IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

483

Distributed Council Election

Danny Raz, Member, IEEE, Yuval Shavitt, Senior Member, IEEE, and Lixia Zhang, Senior Member, IEEE

Abstract—This paper studies the problem of electing a small
number of representatives (council) out of a (possible large) group
of anonymous candidates. The problem arises in scenarios such as
multicast where, to avoid feedback implosion, a small subset of the
receivers is chosen to provide feedback on network conditions.

We present several algorithms for this problem and analyze the
expected number of messages and rounds required for their con-
vergence. In particular, we present an algorithm that almost always
converges in one round using a small number of messages (for typ-
ical council size) when the number of hosts is known. In the case
where the number of hosts is unknown (and too large to be polled),
our algorithms converge in a small number of rounds that improves
previous results by Bolot ef al. (1994).

Index Terms—Leader election, multicast.

1. INTRODUCTION

N MANY distributed applications, there is a need to dis-

tributively elect a small group of hosts out of a potentially
large population. The elected group needs to be maintained
under dynamic network conditions that include new members
joining and leaving and network temporary partition. In this
paper we concentrate on the special case where all the group
hosts are members of a multicast group. This enables the source
of the multicast group to convey information to all the nodes
“for free” by piggybacking control information in the multicast
data messages.

There are many applications for this problem in multicast pro-
tocols. Due to the feedback implosion problem, there is a need to
elect a small group of representatives out of the (possibly) large
set of receivers (multicast group members). An election mech-
anism was proposed by Bolot et al. [1] to elect a small number
of receivers and collect feedback from them regarding loss rate
and congestion in the multicast group.

A particular example where such algorithms are implemented
is the IDMaps project [2]. As part of this project, measurement
stations (Tracers) are installed in various locations in the In-
ternet. These tracers measure the distance among themselves
and to other areas in the Internet. The measurement results are
then sent to (potentially many) topology servers by multicast. To
reduce measurement overhead, topology servers provide feed-
back for the usefulness of each measurement to the Tracer. To

Manuscript received November 26, 2001; revised April 18, 2003; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Paul. The work of
Y. Shavitt was supported in part by the Israel Science Foundation.

D. Raz is with the Computer Science Faculty, Technion—I.1.T., Haifa, Israel
(e-mail: danny @cs.technion.ac.il).

Y. Shavitt is with the Department of Electrical Engineering-Systems, Tel Aviv
University, Tel Aviv 69978, Israel (e-mail: shavitt@eng.tau.ac.il).

L. Zhang is with the Computer Science Department, University of California,
Los Angeles 90095-1596 USA (e-mail: lixia@cs.ucla.edu).

Digital Object Identifier 10.1109/TNET.2004.828945

avoid the feedback implosion problem at Tracers, there is a need
to select one or a few representatives out of the topology server
population.

In both the multicast congestion control and the IDMaps ex-
ample, communication from a data transmitting entity (a multi-
cast source or a Tracer in IDMaps) to a group of hosts is done
using multicast while the reverse direction is done using unicast
transmissions. In both examples the population size may vary
over several orders of magnitude, the population may change
over time, and the transmitting entity has no initial knowledge
of the population size. In the above examples, choosing a single
representative is usually undesirable both for redundancy and
better statistical representation (in the multicast example). Thus,
our algorithms are capable of electing a group of any size in
a predefined range, R = [L...U]. L and U are input to the
algorithm and should be selected by the application based on
tradeoffs between redundancy (pushing for higher values) and
overhead (pushing for lower values). Note that if the transmit-
ting entity knows the IDs of all the receivers it can (determin-
istically) choose the representatives, but we cannot assume this
due to the feedback implosion problem.

We model this environment using a synchronous distributed
election process. In this process hosts do not communicate di-
rectly to each other, but rather they communicate through a cen-
tral entity that sends a global message to the entire population.
Two measures of interest in this environment are the expected
number of rounds for election, 7", and the expected number of
unicast messages needed, V. It is important to note that when
the target council size is small (U < 8) the solution presented
in this paper and previous solutions, perform the election with
a very small IV, between 1 and 14. For all practical matters the
difference between solutions in this range is marginal. However,
the duration of a round with the current Internet round trip de-
lays is in the order of a second, thus improving 7" even by one
expected round has significance to the convergence time of the
algorithm.

We present in this paper several distributed randomized al-
gorithms and analyze their performance. The algorithms ex-
plore the tradeoff between the two measures above and the state
maintained in the hosts. We describe a naive algorithm to estab-
lish a baseline for our research. We present several algorithm
that attempt to improve both measures, using some state. We
show trade-offs between the amount of state kept at the hosts
and the expected number of rounds and messages. In particular
one of our algorithms further reduces the expected number of
rounds, T', to be close to 1 (e.g., when R = [1...8] we achieve
T = 1.001 regardless of n), but is not optimal with respect to
the number of messages.

The above algorithms assume that n is either known or al-
ternatively can be polled in a single round and n messages.

1063-6692/04$20.00 © 2004 IEEE

484

We use these algorithms as building blocks for algorithms that
do not know 7. We first show the robustness of the suggested
algorithms to an inaccurate estimation of n. This leads to an
efficient algorithm for the case where n is unknown and maybe
too big to be polled. The algorithm searches for n in a way sim-
ilar to the one suggested by Bolot et al. [1], but achieves su-
perior performance, by reducing the number of rounds while
increasing (for large n) the number of messages received at the
multicast source. As explained in the beginning, this tradeoff is
better since the multicast source can easily handle a few more
messages but the cost of several more iterations is a delay of a
few seconds in the election algorithm termination.

II. RELATED WORK

Our problem has some similarities to the collision resolution
problem in multiple access (MA) networks. In this type of net-
work, hosts try to transmit packets via a shared medium. If mul-
tiple transmissions overlap, the packets usually collide and the
targeted receiver cannot decode the signal. In this case, the MA
protocol attempts to reschedule the colliding users such that ex-
actly one user will transmit in the next time slot, which is similar
to our leader election problem. The problem of collision resolu-
tion in MA networks was extensively studied during the 1970s
and 1980s, and several submodels that differ in the feedback the
hosts receive from the channel were analyzed. Here we empha-
size only the most relevant ones, and refer the interested reader
to a book by Rom and Sidi [3].

Most of the work in MA networks concentrated on two
feedback models. The binary model assumes that hosts know
whether a collision occurred or not. The ternary feedback
model assumes hosts are aware of three channel conditions:
silence, no packet transmission; success, one packet success-
fully transmitted; and collision, where more than one packet
was transmitted and none were successfully received by the
receiver. The host receives no feedback about the number of
the packets that collided.

Some works dealt with a model with richer feedback from
the channel. Tsybakov [4] examined a model where the number
of colliding hosts is known. Georgiadis and Papantoni-Kazakos
[5] studied a channel where the number of colliding hosts is
known up to some bound. Pippenger [6] proved that the capacity
of a collision channel with full multiplicity feedback is 1, and
Ruszinké and Vanroose [7] gave an algorithm that achieves this
bound.

A few works examined a model of a channel with multiple
reception capability, where up to £ — 1 simultaneous transmis-
sions may be decoded. Tsybakov et al. [8] assumed that the
channel has a ternary feedback. The hosts know if the previous
slot was idle; if it has some successful transmissions, up to k—1;
or if a collision of k£ or more packets occurred. Likhanov et al.
[9] examined a similar model but assumed that in the case of suc-
cessful transmissions the hosts are aware of the exact number of
successful transmissions.

It is important to note that even in the case where the model
in the MA literature is the same as the one used here, the objec-
tive is different and thus, the optimization problem is different.
This makes a solution that works well for one of the problems

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

perform badly in the other. For example, the model where full
multiplicity feedback is given matches our model for host feed-
back. Thus, the results by [6] and [7] might seem to suggest that
as n grows there exists an algorithm that elects a group (at least
in the case where R = [1...1]) with an expected number of
rounds that approaches one. However, an examination of the al-
gorithm structure in [6] and [7] reveals an initialization phase
which takes n/logn rounds whose cost is amortized over the
transmission of n packets. Such a solution will not fit our goal
since we are only interested in the first successful transmission
(in MA jargon).

Another (somewhat less) related line of work is the dis-
tributed leader election. Many variants to this problem were
studied [10]. The closest model to our problem is the case of
anonymous cliques, i.e., network with full connectivity but no
unique identifiers for the processors. For this, a Monte-Carlo
solution was given by Afek and Matias [11], and we are not
aware of a Las Vegas solution which better fits our model. Note
that in our model there is a central entity that does not exist in
the distributed leader election literature.

Feedback suppression in multicast has been studied ex-
tensively in recent years. The main two solution approaches
suggested are time based and structural based [12]. In
time-based feedback suppression, users are delaying their
feedback to a period whose length is chosen randomly. If
they hear other users’ replies during this period, they refrain
from transmitting [13], [14]. In the structural-based approach,
internal nodes in the multicast tree process and combine the
feedback information [15], [16].

One exception is the work by Bolot et al. [1], which sug-
gested a mechanism for feedback control in a multicast video
distribution. In their solution, each host is assigned a random
16-bit vector. The sender polls the receivers by sending a bit
mask to which only receivers with a matching vector reply. By
polling with masks of decreasing size, the sender can ensure a
small number of feedback messages, with high probability, but
the polling may take up to 15 rounds when the number of re-
ceivers is small. Our solution for the unknown n case is similar
in nature, but as demonstrated in Section VII-A, can be tuned
to achieve faster convergence and any specific target range of
feedback messages.

III. THE MODEL

We have n hosts and wish to elect a subgroup in the size
range R = [L, U]. For the election, the hosts communicate only
with a central trusted entity, C; no direct communication among
the hosts is allowed. Communication is done in synchronous
rounds. In each such a round, C broadcasts a feedback message
to all hosts and each host may send a reply message. We distin-
guish between solutions based on the amount of information in
the feedback message, F.

The following parameters are of interest. First, we would like
to minimize the expected number of rounds needed for the elec-
tion process. Another important parameter we would like to
minimize is the election overhead, which is the number of mes-
sages sent by the hosts through the entire election process, ex-
cluding the first n messages.

RAZ et al.: DISTRIBUTED COUNCIL ELECTION
0.7
OOOOOOO
0.69 o %
O @)
0.68 O O
2 o ©
‘s 0.67 o
o}
0.66 ©
O
0.65
0.64 : :
5 5.5 6 6.5 7
Cc
Fig. 1. Pnaive as a function of ¢ for the naive algorithm where L = 4, U = 8,

and n = 10000.

IV. A NAIVE IMPLEMENTATION

In order to establish a baseline for our research we start by
analyzing the performance of a naive algorithm. This algorithm
is given » and R, and attempts to elect a council by letting
each node suggest itself to the council with probability ¢/n, c is
chosen to optimize either the number of rounds or the number
of messages.

In order to evaluate the performance of this algorithm, let us
first define Pr{i|m} to be the probability that out of the m
active hosts exactly ¢ hosts suggested themselves to be elected
in the next round

. m c\? c\m—t
P —(" (—) (1 - —) . 1
rlitm) = (1) (£) (1- 2 m
The probability that a council is elected in a single round is given
by
Pnaive = Z PI‘{Z | n} (2)
i€R
Using (2) we can choose ¢ such that pp,ive iS maximized,
which will give us the optimal value for T'(n). N(n) is given
by N(n) = T(n) - ¢ since in each round the expected number
of reply messages is c. For example, let n = 10000 and
R = [4...8]. Fig. 1 shows pyaive as a function of ¢. We find
that p°' = 0.697365, and ¢°P* = 5.8. We can write

naive
o .
T(n) = Y it (1= p20) ™
i=1
and for our example 7°(10000) = 1/0.697365 = 1.43397,
and N(10000) = 5.8 - 1.43397 = 8.31702. The numbers
in this example are reasonable. However, the weakness of the
naive approach becomes evident when the desired range of the
council size is stricter. For example, in the case of leader elec-
tion (see Fig. 2), i.e.,, R = [1...1],p% = 0.367898 (for
n — oo,pP — e~1), which gives T(10000) = 2.71815.
This means that, too often (for this example), the naive algo-
rithm requires more than three rounds to converge.

A significant drawback of the naive algorithm is its sensitivity
to the selection of ¢, as can be seen in Fig. 2. The purpose of this
research is to better understand the election process and to find
algorithms that perform better. In Section VII, we will use these
algorithms in the case where the number of users 7 is unknown.

=1 /poptc

485

L=1, U=1
4 .
o
357 O 4
o
g ? o
o
S 3 O o©
= e}
= 0000
25
2 " I n
0 0.5 1 15 2
(o]

Fig.2. T(10000) as afunction of ¢ for the naive algorithm where L = 1, U =
1,and n = 10000.

basic algorithm
1. Init: s =0

N. + received feedback
if No < L
send reply
s+ 1
elseifs =1
it N. <U
send reply
else
if (rn é) < ¢/Nc)
send reply
else
s+ 0

WN=OOONOGORWN

—_

Fig. 3. Basic algorithm for the host.

basic algorithm
1. N.+0
2. while (V. ¢ [L..U])
3. Send Feedback(N.)
4, N¢ < number of replies

Fig. 4. Basic algorithm for C.

Using the naive algorithm in this case is a generalization of the
well-known algorithm of Bolot et al. [1].

V. ALGORITHMS WITH NO HISTORY

We first study a simple algorithm that requires each host to
maintain only one bit of state, s (see Fig. 3). s = 1 indicates
that the host participates in the current election process. At each
round (see Fig. 4), C sends the number of reply messages it
received in the previous round, N, i.e., F’s size is log n bits.
A host decides to reply (and suggest itself as a representative)
with probability p defined as

1, ifN, < L
p=41 ifN.<U and s=1 3)
¢/N., if N.>U and s=1

where c is a preconfigured constant. The state bit s is set when
the feedback from C is less than L, and reset when the host drops
its candidacy (with probability 1 — ¢/N.). The election process
starts when C sends the value 0 as feedback, and it ends when
the number of active hosts is in the desired range. Figs. 3 and
4 give a pseudocode of the algorithm for the host and C (rnd()
returns a random number uniformly distributed in [0 . . . 1]).

486

The value of the constant c is predetermined. Next, we will
evaluate the algorithm performance and, in particular, show how
to calculate the optimal value of c. For this end, we use Pr{i | m}
as defined in (1), to be the probability that out of the m hosts that
were active (have s = 1) in the current round exactly ¢ hosts
decide to remain active (not reset s) in the next round.

The expected number of messages, N (n), is given by the fol-
lowing relation:

Do Pr{i|m}(i+ Nu(i)), U<m<n
N,(m) =140, L<m<U.
m 4+ Np(n), m < L
“)

In the formulation, we omit the cost of the first initialization
round for reasons that will become clear in Section VII-A. In
the first line, we sum over all the possibilities that ¢ hosts stayed
active after this round. We pay ¢ messages for this round and
N, (7) for the rest of the election. The relation for L < m <
U reflects the fact that the election ends when the active host
number reaches its target range. The last relation is due to the
fact that when we undershoot we restart the algorithm.

Equation (4) defines a linear system of n + 1 equations with
the n 4+ 1 variables N,,(m)m = 0,1,...n. The equation can
be solved with c as a free parameter to minimize the message
overhead. Note that in the calculation for a certain n we obtain
N(n) = N, (n), but the rest of the values N,,(7),7 < n cannot
be used to obtain N values for ¢ < n.

A similar system can be defined if one wishes to minimize
the number of rounds it takes the system to elect a number of
representatives in the desired target range. In this case, we pay
a unit price per round.

L+ >0 Pr{i|m}T, (i) U<m<n
14+ T,(n) m< L

Although the above formulas can be easily used to iteratively
produce numerical results, we found out that running high con-
fidence simulations is much faster for large n values. In ad-
dition, we derive in Section VI-A tight analytical bounds for
our improved algorithms. Thus, most of the graphs presented
in the paper are driven by high confidence simulations where
each point is the average of 10000 runs and in all cases the
95% confidence interval is less than 1%. Fig. 5 compares re-
sults achieved from simulations and analysis for T'(500) where
L =4,U = 8,and 3 < ¢ < 8. A simulation point is derived
from 10000 different runs. All the simulation points fall very
close to the analysis results. The simulation can be used to pre-
dict with high accuracy the value of the function, and can be
used for the selection of the optimal c.

Fig. 6 depicts the values of T'(n) and N (n) for several target
ranges. For each graph we picked c to be a value closer to the
optimum. The most obvious fact from these graphs is the fast
convergence of the algorithm, and the little dependency of T'(n)
on n. Astonishingly, even for very large values of n the expected
number of rounds (after the initialization round) is less than 2.
The number of messages needed for the algorithm is also well
below /10 for a large enough n, and grows at a sub-linear rate.

Fig. 7 shows T and N dependency on ¢ for n = 500. The
dependency is fairly stable for a wide range of n values. Both

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

basic algorithm
2.8 T T T T T

241 ¥ 1
g22f ®o J
s | ® J
Fo2 PN

18 F ®ogq 3

®eg @®®

16 ©®®®®6®®®®®®®@9®®@®6 B

Ty 5 5 55 6 65 7 75 8

c
Fig. 5. Comparison of the simulation results to the analytical results for
T(500),L =4,U =8,and4 < ¢ < 8.
—~ 3.5
£
'_
s -
3
= — L=U=1,¢=1.3
o — - L=4,U=8, c=6.6
5 2.5 — L=1,U=8, c=4.3
o)
€
E 2
c
3
5 1.5 - ST T T T T T T
S -
3
)
10’
€ 10
P4
@
S . sl
@ 10 —
[%2]
o}
S
S 10°
@
o
IS
2 1
< 10
Q
©
g
5 10° '
)
10° 10° 10"

number of users (n)

Fig. 6. Basic algorithm: T'(n) and N(n) as a function of r.

functions are fairly flat around the optimum but become quite
steep farther away. Next, we present a simple observation that
can help in selecting ¢ which is close to the optimal. The shape
of Pr{i|m} has a mode at ¢ = c¢ and it rapidly drops on both
sides. Thus, by selecting L < ¢ < U one can expect that most
likely an “undershoot” of the range will be at+ = L — 1, and an
“overshoot” at © = U + 1. For T, the penalty of undershoot is
two rounds while the penalty of overshoot is one round (7' < 2
suggests that in most cases no more than one additional round is
needed), thus selecting c at the 2/3 point between L and U, i.e.,
¢ = L+ 2(U — L)/3 should most likely lay in the flat region
around the optimum. Similarly for N the penalty for overshoot
is U 4 1 and for undershoot is L + n, and thus the optimal ¢ can
be approximated by U — (U — L)(U + 1)/(L+ U +n + 1).

A. Improved Algorithm (Skip-Reset)

The basic algorithm performance can be worse than the naive
algorithm, though its dependency on the accurate choice of ¢

RAZ et al.: DISTRIBUTED COUNCIL ELECTION

L=U=1, n=500
5 : 300
4]
200
< : <
= 3 : z
1100
2 4
1 : ' 0
0.5 1 1.5 2
L=4, U=8, n=500
5 : 300
: — T(500)
4 N = 1
1200
< <
= 3 =z
{100
2 4
1 : : : : : 0
3 4 5 6 7 8 9
L=1, U=8, n=500
5 , : : . , : 300
\ — T(500)
4h = N(500) |
\ 1200
G : G
= 3 \. =
\ 1100
2 N 1
N -
] : - o

Fig. 7. Basic algorithm: T'(n) and N(n) as a function of ¢ for n = 500.

is better. To improve it, we use the observation that when the
feedback is less than L there is a wasted round in which all the
hosts suggest themselves as candidates. The only purpose of this
round is for the hosts to learn the value of n, but this value can
be advertised by C. This saves a round and, more significantly,
the » messages that are transmitted in this round.!

A pseudocode of the improved algorithm, called Skip-Reset,
is given in Figs. 8 and 9. As can be seen, the addition to the
host algorithm is only the ability to receive a reset bit in the
feedback message. The algorithm of C needs to store in memory
the population size (in variable V), and use it when a reset is
required.

The change in the formulation for this enhancement is simple.
When m < L we can avoid payment for the skipped round
(which is m for N and 1 for T'). Thus, (4) and (5) should be
written as

Yo Pr{i|m}(i+ No(i), U<m<n
Np(m) =10, L<m<U (6)
N (n), m < L
L+ > Pr{i|m}T, (i), U<m<n
T, (m) = { 0, L<m<U. (7)
To(n), m < L

Fig. 10 shows the improvement in the algorithm performance
for L = 4 and U = 8. While the improvement in T'(n) is

1Our observation is similar in spirit to the one made by Massey for the binary
tree collision resolution protocols ([3, Sec. 5.2.1]).

487

Algorithm Skip-Reset
1. Inits=0

2. (N, r) < received feedback
3. ifr=1
4. s+1
5. ifNe<L
6. send reply
7. s+ 1
8. elseifs=1
9. if No. <U
10. send reply
11. else
12. if rnd() < c/Nc
13. send reply
14. else
15. 5+ 0
Fig. 8. Algorithm Skip-Reset for the host.
Algorithm Skip-Reset
1. No«0
2. N<«+O0
3. while (N. ¢ [L..U])
4, if Ne < L
5. Send Feedback(N, 1)
6. else
7. Send Feedback(N., 0)
8. N¢ + number of replies
9. N « max{N, N.}

Fig. 9. Algorithm Skip-Reset for C.

1.6

expected number of rounds, T(n)

— basic
/ h
— — improved
11 1 l 2 ' 3 4
10 10 10 10
number of users (n)
10°
— basic
— — improved

expected number of messages, N(n)

10 10° 10° 10
number of users (n)

Fig. 10. Improved algorithm versus the basic algorithm: T'(n) and N(n) for
L = 4,U = 8, and optimal ¢ values.

modest (a fifth of a round or about 13%) the improvement in
N(n) is dramatic. The almost linear dependency of N in n is
eliminated and we get N(n) = 9.2 for n > 100. For other
parameter selection, similar improvement is achieved.

488

— 1.4 I
S R
[-
@ -
§= | /
= 1.3 ,
2 /
S /
& 12}
Qo
€ /
>
c
g -]
g s — - skip-reset
5 4 -— - choice
(0]
10' 102 10° 10°
number of users (n)
< 16
4
8 S
o 14 .~ .
o — — skip-reset
& — - choice
g 12¢
S
[
Qo L
£ 10
>
c
B 8 o —m—— =
3 e
g 6
()
10’ 10° 10° 10°

number of users (n)

Fig. 11. Algorithm Skip-Reset versus the choice algorithm: T'(n) and N (n)
for L = 4,U = 8,and ¢ = 5.6.

B. The Power of Choice

We have seen above that in most cases the election is done
in one round. To increase the chances of succeeding in the first
round, one can use the following technique. At each round, the
host draws two coins with probability p, and sends an election
message containing both drawings if at least in one of the draws
it remains active. This requires two more bits to be sent with
the election message. When C receives the election messages
from the hosts, it can choose to use either of the two rounds
of drawing, whichever optimizes its operation.2 In particular,
this algorithm will take one round if either of the two draw-
ings is within the target range. For example, if the probability
of success in one round is 1/3, then by using the free choice of
two rounds the probability to succeed in one round increases to
1-(1-1/3)?=5/9.

In the feedback that C sends, it must include a bit indicating
which of the two election rounds have been used. This requires
the hosts to maintain additional two bits as part of their state.
Fig. 11 shows the gain from the algorithm when combined with
the previous improvement of Skip-Reset. As one can see the
number of rounds for the appropriate choice of ¢ is almost al-
ways 1. However, there is a penalty in an increase in the number
of messages (almost a factor of two). Note, however, that if we
use this improvement with the basic algorithm, it will improve
both 7" and N.

2This technique is similar in spirit to the one used by Azar et al. for the bal-
anced allocation of balls into bins [17].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

Algorithm Skip-Reset with history
1. Init s =0, s =1

(Ne¢, 1) + received feedback
ifr=1AND s, =1
s+ 1
if Ne < I
send reply
s+ 1
elseif s =1

if rnd() < (:(N,,
send reply
else
s+ 0
elseif s, =1
sp <0

NOORONLOODNONAWN
=
&
IN
()
S

[QT G G G QU i 'y

Fig. 12. Algorithm Skip-Reset with history for the host.

Algorithm Skip-Reset with history
Ne <0

N <0

while (N, ¢ [L..U])

ifN. <L

Send Feedback(N, 1)
else

Send Feedback(N., 0)

N + N,
N. < number of replies

CoNoOGRON~

Fig. 13. Algorithm Skip-Reset with history for C.

Now, we compare the naive algorithm with our advanced
history-free algorithms. For the case where n = 10000 and
R = [4...8] the naive algorithm 7°(10000) = 1.43397 and
N(10000) = 8.31702 (see Section IV) while algorithm Skip-
Reset achieves an expected number of rounds which is below
1.4, and the choice algorithm is doing much better with about
1.1 expected rounds. As for the expected number of messages,
here the naive algorithm does much better than choice but still
uses more messages than Skip-Reset (see Fig. 11).

However, the improvement over the naive approach becomes
evident when the desired range of the council size is stricter.
For example, in the case of leader election, i.e., R = [1...1],
PPt = 0.367898 (for n — oo, p? — e~1), which gives
T(10000) = 2.71815 while (see Fig. 14) Skip-Reset requires
less than 2.6 rounds, and the choice algorithm requires below
1.6 rounds.

VI. ALGORITHMS WITH HISTORY

In this section, we present an algorithm that requires the hosts
to remember their state in the previous round. The motivation for
this type of algorithm is that once less than L hosts are left active
it is better to return to the previous round which may have less
active participants than the initial number of active hosts. This
should potentially reduce the number of messages of Algorithm
Skip-Reset without adding to the number of rounds.

Figs. 12 and 13 show a pseudocode for Algorithm Skip-Reset
with one round history. The host maintains its previous state in
the variable sj, and returns to an active mode if it receives a reset
notification and was active in the previous round. C maintains
the smallest number (that is still larger than L) of active hosts
it learned, and sends it with a reset upon receiving less than L
replies.

RAZ et al.: DISTRIBUTED COUNCIL ELECTION

Equations (4) and (5) seem to change only slightly, becoming

iz Pr{i|m}(i+ N())

N(m)=9q +SE Prfi|m}(i+ N(m)), U<m<n
0, L<m<U
®)
L+ 300y Pr{i | m}T(5)
T(m)={ +N2) pe{i|m}T(m), U<m<n- 9

0, L<m<U

However, the change is more substantial. By introducing history
of the last state, the algorithm never rolls back, and the equation
becomes oblivious to the initial host population. The main ad-
vantage of this is the ability to solve the equations iteratively,
and obtain in O(n?) all the N (i) values for L < i < n. The
same holds for 7'.

The iterative form of (8) and (9) (for 7 > U) is

S Pr{i [m}N (i) + S Pr{i| m}i

N(m) =
(m) 1 —Pr{m|m} S Pr{i|m}
_ c—+ ZZ U+1 Pr{i| m}N() (10)
1- Pr{m|m} S Pri|m)
T(m) = 1+ U+1 Pr{z|m}T() (11

1—Pr{m|m} — Zi:O Pr{i| m}'

Note that at every round during the election the expected
number of messages C receives is c regardless of the number of
active hosts. This means that N(m) = ¢ - T'(m) forall L < m
(these functions are not defined for m < L). Of course, this
does not mean that for each election the number of messages
sent is ¢ times the number of election rounds. This fact can be
easily proved by induction. For m < U, N(m) = T(m) = 0.
Assuming the hypothesis holds for some m — 1, we have

o C"‘Z U+1Pr{z|m}N(i)
1+ U+1 Pr{i|m}T(i)

_ et Sl PrilmleT()
L+ 704 Pr{i [m)T ()

which proves the hypothesis.

It is clear that N(m) = c¢T(m) holds also for Algorithm
Skip-Reset since there also at every round the number of mes-
sages is expected to be c. However, finding an algebraic proof
for Algorithm Skip-Reset is still open (though the logical proof
is suffice). For the basic algorithm N(m) > c¢T'(m) and the
constant factor relation do not hold. The reason is that in some
rounds, namely after the feedback message shows less than L
active hosts, the number of active hosts is n with probability 1
(and not expected to be c).

Fig. 14 depicts the improvement in Algorithm Skip-Reset
when history is used. The gain in 7'(n) is 5%—6% while the
gain in N (n) is around a quarter of a percent. For reference, we
also plot algorithm choice that improves T" by roughly 40% but
increases N by about 5%.

N(m)
T(m)

12)

A. Bounding T(n)

Obtaining a closed form formula for 7'(n) is hard and is left
open for future research. Instead, we seek to upper bound 7'(n).

489

<

'_

G 260 L]

g 267 _

5

s 24—

o 22f ,

3 - - skip-resef

§ 2t|-— choice

= — histo

2 1.8} ry

[&]

[0]

S o) S e
10’ 10° 10° 10*

number of users (n)

<

=z

g 116 TNy

g -

2 114 - - skip-reset

E =+ choice

o . .

g 1.12 history

Qo

£

>

c

el

ki

(&)

[0

Q.

x

[0

1.08

10 10° 10

number of users (n)

Fig. 14. Performance comparison of Algorithm Skip-Reset, the choice
algorithm and Algorithm Skip-Reset with history for leader election scenario
L =1,U = 1, and optimal ¢ values.

For this end, we use the well-known Chernoff bound, which can
be stated as follows.

Let X4, Xo,...,X,, be independent indicator random vari-
ables with Pr[X; = 1] = p;, then these events are called
Poisson trials.3 Then if X = Y"" | X; and if E[X] = p, for
any 6

Pr[X > (1 +6)u] < < (13)

e :
(1 + 6)(1+6)> :
Now, for the case depicted in Fig. 14, given that for L=U =1
c=1.1, we get the following bound on X the sum of successes
in a round:

66 N

Pr[X > (1+6) < <W) . (14)

Substituting 6 = 5 and ¢ = 1.1, we get

NS
Pr[X > 6.6] < (6_6> ~ 0.00179, (15)
Given that T'(n) is monotone, we can write
T(n) <14+ Pr[X > 6.6]%T(n)

+(1 = Pr[X > 6.6] — Pr{l|n}) « T(6). (16)

The first term is the cost of the first round, and the second term
is the worst cost given that we failed to fall within (1 + 6) of

3In our case, we can use Bernoulli trials, which is a special case of Poisson
trials where p; = p for all .

490

5 .
- O n=500
c
s ,|L_x n=5000
¢ g
x @)
[
= 3t e ()
= x Ie®
@) X
é 2t 93&(OQ
5 xx @
=)
2 17 ®
= o)
O L I n
-10 -5 0 5 10
log2(initial guess / true n)
60 . .
P O n=500
S 50t x x n=5000 |1
o X
c
X
£ 407
=z
% 30r O
3
> X
201
E? O
2 _
z 10 *@%
O "
-10 -5

log2(initial guess / true n)

Fig. 15. Relative performance of Algorithm Skip-Reset under different
estimations of n where L = 1,U = 8, and ¢ = 5.6.

the average. We use T'(n) since due to monotonicity it repre-
sents the worst case. The third term represents the case that
we are within (1 + 4) from the average;we subtract Pr{1|n}
since with this probability the election ends as we reached our
goal of one representative. T'(6) = 2.313 is the worst case in
the third case due to monotonicity (which, for this simple case,
can be checked manually for ¢ = 2, 3,4, 5,6). Remember that
Pr{1|n} = n(c/n)(1 —c¢/n)"~t = ¢(1 — ¢/n)"~ 1. For large
n, Pr{l|n} = ce7¢/(1 —¢/n) ~ 0.366. Plugging it all in (16)
we get T'(n) < 2.467, which explains the asymptotic tendency
of the curve in Fig. 14.
Given (12), we can derive a similar bound for N (n).

VII. ROBUSTNESS

In the previous sections, we assumed that either n is known,
or that C can poll all nodes for their number. In some applica-
tions, like multicast feedback, such polling may cause feedback
implosion, in other applications the number of hosts may dy-
namically change as a result of hosts joining/leaving, or network
partitioning. For such cases, it is important to check the robust-
ness of the algorithms presented in the previous section to an
inaccurate estimation of n. Fig. 15 presents the performance of
Algorithm Skip-Reset when used with an estimation of the total
number of hosts (n), instead of the real value (Fig. 16). One
can see that a factor of 10 mistakes in the value of n does not
increase T'(n) by more than one round, but it may generate 10

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

Algorithm Skip-Reset with estimating n

1. N.+0
2. N+ MAXGUESS
3. Send

Feedback(M AXGUESS, 1)

while (N, ¢ [L..U])
N. < number of replies
if Ne < L

N « f(N)
Send Feedback(N, 1)
else

Send Feedback(N., 0)
N < max{N, N.}

»

~oLoNoOO

—_—

Fig. 16. Algorithm Skip-Reset with estimating n for C.

times more messages if the estimation is an undershot. Another
fact that is clear from Fig. 15 is that it always pays to overes-
timate. This is due to the fact that underestimation may cause
to generate many messages since the nodes are using a much
too big p = ¢/n, while overestimation will cause additional
round(s) in which no message is transmitted since p = ¢/n is
too small.

A. Estimating n

The robustness of the algorithms with respect to n, indicates
that there will be a very small degradation in performance in a
scenario where a small number of nodes are either joining or
leaving the system. However, in applications like multicast, the
number of hosts may vary significantly, and it is important to
keep the estimation always bigger than the actual n value to
avoid feedback implosion.

We suggest a family of algorithms that start with a very high
estimation (say, 100 000 to compare with 2'6 that is used in [1]),
and reduces it every time the number of responses is smaller
than L. The rate at which the estimation is reduced is given by
a function n(¢ + 1) = f(n(7)). In this work, we used a family
of functions defined in the following way:

ﬂﬁ%:{ﬁami (BU)/e

N>
he@ue 0D

not defined,
The second condition ensures that the estimation is not in the
range [1...U]. When « = 1 the estimated value of n decreases
by a constant factor of 3 > 1. However, when a < 1 the esti-
mated value of n decreases much faster. The latter has a shorter
convergence time but may result in more messages.

Let f(n) be the function used to decrease the estimate when
the feedback is below L. Denote by Prj{i|n} the probability
that exactly ¢ out of n hosts will be elected in a round given an
estimate of 7 hosts:

Pt = (1)) (=5)

We analyze the performance of the estimation algorithm as-
suming Algorithm Skip-Reset is used, and write expressions for
the expected number of messages and rounds to elect a council
given an initial estimation 7, and n hosts. Note that here (un-
like in the previous analysis) we do count all rounds including
the initialization round.

(18)

RAZ et al.: DISTRIBUTED COUNCIL ELECTION

Following the previous formulation, let N, (7o) and T}, (20)
be the expected number of messages sent and rounds (corre-
spondingly) given n hosts and 7 as the initial guess. We can
thus write the recursive relations (for n > U):

N, (7)) = Z Pry{i|n}(i 4+ N,(i))

L-1

+ 3 Prafi|n}(i + Nu(£(2)))

+ ZPrﬁ{Hn}Nn(i)

n
:CT
n

L

|
—

+ > Prafil n} N (f(#2)). (19)

1=

(=)

Where N, (i) are the ones calculated from the linear system in
(6). For 0 < # < U, N, () is not defined since f(7) does
not return values in this range [see (17)]. For i = 0, Nn(O) =
n + N(n) since each host will suggest itself as a candidate in
the next round.

In the same way, we can write equations for T, (for i > U):

To(R) = Zprﬁ{i |n}(1+ T,(0))

L—-1

+ 3 Prafi|nb(1+ Tu(f(2)
— 14 Z Pry{i|n} T (i)

30 Pralin) T f(3). 0

Fig. 17 shows the performance of the algorithm in a typical
scenario, where the target range is R = [1...8] i.e., we are
willing to elect up to 8 members (compared to the 10 responders
bound in [1]). We selected two sets of parameters: a conserva-
tive set where a = 1 and 8 = 2, and an aggressive set where
a = 0.7 and § = 1. We compare these two with the algorithm
in [1].# Even when the actual population is very small (10), our
conservative search takes only about 10 rounds to elect repre-
sentatives. Compare this with the over 13 rounds required by
the [1] algorithm. Both algorithms reduce their approximation
by a factor of 2. Ours performs better since the probability of a
host to become a candidate is p = ¢/n and when the estimate
reaches 60 we get p &~ 1/10. Thus, with high probability one
representative will be elected when 7 < 60. A much faster con-
vergence is achieved using the aggressive parameter set. Every
time there is no response the estimation is reduced to 797, and
therefore four rounds are sufficient for all the n. The reduction in
the number of rounds comes with a penalty of an increase in the
expected number of messages. However, the maximum of 15
messages the aggressive algorithm achieves is well within the

“Bolot et al. did not calculate the expected number of messages; instead
they showed that the probability that this number is greater than 10 is
small. We calculated the expected number of messages in their algorithm by

22:1 Sor _ Pr(r; =m)-m.

491

I=1, u=8, c=5.6
14
O —— conservative
12 -—- aggressive |1
O [BTW94]
10 o
—~ 8
£
F o6
4
2
0 0 5
10 10
number of users, n
I=1, u=8, c=5.6
15
—— conservative / '\
- — - aggressive / .
O [BTW94] ; !
10 : '

! \
= / \
z . p -

/N
5 / N/
G O (@]
0
10° 10°

number of users, n

Fig. 17. Performance of algorithm Skip-Reset where 7 is unknown
L =1,U =38,and c = 5.6.

TABLE 1
SUMMARY OF THE ALGORITHMS PRESENTED

algorithm section | host [feedback
name number | memory | memory size (bits)
basic \Y 1 bit - logn
Skip-Reset | V-A 1 bit logn bits | 1+ logn
choice V-B 3 bits logn bits | 2+ logn
history VI 2 bits logn bits | 1+ logn

tolerable. The number of local maxima in the aggressive algo-
rithm graphs corresponds to the maximal number of steps. Note
that our algorithm can be used for any selection of R, which is
clearly not the case in [1].

B. Dealing With Message Loss

One can distinguish between the loss of multicast messages
and the loss of reply messages. In the former case, a loss of a
fraction « of the multicast messages has the same effect as an
overestimation by a factor of 1/(1 — «). As we discussed in
the previous section our algorithms are not very sensitive to the
accurate estimation of n, and thus this type of loss has minor
effect on the algorithm performance.

To analyze the loss of reply messages, let us assume that a
reply message is lost with constant independent probability q.
Now when m users are active, the probability for a message to
reach the center is simply (¢/m)(1 — ¢). The probability for a
message not to arrive is the sum of two probabilities of inde-
pendent events: the probability that the message was not sent,

492

1—(¢/m), and the probability it was sent but was lost, (¢/m)q.
Thus, the probability that exactly ¢ messages arrive to the center
is given by

prsr = (1) (=) (1= o)™

2n

which is equivalent to choosing ¢! = ¢(1 — ¢). Now, as we saw
throughout the paper, the suggested algorithms are not sensitive
to underestimation of ¢, and thus, also this type of loss has minor
effect on the algorithm performance.

VIII. CONCLUDING REMARKS

Table I summarizes the algorithms presented in the paper.
Note that all these algorithms can work continuously if we
change the while condition in C’s algorithm to true. This
way, if the representative group size decreases over time
below L, a new election process automatically restarts. In
this context, an interesting research direction is to design an
efficient election algorithm that increases the group size when
it is close to (but still above) L, thus avoiding the reactivation
of the election.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
helping them to improve the paper presentation.

REFERENCES

[1] J.-C. Bolot, T. Turletti, and I. Wakeman, “Scalable feedback control for
multicast video distribution in the Internet,” in Proc. ACM SIGCOMM,
London, U.K., Sept. 1994, pp. 58-67.

[2] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang,
“IDMaps: A global Internet host distance estimation service,” in
IEEE/ACM Trans. Networking, vol. 9, Oct. 2001, pp. 525-540.

[3] R.Rom and M. Sidi, Multiple Access Protocols: Performance and Anal-
ysis. New York: Springer-Verlag, 1990.

[4] B.S. Tsybakov, “Resolution of a conflict of known multiplicity,” Prob-
lemy Peredachi Informatsii, vol. 16, no. 2, pp. 134-144, Apr./June 1980.

[5] L. Georgiadis and P. Papantoni-Kazakos, “A collision resolution pro-
tocol for random access channels with energy detectors,” IEEE Trans.
Commun., vol. 30, pp. 2413-2420, Nov. 1982.

[6] N. Pippenger, “Bounds on the performance of protocols for a multiple
access broadcast channel,” IEEE Trans. Inform. Theory, vol. IT-27, pp.
145-151, Mar. 1981.

[71 M. Roszinké and P. Vanroose, “How an Erdos-Rényi-type search ap-
proach gives an explicit code construction of rate 1 for random access
with multiplicity feedback,” IEEE Trans. Inform. Theory, vol. 43, pp.
368-373, Jan. 1997.

[8] B.S. Tsybakov, V. A. Mikhailov, and N. Likhanov, “Bounds for packet
transmission rate in a random-multiple-access system,” Problemy
Peredachi Informatsii, vol. 19, no. 1, pp. 61-81, Jan./Mar. 1983.

[9] N.Likhanov, E. Plotnik, Y. Shavitt, M. Sidi, and B. Tsybakov, “Random
access algorithms with multiple reception capability and N-ary feedback
channel,” Problemy Peredachi Informatsii, vol. 29, no. 1, pp. 82-91,
1993.

[10] N. A. Lynch, Distributed Algorithms.

mann, 1997.

Y. Afek and Y. Matias, “Elections in anonymous networks,” Inform.

Comput. J., vol. 113, no. 2, pp. 312-330, Sept. 1994.

[12] M. Grossglauser, “Optimal deterministic timeouts for reliable scalable
multicast,” IEEE J. Select. Areas Commun., vol. 15, pp. 422-433, Apr.
1997.

San Mateo, CA: Morgan Kauf-

[11]

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

[13] J. Nonnenmacher and E. W. Biersack, “Optimal multicast feedback,” in
Proc. IEEE INFOCOM, San Francisco, CA, Mar. 1998, pp. 964-971.
S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A
reliable multicast framework for light-weight sessions and application
level framing,” in IEEE/ACM Trans. Networking, vol. 5, Dec. 1997, pp.
784-803.
S. Paul, K. Sabnani, and D. Kristol, “Multicast transport protocols for
high speed networks,” in Proc. IEEE Int. Conf. Network Protocols
(ICNP), 1994, pp. 4-14.
S. Khanna, J. Naor, and D. Raz, “Control message aggregation in group
communication protocols,” in Proc. Int. Colloq. Automata, Languages
and Programming (ICALP’02), Malaga, Spain, July 2002, pp. 135-146.
[17] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced allocation,” SIAM
J. Comput., vol. 29, pp. 180-200, 1999.

[14]

[15]

[16]

Danny Raz (M’98) received the Doctoral degree
from the Weizmann Institute of Science, Israel, in
1995.

From 1995 to 1997 he was a Postdoctoral Fellow
with the International Computer Science Institute
(ICSI), Berkeley, CA, and a visiting Lecturer at the
University of California, Berkeley. From 1997 to
2001, he was a Member of Technical Staff at the
Networking Research Laboratory, Bell Laboratories,
Lucent Technologies, Holmdel, NJ. In October
2000, he joined the faculty of the Computer Science
Department, Technion, Haifa, Israel. His primary research interest is the theory
and application of management related problems in IP networks. He served as
the general chair of OpenArch 2000, a TPC member for several top networking
conferences such as IEEE INFOCOM, NOMS, IM, and OpenArch, and an
Editor for the Journal of Communications and Networks (JCN).

Yuval Shavitt (S’88-M’97-SM’00) received the
B.Sc. degree (cum laude) in computer engineering,
the M.Sc. degree in electrical engineering and the
D.Sc. degree from the Technion—Israel Institute
of Technology, Haifa, in 1986, 1992, and 1996,
respectively.
From 1986 to 1991, he served in the Israel De-
4 fense Forces, first as a System Engineer and during
9 the last two years, as a Software Engineering Team
s Leader. After graduation, he spent a year as a Post-
doctoral Fellow at the Department of Computer Sci-
ence, Johns Hopkins University, Baltimore, MD. From 1997 to 2001, he was a
Member of Technical Staff at the Networking Research Laboratory, Bell Labo-
ratories, Lucent Technologies, Holmdel, NJ. Since October 2000, he has been
a faculty member in the Department of Electrical Engineering, Tel Aviv Uni-
versity, Tel Aviv, Israel. He served as a Technical Programming Committee
member for [IEEE INFOCOM 2000-2003, IWQoS 2001 and 2002, ICNP 2001,
and MMNS 2001, and on the executive committee of INFOCOM 2000, 2002,
and 2003. He is an editor of Computer Networks, and served as a guest editor
for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS and the World
Wide Web Journal.

Lixia Zhang (M’86-SM’94) received the Ph.D. de-
gree in computer science from the Massachusetts In-
stitute of Technology, Cambridge, in 1989.

She was a Member of the Research Staff with
the Xerox Palo Alto Research Center before joining
the faculty of the Computer Science Department,
University of California, Los Angeles, in 1995. In
the past, she has served on the Internet Architecture
Board, the editorial board for the IEEE/ACM
TRANSACTIONS ON NETWORKING, and technical
program committees for many networking-related
conferences including ACM SIGCOMM and IEEE INFOCOM. She also
served as Co-Chair of the IEEE Communication Society Internet Technical
Committee (1995-1999) and Vice Chair of ACM SIGCOMM (1999-2003).

