the bottleneck links. The algorithm was implemented in
MATLAB. The resulted provisioning parameters were simulated using NS-2 to
demonstrate the effectiveness of the proposed scheme.

1 Introduction

The latest Internet QoS (Quality of Service) design trends combine two approaches:
DiffServ and MPLS. The first is based on reducing the computation complexity in core
routers and on locating QoS entities such as policing and metering at the network edges.
The DiffServ approach is based on per-hop QoS handling. In order to achieve global QoS
guarantees or global profit gain, TE (Traffic engineering) tools are applied to design a
connection-oriented network, e.g., using MPLS. In particular, QoS routing, where routes
are assigned according to the service requirements, is an essential part to the end-to-end
guarantees. Usually, the guarantees are applicable for long-term traffic rates, whereas
the short-term rates of bursty traffic are not handled or guaranteed. This paper suggests a
per-aggregate resource allocation algorithm that takes into account average traffic rates
and also absorbs traffic bursts.

We consider as input a connection-oriented network where topology and directional
link capacities are known. A typical rate demand of the network customer may represent
aggregates of connections (e.g., TCP), such as client traffic (university campus, business
client, client ISP), ATM VPs, or MPLS tunnels, and will be expressed by average or
maximum required rate. The attitude of our resource allocation concept is to offer the
network customers better SLAs with higher traffic peak rates that guarantees bursty
traffic. It is a fast off-line algorithm that is performed during the network design phase.
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Our resource allocation algorithm has two stages. In the first stage it seeks any QoS
routing or bandwidth allocation algorithm that saturates the networks, such as maxi-
mum flow or max-min fair allocation [1]. Such algorithms use long-term average traffic
demands as input, and allocate bandwidth using a signle rate parameter. In the second
stage, we use buffers at specific locations for the short term traffic management, using
the output of the long term TE algorithm. Note that we are not proposing to change
the hardware whenever the demands are changed. All the routers will have their initial
buffering resources, but our algorithms will use them optimally according to topology
and demands analysis. These buffer analysis will determine the required flow regulation
parameters at the edges of the network in order to enforce that traffic adheres to its des-
ignated maximal rate, while still isolating flows from each other. Specifically, we push
the burst treatment to a point we term the first cut, which is an optimally selected set of
bottleneck links. A burst is allowed to proceed unshaped until the destination, given the
bottleneck link is not congested. In case of congestion the traffic is shaped at the first
cut to the highest possible rate which guarantees the burst will not interfere with other
flow traffic. Anyhow, the adjusted rate is never lower than the average rate determined
by the long-term TE algorithm. Our algorithm determines provisioning parameters for
the policy and regulation entities that are located at the edges of the network.

There are various methods for deterministic bandwidth allocation where the band-
width is allocated using a single parameter, the maximal rate or the sustained rate param-
eter. The solutions of the different variants of the multi-commodity flow (MCF) problem
for traffic engineering can be viewed as a long-term rate allocation method. Nichols et
al. [2] describe two allocation methods for the DiffServ framework. The ’Premium ser-
vice’ is where the traffic is shaped at network edges. It provides the maximal permitted
rate allocation contracts to its users, and it smoothes the jitter, provides certain delays,
and guarantees peak rate flows. The ’Assured service’ relies on statistical guarantees.

Other deterministic rate guarantees that consider the short-term rates [3, 4, 5, 6] were
achieved by either the worst-case bounds on network internal buffer overflow or by end-
to-end delays in the network. The rates of these traffic envelopes are not tight since they
consider the worst-case bounds. A different line of research suggests statistical allocation
guarantees. Christin et al. [7] examined the per-hop behavior of various real time streams
having different constraints (such as delay or loss rate). Liebeherr [8] discusses different
resource allocations and scheduling methods for the provision of delay sensitive video
streams. Another approach is to allocate bandwidth according to an effective rate that
takes into account statistical multiplexing between the burstiness of the flows [8, 9, 10].
Biton and Orda [11] provide QoS guarantees by coupling the scheduling mechanism
and the routing schemes.

The resource allocation algorithm we propose in this paper reserves bandwidth ac-
cording to the amount of traffic sent during a time interval (termed TVAfB, maximal
traffic volume allocation) and not according to a single strict rate allocation (termed
MRA in this work) used in previous suggestions.

The TVAfB cascading algorithm improves the state-of-the-art of service allocation
and provisioning in a few ways. It allows bursty traffic to better exploit the existing
network resources. It can also exploit the statistical multiplexing gain and still provides
deterministic bandwidth and delay guarantees. For example, a burst that belongs to a flow
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that has only one bottleneck link that finds no congestion at this link can be transmitted
further without any delay. In case of a higher load, but still below capacity, it flows in a
higher rate than its sustained rate with no loss danger. Only during periods of congestion
the burst is shaped to its fair share. The novelty of this approach lies in our dealing with
bursty traffic guarantees and the fact that it employs the buffer as an additional resource
in traffic engineering design.

Further, our algorithm can lead to higher parameters assigned for policing and regula-
tion without being restricted to any specific policy method. The mathematical derivations
we present in this work concentrate on the case where traffic is policed at the edges using
token buckets. However, the notation of first cut is important and can be used for other
regulation scenarios, as well. Section 2 presents the problem. Section 3 outlines the
two-stage algorithm where section 4 details the second algorithm. Section 5 describes
the simulation results and evaluates this proposition.

2 Problem Presentation

The algorithm considers a connection-oriented network where topology and directional
link capacities are known. The set of paths are set optimally using any bandwidth al-
location criterion chosen by the network administrator. We model the network as a
general directed graph where each arc label represents link capacity. The traffic flow
is assumed to be bursty, though the peering networks cannot explicitly express the
burstiness characteristics. It is regulated by token buckets at the edge nodes. The to-
ken bucket parameters we seek per customer demand are token rate and bucket size.
The regulation using these parameters determines the committed rate, the peak rates
and the maximum burst size per path (CIR, PIR, and CBS). Our goal is to set the SLA
regulation parameters in order to maximize the burstiness each flow is allowed, while
at the same time not dropping packets by optimally use buffers along the routes. We
will show that it increases bandwidth utilization for this type of traffic compared to
the maximal rate allocation (MRA) that is usually used for long-term guarantees. Our
algorithm shows that for many scenarios, there are paths with only one bottleneck link

C(e i ) = 4

Solution:
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Fig. 1. Example 1

per path. In these cases, if buffers are allocated in
this set of bottleneck locations, higher rate traffic
per-path can be allowed to enter the network.

To illustrates the problem, Figure 1 depicts
a simple directed network with 4 unidirectional
paths. There are 4 different clients each with a
demand of 1Mbps as depicted. All link capaci-
ties are 4Mbps. Thus, the bandwidth reservation
is 4Mbps on link e7, 2Mbps on links e5 and e6,
and 1Mbps on links e1, e2, e3, and e4, respec-
tively. It is maximally allocated because link e7
is saturated. If a burst with peak rate of 2Mbps is
sent along path r1, the packets exceeding 1Mbps
will be dropped, though links e1 and e5 are not
fully used. The rational behind our approach is to
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exploit links e1 or/and e5 capacity limits and still guarantee the traffic at the bottleneck,
which in this case is link e7. By using another resource we can define extended allo-
cation using more parameters, increase the usage of the under used links, and assign
more flexible contracts. A 1Mbit buffer at the output port of node 7 to link e7 enables
an agreement of 2Mbps peak rate, 1Mbps sustained rate and maximum burst time of
0.25 second for each path. The burst size for each path can grow as high as 2Mbit for
a period of 0.25 seconds providing it is followed by a silence period of 0.25 seconds.
Now consider an underload situation where only one client transmits bursty traffic of
2Mbps peak rate. This stream will be transmitted without any buffering delay all the
way. Otherwise, if all the sources transmit using their peak rate, the buffer at node 7 will
shape (using any GPS-compliant scheduler) the traffic per path to the sustained rate.

3 Algorithmic Solution

Below is an outline of the algorithm that achieves deterministic guarantees for bursty
traffic. The algorithm is based on a few algorithms activated in cascade.

3.1 Solution Outline

1. 1st stage - Routing and Average Rate Allocation: Find, using LP (Linear Program)
formulation and solver, the QoS routing that identifies maximum flow (or other
criterion) allocation of the bandwidth. The output is the set of paths and the net flow
that is assigned per path. This stage is described in Section 3.2.

2. 2nd stage - TVAfB cascading algorithm - Traffic Volume Allocation for Bursts:
(a) Find a special set of bottleneck links, termed the first cut (Section 4.1).
(b) Indicate which buffers at the first cut enable us to increase the rate at the edges.
(c) Calculate the permitted peak rate over each path taking into account all the arcs

not included in the first cut for each path. Again, we use LP solver over the
residual graph ‘before’ and ‘after’ the first cut (Details in Section 4.2).

(d) Based on the previous calculations, decide for each path whether it can gain
additional burstiness using buffering. If yes:

– Analyze buffer behavior at the bottleneck link, in case of congestion (4.3).
– Set a contract (SLA) per-path (Section 4.4).

3.2 1st stage: Long-Term Routing and Bandwidth Allocation

This stage specifies a set of paths in the network, and allocates them bandwidth. TE
tools are used to choose paths between a given set of ingress-egress pairs. Any resource
allocation criterion can be used, in order to saturate the network.

In this paper we are particularly considering the Maximum Multi-commodity Flow
(MCF) problem. The input to this problem is the network topology, the directional
links capacities, and a list of ingress-egress pair (clients). It finds the maximum of the
total net flows over all commodities (e.g, paths), the routing to be used between each
pair, and the net flow per each path. This problem can be solved using LP solver in
a polynomial number of steps. We specifically consider this problem since it achieves
network saturation and leaves minimal excess capacities. Other routing algorithms that
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allocate bandwidth and saturate the network can also fit this framework. In [1] we
suggested bandwidth allocation method according to the max-min fair criteria that can
be used for the TVAfB algorithm.

4 2nd Stage: TVAfB Cascading Algorithm - Traffic Volume
Allocation for Bursts

4.1 The Bottleneck Links for Buffering Analysis

The 1st stage solution found the set of paths between (si, ti)-pairs and a per path net flow
f(P ) in the graph G(V, A). Based upon the routing found previously this subsection
will find the strategic location for the buffers, which is defined below as first cut. First,
we will define a few terms.

Definition 1. A link a is saturated, denoted: sat(a) = 1 if it is assigned bandwidth
equal to its capacity. Otherwise it is not saturated which is denoted sat(a) = 0.

Definition 2. ai is thefbn linkofa pathp = (a1, a2, . . .), aj ∈ A, if i = min{j|sat(aj)}
Definition 3. A first cut is the set of the first bottleneck links (fbns).

Definition 4. Given a graph G(V, A) and a set (si, ti), ∀i = 1..K of source-terminal
pairs, a cut M of the graph is a subset M ⊂ A such that the subgraph G‘ = (V, A\M)
has no si → ti path, ∀i = 1..K .

Using the above definitions we can state the main construction of this subsection.
The first cut properties

1. Each path has exactly one fbn link. The number of fbn links ≤ the paths.
2. For each path, the links that are prior to its first bottleneck link are under-used.
3. Each first cut link can be saturated by flows that this link is their fbn link and by

other flows that already met their fbn link before (discussed in 4.2).
4. The first cut is a cut of the graph. If we delete the arcs of the first cut no traffic

will flow (The proof can be found in [12]). Thus, we can use it as the location for
absorbing the peak rates of the bursts.

4.2 Peak Rates Calculations

The Traffic Volume allocation assigns peak rate h(p) per path p on top of the sustained
rate, f(p), which was found in the 1st stage. The lower bound for each h(p) is f(p).
The goal of this work is to enable flow transmission over a predefined path using its
peak rate when the buffer is used only in case of congestion. Therefore, the peak rates
calculation is derived out of the excess bandwidth of the links, which are not saturated,
and is divided among all the paths flowing through them.

This subsection calculates the possible peak rates per path in each first bottleneck
link (fbn) subject to capacities constraints of all the preceding and following arcs over
this path. For this purpose we use the same TE algorithm used in the first stage over the
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residual graph arcs that reside ’before’ and ’after the first cut. The specific TE algorithm
(maximum flow, max-min fair, etc.) also determines how the excess bandwidth will be
divided among the paths.

The construction of the ‘before’ and ‘after’ residual graph is as follows. According to
property 2 of the first cut, all the links of path p prior to its fbn are under used and can
accommodate higher rates than the sustained rate f(P ). However, property 3 is more
complicated. Consider a link fbn1 (belonging to the first cut) and a set of paths that are
traversing it. Note that fbn1 may not be the first bottleneck link for some of the paths that
traverse it. Assume a path pi which passes through the saturated links fbn2 and fbn1

in this order. By definition only fbn2 is pi’s first bottleneck link. However, peak rates
calculation, residual graph construction and buffer management vary if pi has more than
one bottleneck link. Essentially, this variation arises due to the need to allocate these
peak rates along the arcs that lay between the bottleneck links (fbn2 and fbn1).

We developed two algorithms. The first, algorithm A, saves buffering resources by
allowing burstiness (some peak rate) only for paths that traverse a single saturated link.
The second, algorithm B, enables burstiness also for paths that traverse multiple saturated
links, but requires more buffering resources. In both algorithms, shaping of the peak rate
to the sustained rate is performed only when congestion occurs, otherwise, the flow’s
peak rate is allowed.

Peak Rate Calculation Algorithm A: Enabling Burst Flow only for Single-fbn
Paths. The first algorithm benefits paths that traverse a single fbn link whose other
links (not in the first cut) are under used. The excess bandwidth in the under-used links
is divided among these paths, which permits a possible peak rate per path. Not every
topology and demand flow can benefit from this algorithm, though the algorithm can
check its usefulness. Section 5 discusses briefly the topologies that are likely to be ben-
eficial by the algorithm. The traffic flow is controlled at the ingress, using the peak rate.
Other traffic flows are controlled using the sustained rate. In case of congestion, buffers
at the first cut will be used to shape the peak rate to a lower rate (but not lower than the
sustained rate).

The input for this algorithm is the graph G(V, A); its arc capacities; set of paths
over G and the assigned net flows over them and the first cut arcs. The algorithm finds
h(P ), the permitted peak rate per path in two steps. The first step constructs a sub-graph
G−(V, A−) (see in Figure 2). The second step applies the TE algorithm used in the
1st stage over A− and identifies the highest possible rates over the paths subject to A−

capacity constraints.
Consider the example in Figure 3(a), where the arc capacities of links e1 − e6 is

2Mbps and of links e7 − e8 is 3Mbps. The optimal bandwidth assignment per-path,
calculated by the first-stage TE algorithm is 1Mbps. We consider this rate to be the
sustained rate. The first cut consists of the links e5 and e8. Paths r2, r3, and r4 are
traversing arc e8. Note that fbn(r3) = fbn(r4) = e8 but fbn(r2) = fbn(r1) = e5.
Paths r1, r3, and r4 have only one fbn link, thus, their rate can be increased. Path r2,
however, is excluded from the set of the beneficial paths because it has two bottleneck
links and can not have burstiness. A− contains links e1 and e6 (that precedes and follows
e5 respectively), e3, e4, and e7 (that are prior to e8). The residual capacity of e1, e3 and
e4 in A− is 1 (originally was 2) and the capacity of e7 is 1 (originally 3). Buffer located
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Constructing set of links A−

1. Set FPATHS to be the set of all input paths (from TE stage), NEWFPATHS = FPATHS
2. for each bottleneck link a in ’first cut’:do
3. Set FP (a) to be all the paths passing through a
4. for fi ∈ FP (a) do /* Consider only paths with single fbn */
5. if a = fbn(fi) and ∀af ∈ fi, af �= a, af /∈ firstcut − a then
6. for each af ∈ fi, a �= af do A− = A− af

7. else NEWFPATHS = NEWFPATHS − fi

8. /* Get the residual graph : for the excess rates calculation */
9. for each fi ∈ FPATHS do, for each af ∈ fi do c(af ) = c(af ) − f(fi)

Fig. 2. Algorithm A G− construction: selecting links for the peak rate
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Fig. 3. Results of algorithms A and B for a network with various arc capacities

at the first cut links e5 and e8 absorbs the sum of the peak rates of the traversing paths
(which is (2,1,2,2) for paths 1,2,3 and 4). The derivation of the maximum peak period
per path that is allowed subject to the buffer size and the calculated peak rate is described
in subsection 4.3. In this algorithm, each flow peak rate is only considered once in the
buffers calculation, at its first bottleneck link. This means that our usage of the buffering
resources is minimal and is not sensitive to whether the first cut is the minimum cut or
what is the number of the links of the first cut. The maximal peak rate, Rp, that can be
handled at each one of the first cut links is not the sum of the peak rates of the paths
that traverses it, but is given by ∀a ∈ A−, Ra

p =
∑

already shaped paths
f(p) +

∑
a is their fbn

h(p).

Peak Rate Calculation - Algorithm B: Enabling Bursts Flow for all the Paths, with
more buffers. This algorithm enables peak rates assignment also to paths with more
than one fbn link though this requires more buffering resources. As in algorithm A, we
build a new sub graph G−(V, A−) and apply the same TE algorithm on G− to find
h(P ), the per-path permitted peak rate. A− consists of all the links except the first cut
links. In this algorithm, assuming there is no congestion in the network, a flow of a path
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that traverses more than one bottleneck link can reach the second bottleneck link with a
higher rate than its sustained rate. Portion of the buffer in this fbn has to be assigned to
guarantee the higher rates. Consequently, more buffering resources should be added at
each first cut link to accommodate the peak rates.

Figure 3(b) shows algorithm B execution on the same graph used in Figure 3(a). The
rate of path r2 can be increased even though it has two fbn links, and its peak rate is
calculated using arcs e2 and e7. There will be 2 buffers: one located at node 5 towards
e5 to treat bursts from routes r1 and r2 and the other is located at node 8 towards e8 to
treat the bursts of routes 2,3 and 4. Assuming locating buffers of size 90,000 bytes at the
output ports of nodes 5 and 8 towards links e5 and e8. The sustained rates are (1Mbps,
1Mbps, 1Mbps, 1Mbps), peak rates are (2Mbps, 1.5Mbps, 1.5Mbps, 2Mbps), and the
sizes of the token buckets are (120,000, 67,500, 67,500, 90,000) bytes for routes (1, 2,
3, 4), respectively. The details of this calculations can be found in subsections 4.3 and
4.4. Note that the fbn link e5 allows a burst size of 90, 000 for path r2 but this burst size
was decreased by the fbn e8 upper bound. As in the previous algorithm, in case where
a path cannot gain a peak rate that is higher than its sustained rate, it will be policed to
its sustained rate at the ingress. Otherwise, the peak rate will be used.

4.3 Buffer Management Analysis at the First Cut

The buffers, located at the first cut, are used for holding the bursts that may arrive with a
maximal rate of h(p) for any path p. The buffer sizes are determined by the peak rates cal-
culated in 4.2. Given the shaping capabilities at the first cut, we can calculate the possible
traffic envelopes at the first cut. The way we handle the traffic at the first cut affects the
control parameters of the traffic at the ingress nodes. Many previous papers estimated the
bounds on the size of traffic envelopes at the core based on the traffic pattern at the source
nodes. Since our calculations are derived from the TE routing stage, we are able to set reg-
ulation rules at the ingress. Specifically, we assume the incoming flows are regulated per
path using token buckets at their source node. We derive the per-path token bucket param-
eters (i.e., peak rate, sustained rate, and burst size) from the first cut buffer analysis. Fig-
ure 4 describes the node’s functionalities with buffer capacity C, link output rate, Rout,
peak rate of arriving traffic, Rpeak,in, and a peak interval, tp. The transmission rate of

Node
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R
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Rout

t
p

= C/(R
peak ,in

- R
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)
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out

node

node
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Fig. 4. Buffer management at the output port

the outgoing traffic is bounded by the link
output rate, Rout. If the rate of the offered
traffic is Rin ≤ Rout, a queue will not
build up. In case of bursty traffic the buffer
is used for storing the incoming packets
which are smoothed by the transmission
rate. The most extreme case is an On-Off
streams in an interval ts, which are com-
posed of peak rate Rpeak,in for the burst
duration tp followed by a silence period
of length ts − tp. The longest period of
time tp that a burst can be sent, given,
Rpeak,in, Rout and C is expressed by:

tp = C/(Rpeak,in − Rout) (1)
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The minimal length of the interval ts can be derived by equating the amount of
incoming and outgoing data:

ts = Rin · tp/Rout (2)

Alternatively, we require that the generated amount of data v in the interval ts: v ≤ Rout ·
ts. The maximum delay at a node is given by the emptying time of a full buffer C/Rout.
A general definition of v will be to integrate the arrival rate, given g(t) def= Rin(t):
∫ t

t−ts
g(t)d(t) ≤ (Rout · ts) where ts is calculated from using Eq. 1 and Eq. 2. We

have shown that if the above parameters on the arriving traffic are kept, the traffic is
guaranteed to be conforming. Next we will prove the correctness of traffic envelope
bounds. Consider streams i = 1, 2, . . . with peak rates h(pi), sustained rates f(pi), and
∫ t

t−ts
gi(t)d(t) ≤ f(pi)·ts. The following Lemma states the conditions for conformance.

Lemma 1. Assuming outgoing link rate Rout, permitted peak rate Rpeak,in, buffer
capacity C, time ts and m input traffic streams. If (1)

∑m
i=1 h(pi) ≤ Rpeak,in, (2)

∑m
i=1 f(pi) ≤ Rout and (3) ∀i = 1, . . . , m

∫ t

t−ts
gi(t)d(t) ≤ f(pi) · ts = h(pi) · tp

holds, then the total volume v ≤ Rout · ts.

The proof can be found in [12]. The sum of burst sizes of the input streams equals to the
maximal permitted g(t) so there will be no data loss.

4.4 Setting Per-Path Token Bucket Parameters

The following subsection describes the algorithm that assigns each path with its token
bucket parameters: the token fill rate and the bucket size. The token fill rate governs
the per path sustained rate and the bucket size is calculated by the maximal burst time
interval tp multiplied by the peak rate. We derive these parameters by traversing each
first cut arc. We assume all first cut links have the same buffer size C. By applying these
parameters to the token bucket at the ingress of this path, the traffic is assured to be
conforming.

– Perform for each ak ∈ A− with outgoing rate Rk
out

1. For each incoming path pi: h(pi) =
{

f(pi) /*cannot increase its rate*/
h(pi) /*otherwise */

2. Set Rk
peak,in to be the incoming peak rate of ak, Rk

peak,in =
∑

path i∈ak h(pi).
3. set tkp to be the maximal burst interval for arc ak using Eq. 1, C, Rk

out, and
Rk

peak,in.

Table 1. provisioning parameters can be systems wide (the only one here is buffer size), per path,
or per node interface

Parameters Per-fbn Per-Path

Buffer size, Same for all fbns C

Rout The fbn interface link rate
Rpeak,in The sum of peak rates per-path (

∑
h(pi)) calculated per fbn in subsection 4.2

tp Calculated using C, Rout and Rpeak,in (Eq. 1) The minimum over all first cut links it traverse
Burst size Rpeak,in · tp h(pi) · tp
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4. Apply to all the paths of ak (that ak is their fbn) the values f(pi), h(pi) and
tkp . Set the token bucket contract to be: token rate = f(pi) and bs = h(pi) · tkp

Table 1 summarizes the parameters this system needs for provisioning and the order of
their derivation. All the stages of the algorithms were implemented using MATLAB.

5 Simulation Results and Evaluation

Simulations. In order to evaluate the gain from our algorithm, we applied both allocation
methods, TVAfB and the the MRA using the NS-2 simulator and the example in Figure
3(b). The four aggregates in the example are composed of 10 TCP1 connections (each
with maximal congestion window size of 100), and use different paths, r1, .., r4. Each
TCP connection transfers a file of 2MByte.

Fig. 5. The height of a per-connection vertical bar indicates the termination time of the appropriate
TCP flow. Every ten bars are grouped by aggregate, for TVA (Bars group:1,3,5,7) and MRA (Bars
group:2,4,6,8).

The regulation entities (token buckets) that are located at the ingress nodes, 1, 2, 3,
and 4, perform policing and metering for the arriving aggregates, namely all the 10 TCP
connections are policed together. The MRA only allows packets that arrive within the
maximal rate, 1Mbps in this example. We set the tokens fill-rate to be 1Mbps and the
bucket size to be 1000B (equals to the size of 2 packets). The token bucket parameters for
the Traffic Volume Allocation (TVA) are the values that are calculated in Section 4.4 and
presented in Figure 3(b). In both methods, any ’out-of-profile’ packet is dropped, though
we allow bursts in the size of the token bucket. Further, we locate weighted queues of
186 packets (equals to 90,000 Bytes) at the output ports of nodes 5 and 8 towards arcs
e5 and e8. We use propagation delay of 20ms for all the links in each direction, except
for link e8 whose propagation delay is 40ms.

The simulation measures the time it takes for each connection to transmit the 2Mbyte
file. We compare the per-aggregate average termination time, computed over all the

1 TCP was selected due to its bursty nature and its prevalence in today Internet. This enforces us
further to discuss the TCP congestion control in the context of our work.
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connections within each aggregate, and the number of the dropped packets per-aggregate.
Figure 5(a) depicts the simulation termination results for the two allocation methods for
all the connections. Clearly, TVA gained a 2.5 − 4.5 speedup in the file transfer time.
The reason for this is the higher number of conforming packets, and thus less drops.
Indeed, for TVA the average drop rate is 2.5%-6%, while for MRA it is 16.7%2. The file
transfer times for the MRA are much longer than TVA because of the huge ’out-of-profile’
dropping, which causes TCP timeouts. Running the same example but with 1/10th of the
propagation delay over all the links (see Figure 5(b)) decreases the termination times that
are achieved by the MRA since it decreases the time the slow-start phase requires to ramp
up. It does not affects TVA performance since it spends its time in congestion avoidance
(due to the small percent of packet drops) and the policer allows it to transmit enough
packets, such that it start receiving acknowledgements before it exhausts its window. To
further study our algorithm performance, we looked at more scenarios where the loads
over the different routes are not even such that the bottleneck link e8 is under used. All
the TCP connections that participated in a non-even scenario increased their rates related
to the even-load scenario3.

A common real-world architecture that can benefit from using the TVAfB algorithm
is an access or a metro network. In a common metro architecture, a set of paths from the
clients (modem pools, T1 lines, etc.) forms a tree towards the ISP Internet gateway. The
link capacities in this network are the same due to a homogeneous usage of technology,
e.g., 1Gbps Ethernet. Thus, the link to the gateway router becomes a bottleneck and an
fbn in the TVAfB algorithm. This link capacity, 1Gbps, is shared by the sustained rates
of all the paths. Obviously all the preceding links have an excess bandwidth that can be
added to the rate of the paths. Furthermore, the needed buffering resource in the gateway
router are modest4.

6 Concluding Remarks

The solutions presented in this paper can be used by network administrators as a de-
sign tool. The algorithm assumes the knowledge of the traffic rate demands across the
network and the ability to lay a set of fixed routing paths. It can be performed as often
as any keep-alive algorithm in a connection-oriented network. Beside the fact that all
the algorithms runs in a polynomial number of steps, we verified the practicality by
examining issues such as required buffer size and shaping algorithms. It is a fast and
easy-to-deploy algorithm that can be used over one or more network domains, in order
to find the bottleneck links, buffering needs, and SLA parameters.

Acknowledgments: We thank Danny Dolev for many helpful discussions.

2 Note that the TVA transfer time is only 50% higher than TCP theoretical achievable rate.
3 This framework can use a model that sizes the buffer of a bottleneck link considering the

parameters of the TCP sources [13].
4 Assuming this router has 16 1Gbps input-ports which are aggregated into one 1Gbps output

link, and a burst period of 1ms, the cumulative burst size BS = (1Gbps ·16−1Gbps) ·1ms =
15, 000, 000bits � 2MB, meaning only 2MB to be shaped, in case of congestion.
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