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We study a map of the Internet (at the autonomous systems level),
by introducing and using the method of k-shell decomposition and
the methods of percolation theory and fractal geometry, to find a
model for the structure of the Internet. In particular, our analysis
uses information on the connectivity of the network shells to
separate, in a unique (no parameters) way, the Internet into three
subcomponents: (i) a nucleus that is a small (~100 nodes), very well
connected globally distributed subgraph; (ii) a fractal subcompo-
nent that is able to connect the bulk of the Internet without
congesting the nucleus, with self-similar properties and critical
exponents predicted from percolation theory; and (iii) dendrite-like
structures, usually isolated nodes that are connected to the rest of
the network through the nucleus only. We show that our method
of decomposition is robust and provides insight into the underly-
ing structure of the Internet and its functional consequences. Our
approach of decomposing the network is general and also useful
when studying other complex networks.

fractals | networks | percolation

he Internet has become a critical resource in our daily life.

It still suffers from many inefficiencies and as such has
become a vibrant research subject. Identifying the Internet’s
topology and its properties is a prerequisite to understanding its
distributed, collaborative nature and the potential for building
new services. For example, a better understanding of the Inter-
net’s structure is vital for integration of voice, data and video
streams, point-to-point and point-to-many distribution of informa-
tion, and assembling and searching all of the world’s information.
Much activity is presently focused on “disruptive research,” which
goes beyond today’s routing algorithms and protocols to exploit
underused links and discover greater available capacity. The mea-
surement work that forms the basis of our study in this article has
discovered much “dark matter,” previously undisclosed links in the
Internet. Our article will address the question of where this unused
capacity lies and how it can be exploited. The Internet structure is
also relevant to the discussion of the many problems facing the
Internet today, such as the security threat posed by viruses, worms,
spyware, and spam (ref. 1 and the Global Environment for Network
Innovations, www.geni.net).

Various tools from statistical physics, like scaling theory,
percolation, and fractal analysis, have been applied to better
understand the Internet and other complex networks (2-9). In
particular, the surprising finding of the Internet’s power-law
degree distribution (10) has encouraged many scientists to use
the degree (the number of immediate neighbors of a node) as an
indicator of the importance and role of each node. However,
using the degree as an indicator of function can be misleading
both when looking at a single node and when looking at a
distribution. For example, it has been shown (11) that topologies
with a very different structure can have the same degree
distribution.

Instead of node degree, we will use the “k-shell” decompo-
sition to assign a shell index to each node in the Internet.
Although node degrees can range from one or two up to several
thousands, we find that this procedure splits the network into
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40-50 shells only, the precise number depending on the mea-
surement details. k-shell decomposition is an old technique in
graph theory (12) and has been used as a visualization tool for
studying networks such as the Internet (13) (see Fig. 2 for a
visualization of our data). It involves pruning the network down
to those nodes with more than k neighbors, just as has been
studied in physics under the rubric of “bootstrap percolation,”
in the very different environment of regular lattices (14). Other
studies (15-18)," have developed the theory of some of the
statistical properties of k-shells in random networks.

In this article, we apply the k-shell decomposition on a map of
the Internet at the autonomous system (AS) level (of ~20,000
nodes, a result of the DIMES project (ref. 19 and www.netdimes.
org; see Methods: Distributed Mapping of the Internet) to decom-
pose the network into components with distinct functional roles.
Surfacing the distinct role each component plays will demon-
strate how this method helps us understand the large-scale
function of a network as complex as the Internet. Also, it may
reveal evolutionary processes that control the growth of the
Internet.! We believe this tool and the structure we uncover give
important information about the function of each node in the
graph.

Results: Decomposing the Internet into Three Components

First, we decompose the network into its k-shells. We start by
removing all nodes with one connection only (with their links),
until no more such nodes remain, and assign them to the 1-shell.
In the same manner, we recursively remove all nodes with degree
2 (or less), creating the 2-shell. We continue, increasing k& until
all nodes in the graph have been assigned to one of the shells. We
name the highest shell index kmax. The k-core is defined as the union
of all shells with indices larger or equal to k. The k-crust is defined
as the union of all shells with indices smaller or equal to k.

We then divide the nodes of the Internet into three groups:

—_

All nodes in the kyax-shell form the nucleus.

2. The rest of the nodes belong to the (kmax — 1)-crust. The
nodes that belong to the largest connected component of this
crust form the peer-connected component.

3. The other nodes of this crust, which belong to smaller

clusters, form the isolated component.
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Fig. 1. For each k-crust, we plot the size of the crust (i.e., total number of

nodes that belong to the crust), the size of the largest and second-largest
connected components of the crusts (the second is magnified X 10 to make it
visible), and the average distance between nodes in the largest cluster of each
crust.

We show in Fig. 1 how the sizes of the two largest components
in each k-crust vary with the crust index. A percolation transition
is apparent at k = 6. At this point, the size of the second largest
cluster and the average distance between nodes in the largest cluster
are sharply peaked (20, 21). This phase transition is similar to the
transition found in ref. 22 when removing the high-degree nodes
from a scale-free network. Above this point, the size of the largest
cluster grows rapidly. At higher crusts it stabilizes, until it spans
~70% of the network at the (kmax — 1)-crust. When the nucleus is
added, the network becomes completely connected. The jump in
connectivity and dramatic decrease in the distances observed at the
kmax-shell (5.75 to 3.34) justifies our definition of it as the nucleus.
However, even in the absence of the nucleus, 70% of the network
remains connected (the peer-connected component). This connec-
tivity offers important opportunities for transport control over the
Internet. For example, to avoid congestion in the nucleus and
increase total capacity, information can be sent by using only the
more peripheral nodes of the peer-connected component. Never-
theless, a significant number (=~30% of the network) of other nodes
are not connected in the (kmax — 1)-crust. Those nodes, which form
the isolated component, are either leaves or form small clusters and
can reach the rest of the network only through the nucleus. A
schematic picture of the proposed decomposition (which we name
a Medusa model for reasons explained below) is shown in Fig. 2.

Identifying the nodes that form the heart of the Internet, the
nucleus, or “tier one,” is a problem that has been extensively
investigated. For example, the nucleus might be defined as the
set of all nodes with degree higher than some threshold. But this
requires setting a free parameter, the degree threshold. Others
(23) have defined it by using a growth process. Starting with an
empty set, they add nodes to the nucleus in order of decreasing
degree, retaining those for which the nucleus remains com-
pletely connected (a clique). We have found that heuristics to
build up a maximal clique provide less accurate information
about the network nucleus, for several reasons. First, they are not
robust. Node degree is an ambiguous indicator of importance. If
we consider other reasonable orderings of the nodes (for exam-
ple, we ordered the nodes in descending order of their total
number of links to nodes in the kmax shell), the resulting clique
differs in >25% of its constituent nodes. Moreover, it empha-
sizes American-based international carriers.

In contrast, our definition of the network’s nucleus is unique,
parameter-free, robust, and easy to implement. Analyzing the
ASes that are found in our proposed nucleus, we find that the set
that participates is very stable over time. We repeated the
construction by using data from 3-month intervals 3 and 6
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Fig.2. Visualization of our data of the Internet atthe AS level. (Upper) A plot
of all nodes, ordered by their k-shell indices, using the program of ref. 13. The
legend to the left denotes degree, and the legend to the right denotes k-shell
index. (Lower) A schematic plot of the suggested Medusa model decomposi-
tion of the AS level Internet into three components.

months later than the data analyzed in this article and found
changes consisting of a few percent of added sites and one or two
sites that moved from the nucleus to a k-shell immediately before
it. The actual ASes involved include all major intercontinental
carriers (=10 nodes), plus carriers and Internet exchange points
equally distributed among countries in North America, Europe,
and the Far East. The degree of nucleus sites ranged from
>2,500 (ATT Worldnet) to as few as 50 carefully chosen
neighbors, almost all within the nucleus (Google). The nucleus
subgraph is redundantly connected, with diameter 2 and each
node connected to ~70% of the other nucleus nodes, which
provides kmax-connectivity.

An interesting question arises: does the size of the nucleus
increase with the Internet size and how? Although we have seen
a steady increase in the size of the AS graph during the course
of the DIMES project, we cannot yet separate the actual growth
of the Internet from the increase in our measurement sensitivity.
Thus, we are led to investigate random ensembles of scale-free
networks, with parameters (such as degree distribution) similar
to the real Internet (Fig. 3a). Note, that the random graph
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Fig.3. The nucleus in random networks and the k-shell distribution. (a) The
size of the nucleus and its k-shell index, as a function of Nin random scale-free
networks. The random network model used is the configuration model (with
vy = 2.35 as was measured in our data). Each data point is an average over at
least 1,000 realizations. The values for the Internet are also indicated (stars).
The probabilities to observe deviations at least as large as those of the Internet
are <10~ " and <10~'% for the nucleus size and the k-shell index, respectively.
(b) The contribution of each shell to the peer-connected component. The
straight line is drawn for illustration.

calculation does not account well for the value of k., or the size
of the nucleus, underestimating both by roughly an order of
magnitude. However, the results suggest that the nucleus, as well
as Kmax, grows as a power of N. In the limit of still larger random
graphs, the two slopes seem to become the same, implying N
independence of the fraction of bonds present in the nucleus.
The nodes in the peer-connected component can be connected
without using the nucleus. This is an important property, because
it enables most communication without loading the nucleus.
However, as seen in Fig. 1, the nucleus provides shortcuts that
decrease significantly (by 42%) the number of hops that a
message must take. Several other interesting characteristics, such
as scaling laws and fractal properties, are found when analyzing
the peer-connected component. For example, Fig. 3b shows the
number of nodes of the peer-connected component coming from
each shell, which decays following a power law with exponent
~2.6.** When focusing on the k-crusts near the percolation
threshold close to k = 6, we expect the connected part of the
crust to show fractal properties (20). In Fig. 4a, we apply the

**In random networks, this exponent is related to the degree distribution exponent under
assumptions about the minimum and average degree.
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Fig. 4. Properties of the peer-connected component. (a) For few selected
crusts, we plot the number of boxes needed to cover the largest cluster of the
crust as a function of the box sizes /. On a log-log scale, the slope of this curve
is the fractal dimension of the network (5). (b) The probability distribution of
the sizes of the finite clusters of the 6-crust. Percolation theory predicts ps ~
5752(20). The plotshows the probability distribution after logarithmic binning
and astraight line with slope (—3/2). Using the MLE method (24) (excluding the
first data point), the exponent best describing the data came out as 2.46
(Kolmogorov-Smirnov statistic equals 0.018).

box-covering method (suggested by ref. 5 to calculate the fractal
dimension of networks) on the largest component of each crust.
At the threshold the decay is a power law all along, with fractal
dimension close to 2. For large k, the decay of the number of
boxes needed to cover the network is exponential, indicating an
infinite fractal dimension. A cross-over length between fractal
and nonfractal regimes is seen when approaching the threshold
(k = 6), as the decay of the number of boxes becomes a power
law with an exponential cutoff. Further support to the fractal
picture is that we find that the degree distribution is invariant
under box renormalization (5), which indicates the property of
self-similarity.

The fractal dimension can be derived from arguments of perco-
lation theory. At the threshold, almost all of the high degree nodes
are removed, such that the network becomes more homogeneous.
Percolation in homogeneous random networks is known to be
equivalent to percolation in an infinite dimensional lattice, in which
the fractal dimension of the largest component is 4, i.e., the mass
of the largest cluster scales like M ~ r* ~ 2. From percolation
theory, we expect the probability distribution of (finite) cluster sizes
to follow a power law ps ~ s~7, with 7 = g (20, 21). Indeed, the
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k-crusts close to the percolation threshold show this behavior, up to
some finite size effects (see Fig. 4b).

The isolated component includes nodes that are connected
to the rest of the network through the nucleus only and thus
are usually not used in communication between the bulk of the
network. Inspecting the nodes in this component, we find that
they are either leaves (roughly one-third of the nodes) or single
nodes that connect with two or more links directly into the
nucleus (60%). The rest (8%) form small clusters, with no
more than 10 members. Schematically we can imagine these
nodes as forming tendrils hanging from the center of the
network, as do the tendrils of a jellyfish (see Fig. 2). Because
of its Mediterranean origin, we call our decomposition a
Medusa model.

Discussion

Although our model is apparently similar to the jellyfish model
proposed in ref. 23, our construction and the nature of its parts
are different in every detail, as follows. In ref. 23, the nucleus is
defined as a maximal clique discovered heuristically (as dis-
cussed above), which is found to include only 20-25 ASes. The
layers of the jellyfish mantle are nodes labeled by number of hops
from the nucleus. Leaves (nodes with a single link) are consid-
ered tendrils. Defining any leaf as a tendril does not capture the
fact that a significant fraction of the network (=30%) forms
small clusters that are in a sense separated from the majority of
the network, and that many leaves connect to the peer-connected
part of the crust (our “mantle””). Moreover, because the Internet
AS graph has a small diameter, the number of layers in the
jellyfish mantle is very small. The number of hops from the
center is a much less sensitive measure than the k-shell index in
our Medusa model. Also, hop count obscures the fractal prop-
erties of the Internet that we observe. We therefore conclude our
model resolves more precisely the topological structure of the
Internet.

In the Medusa model, the distributions of hop count dis-
tances between nodes are quite different in each of the three
components. In the nucleus, nodes are separated by one or two
hops. In the isolated component, nodes connect through the
nucleus by paths of two or three steps (which corresponds to
one step to the nucleus, optional one step within the nucleus,
and one step back to the isolated component). Nodes in the
Medusa mantle, or peer-connected component, are typically
three or four steps distant from one another using shortest
paths in the full network.

Our proposed method of network analysis can be applied to
other naturally occurring complex networks as well. Once de-
composed, a careful examination of the network components, as
the one carried out here for the Internet, can give insight into
whether or not the network has the Medusa structure that we
find: nucleus, peer-connected component, and isolated tendrils.
For example, whereas the actor network (25) shows no tendrils
and disconnected k-cores, random scale-free networks do show
this structure, but with different quantitative details. The precise
values of the different parameters can be used to differentiate
models for the Internet.

Inref. 5 it was shown that realistic networks can be divided into
two main groups: ones that possess fractal properties, and ones
that do not. We show here that the Internet at the AS level, even
if initially recognized as a nonfractal network (5), is entirely
fractal at the point when it percolates at k = 6. Going to higher
crusts (i.e., adding more shells), the network is fractal only up to
shorter and shorter length scales, until in the limit of the full
network, adding up the nucleus, it is completely nonfractal.
Therefore, our analysis sheds light on the mechanisms that
distinguish fractal and nonfractal networks.

Carmi et al.

Methods: Distributed Mapping of the Internet

Our Internet topology data sets are among the results of DIMES,
a large-scale, distributed measurement effort to measure and
track the evolution of the Internet, overcoming the “law of
diminishing returns” encountered when measuring the Internet
from too few observation points (26). DIMES collects 3-6
million measurements daily from a global network of >10,000
software clients. The measurement tool is a lightweight software
client, downloaded by >5,000 volunteers from the DIMES web
site (www.netdimes.org). Each client runs in the background
and, a few times every minute, searches out the path to a selected
destination elsewhere on the Internet. Destinations are assigned
by a central server to each agent, usually at random from a set
of ~5 million destinations designed to uniformly cover all
Internet Protocol address space in use. More detail is given in
ref. 19. All data are logged and analyzed in a data pipeline and
added to a database for subsequent analysis.

The data were filtered at two stages. Each client runs each
traceroute to a single destination several times (2—4 times in
early measurements, later 10 times). When the results differ
because of route instabilities, they are discarded, because this
effect can give rise to false links. Second, we filtered for certain
artifacts resulting from misprogrammed routers by only in-
cluding edges whose first and last observations were made by
different agents, i.e., edges that were seen from multiple
locations.

The results of DIMES’ measurements can be analyzed to
create several types of topologies, from the router level (where
each node represents a single router on the Internet) to the AS
topology (where each node is an entire subnetwork, managed
by a single organization, usually an Internet Service Provider).
This work considers the high-level (AS) topology that results
in a network containing ~20,000 nodes and ~70,000 links. To
obtain the most complete AS graph possible, we supplement
the DIMES observations by merging them with the edges
exposed by border gateway protocol (BGP) speakers (the
software used by ASes to route over long distances is known
as BGP), and collected for the past several years by the
University of Oregon Route Views Project (www.routeviews.
org). About one-quarter of the edges traversed in our exper-
iments are not disclosed in the BGP data sets, and conversely,
about one-quarter of the edges disclosed by RouteViews have
not yet been seen by DIMES’ agents. The results presented in
this article are from a set of measurements conducted from
March through May 2005.

A recent series of papers (7, 27) made strong claims that
traceroute-based studies from a small number of observers to a
large number of destinations would be biased, generating power-
law distributions in ordinary random graphs. Their authors
argued from simulations that the effect would be difficult to
remove by increases in the size of the observer set. However, our
observer population is more than two orders of magnitude larger
than the 25-50 machines used in the best earlier studies of
Internet topology. Although our data are not organized to let us
study the progression from few observers to our present num-
bers, the results, both in terms of power laws and from connec-
tivity analysis, have been quite stable from the beginning of the
study to the present. During this time our agent population has
grown by four times and has come to spread to >90 countries,
in commercial as well as government and academic networks, on
all continents. Therefore, we believe that small observer popu-
lation bias is not an issue with our observations.

We thank S. Solomon, A. Shalit, and A. Vespignani for discussions. S.K.
thanks the International Computer Science Institute at the University of
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