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Abstract

In this paper we introduce the Gossip Network model where travelers can obtain infor-
mation about the state of dynamic networks by gossiping with peer travelers using ad-hoc
communication. Travelers then use the gossip information to recourse their path and find
the shortest path to destination. We study optimal routing in stochastic, time independent
gossip networks, and demonstrate that an optimal routing policy may direct travelers to
make detours to gather information. A dynamic programming equation that produces the
optimal policy for routing in gossip networks is presented. In general the dynamic program-
ming algorithm is intractable; however for two special cases a polynomial optimal solution
is presented.

We show that ordinarily gossiping helps travelers decrease their expected path cost. How-
ever, in some scenarios, depending on the network parameters, gossiping could increase the
expected path cost. The parameters that determine the effect of gossiping on the path costs
are identified and their influence is analyzed. This dependency is fairly complex and was
confirmed numerically on grid networks.

1 Introduction

Optimal routing in both deterministic and stochastic networks has been extensively studied in
the past. While the solutions for the deterministic problem are well known [1] and based on the
dynamic programming (Bellman-Ford) or label correcting (Dijkstra) algorithms, the solution
to the stochastic problem depends profoundly on the problem modelling. One of the main
characteristic of the stochastic problem model is how the information about the stochastic states
of the network is obtained. The introduction of ad-hoc communication presents an opportunity
for a new kind of network model – the Gossip Networks. In this paper we formulate, for the first
time, the gossip networks model in which mobile agents obtain information about the state of a
stochastic network by exchanging information with neighboring agents using peer to peer (P2P),
ad-hoc communication. Mobile agents then use the exchanged information to revel information
about the network state and consequently optimize their routing.

There are varieties of real life problems that can benefit from an optimal solution to the
problem of routing in gossip networks. This paper will focus on an example from the field of
transportation. Road congestion is a known and acute urban menace with no signs of disap-
pearing. There are apparently many suggested approaches to tackle this problem; one of them
is to supply vehicles and drivers with up-to-date information about road conditions. There are
two main approaches to supply drivers with information that can aid them avoid congestion.
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One approach is based on fixed-structure communication networks, for example cellular net-
works or FM/AM radio [2–4], the other approach is based on ad-hoc communication networks,
as proposed by innovative projects such as FleetNet [5], and CarNet [6].

The advance in technology in recent years helps to bring into vehicles sophisticated onboard
navigation systems at a reasonable price. Such a system contains a computing device with
a detailed road map, GPS for locating the vehicle on the map, and communication means.
One can use ad-hoc communication networks (such as Wi-Fi) to exchange information between
neighboring vehicles. When two vehicles are at communication range they can exchange their
information regarding road condition. The road condition information is thus propagated in the
network without any need for external or central infrastructure. Each time new information is
obtained by a vehicle, the onboard navigation systems recalculate the optimal route from its
current location to the destination. For example, if the navigation system receives information
that one of the streets in its planned path is blocked it will plan a new path that avoids the
blocked roads.

Our gossip network model was built based on research done in “ad-hoc networks” and
“stochastic shortest path routing”. In this paper, mobile agents acquire and disseminate in-
formation about road conditions using wireless communication (ad-hoc networks) and use the
information to minimize their traveling time (shortest path problem). There are two networks
in our model, the “road network” on which the mobile agents roam and the “communication
network” on which information flow. While there is an extensive literature about routing in each
of the networks, to the best of our knowledge, this is the first attempt to formulate and solve
the combine problem: shortest path routing of mobile agents in the context of gossip ad-hoc
networks. 1

There are currently several ongoing projects focusing on the idea of mobile agents (for ex-
ample vehicles) exchanging information and forming communication networks without or with
a little help from external infrastructure. FleetNet [5], CarNet [6], and similar projects aim
at building communication infrastructure using ad-hoc communication and are researching for
suitable routing protocols; medium access methods, radio modulation etc. In this paper we as-
sume the existence of such ad-hoc network that enables mobile agents to exchange information.
However, we don’t implicitly include here specification of the ad-hoc network such as routing or
multi-access communication protocols, instead we abstract them into the gossip probability, the
probability that a mobile agent will receive information about the status of some roads in the
network from another mobile agents. The gossip probability is defined formally in Section 2.

The problem of Shortest Path Routing was investigated extensively in the literature. In
this paper we assume time independence, i.e., the network doesn’t change during the course
of the travel. Some of the road conditions are known to be alternating, however, a traveler
may not know in advance the current condition of all these roads, termed stochastic roads.
We assume that no waiting at roads or junctions is allowed and once a junction is reached the
weights of all the roads that emerge from that junction become known. We investigate two
different models of weight correlation. The first is the Independent Weight Correlation model
(G-IWC) where there is no correlation between the states of different edges. The second is the
Dependent Weight Correlation model (G-DWC) where the network can be in several different
states, each state determines the weights of all stochastic edges [7]. Note that the G-IWC model
is a generalization of the G-DWC model with substantially more states. The rational behind
the G-DWC model is that in “real-life” transportation systems there is a correlation between
roads weights, usually a traffic jam on one road effects the roads in its vicinity.

When the network is stochastic, like in this paper, the information about the actual state of
the stochastic edges plays a crucial role in finding the optimal routing solution. Further more,
due to the dynamic nature of the problem the solution is not a path but rather a policy that direct
the traveler according to the information he obtains. In the literature there are several papers

1This paper focuses on the routing of mobile agents on the “roads networks” and not on the routing of data
packets on the “information networks”.
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that discuss optimal routing policies in stochastic networks where the traveler can recourse his
path according to information obtained during travel. However, the basic difference between
these models and ours is that in gossip networks the information is obtained by gossiping with
neighboring travelers thus a traveler can obtain data about the state of remote stochastic roads.
In all the other models we survey the only way to obtain information about the state of a road
is to visit the junction it emanates from. Andreatta and Romeo [8] assume that once a blockage
is encounter a recourse path that consists of only deterministic roads is used. Orda, Rom, and
Sidi [9] investigated a model where link delay change according to Markov chains, they model
several problems and showed that in general, the problems are intractable. Polychronopoulos
and Tsitsiklis [7] investigated a network where there is a correlation between the roads weights.
In their model a traveler can deduce the stochastic state by visiting enough roads. Waller and
Ziliaskopoulos [10] solved a model with dependency between successor roads and a model with
time dependency for the same road.

The primary contribution of this paper is in the introduction and analysis of the gossip
model and the new directions it opens for building P2P mobile systems. The introduction
of information exchange leads to unique optimal routing policies. In this paper we will show
that sometimes it is worth taking a detour to obtain more information about the state of the
stochastic edges. The extra cost of the short detour can be compensated by the additional
information gained, information that can improve the selection of the continuing path. Further
more, we were able to quantify an optimal policy that balance between information gathering
costs and path costs. Other main contribution is the regime state diagram we produced. Using
the diagram one can determines the influence of gossiping on the traveling costs in different
networks characteristics.

The rest of the paper in organized as follows. In the next section, the formal model of
the gossip networks is introduced and an example that demonstrates the characteristics of the
model is presented. An algorithm for optimal routing in gossip networks that is based on
dynamic programming is developed in Section 3. In Section 4 we discuss the implications of
traveling in gossip networks.

2 Model and Definitions

2.1 The formal model

The network2 is represented by a directed graph G = (V, E), where V is the set of vertices,
and E is the set of edges, |V | = n and |E| = m. An edge e ∈ E is associated with a discrete
random weight variable, we. Edges with degenerated weight function that has only one value
are termed deterministic, and we denote the set of these edges by D ⊆ E. The number of edges
in the network with stochastic weights (namely, non deterministic) is denoted by δ = |E \D|.
We assume that under all weight distributions there are no negative cost cycles in the network
and there is always a path between source and destination.

In the G-IWC model the weights, we, of the stochastic edges are random variables with
discrete probability distribution that has βe states. The expected cost of an edge is w̄e =∑βe

s=1 ws
eq

s
e, where qs

e is the probability of an edge e to have the weight ws
e. We denote by ŵe

the actual weight of the edge e at the time of travel. In the G-DWC model the network can be
in only R realizations, each r ∈ R realization determines the states of the network and thus the
weights wr

e of all the stochastic edges.
Traveling agents (TAs) are roaming the network. Each TA stores internally the weights

of the stochastic edges in an Information Vector, I{·}. For example, an information vector
2As mentioned above, there are two networks in our model, the “road network” and the “communication

network”. From this point on, when we say “network” we refer to the “road network”. We assume the existence
of communication network that enable mobile agent to exchange information but in this paper we don’t include
it in the formal model implicitly, it is included in the gossip probability presented below.

3



of a traveler could look like this: I = {ŵ1, X, ŵ3, X, . . . ,X, X, ŵδ}. For known edges, those
that the traveler visited or received information about, the weights are written down explicitly,
ŵ1, ŵ3, ŵδ. Unknown edge weights are denoted by X. The number of possible states of the
information vector in the G-IWC model, lI is given by

lI =
∏

e∈E\D
(βe + 1) (1)

and in the G-DWC model, the number of different information vector states is given by

lD =
R∑

i=1

(
R

i

)
= 2R − 1 (2)

When two or more TAs are within communication range they can exchange their information
vectors in order to gain missing data. The gossip probability is the probability that when a TA
traverses an edge it will update his information vector.

P (s, s′, T (i, j)) = P{I(j) = s′|I(i) = s, T (i, j)} (3)

where s, s′ ∈ I are the information vector before and after the edge (i, j) traversal, respec-
tively, I(i) is the information vector at vertex i ∈ V , and T (i, j) is the topology probability. The
topology probability is the probability that a TA will receive information from other TAs during
the traversal on an edge. The topology probability is determined by aspects like the number of
TAs around the traveler, the other TAs previous paths, physical obstacles that interfere with
the wireless communication, etc. It is a characteristic of the network structure and the flows of
TAs in the network. Assuming that there are “enough” mobile agents in the network T (i, j) is
a vector of probabilities, where each element corresponds to some stochastic network edge. For
example, T (i, j) = {1, 0.5, . . . 0} means that on average when the TA slates edge (i, j) it will
learn about stochastic edges 1,2, and δ with probability 1, 0.5, and zero, respectively. The gossip
probability depends on the topology probability and on the information vector before and after
the edge traversal. For example, the probability to change an information vector element from
{· · · , ŵ, · · · } to {· · · , X, · · · } is zero. Regardless of the topology probability, a known weight
can not be changed into unknown.

In this paper we are looking for the optimal routing policy of a TA that starts at the source
vertex s with information vector I(s) and travels to a destination vertex t. We assume that the
TA knows a priori the network structure, weights distribution, and the topology probability. We
are looking for an optimal routing policy, π∗ with minimal expected cost, C∗(s, t, I(s)), of all
possible routing policies πk ∈ π.

∀ πk ∈ π C∗(s, t, I(s)) ≤ Ck(s, t, I(s))

2.2 Assumptions and Reality

In this section we will analyze the formal assumptions in our model and relate them to real
life scenarios in transportation networks. The first assumption is that the network is time
independent. In many situations, a driver can assume that during his commute (30 to 60
minutes) the traffic patterns in his area doesn’t change significantly. Thus, in many cases, an
optimal routing policy calculated at the beginning of the journey will yield satisfying results
throughout the journey.

Another assumption is that the agent knows a priori the network structure, edge weight
distribution and topology probability. While network structure can be obtained from any GIS,
the edge weight and topology probability are calculated from historical information gathered over
time. Currently there are several commercial and academic projects that use historical data to
predict future traffic patterns, for example the MIT’s DynaMIT project [11]. While the edge
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Figure 1: An example of the influence of
gossiping on routing.
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Figure 2: The relation between the “UP”
and gossip probabilities for different wis

values. The area above the line is where
C∗(s, t, {X})i < C∗(s, t, {X})kj and the
traveler will cycle for information

weight distribution can be computed directly from the historical traffic data, in order to compute
the topology probability one needs information about the agents movement in the network.
Given that information, we can calculate and record fairly easily the edge weight distribution
and topological probability for a given time. For example, we will have one distribution for
morning commute, second for evening commute, third for holidays etc. Then, each time the
agent will compute his optimal routing policy using gossip networks time independent algorithm
he will use the appropriate distributions.

2.3 An Example

In the example network presented in Fig. 1, a traveler is located at vertex s and is looking for
the optimal routing policy to vertex t. In this network there is one (δ = 1) stochastic edge,
(j, j′), that has two possible states. With probability qu

jj′ = ξU the edge is in the “UP” state
where wu

jj′ = 1, and with probability qd
jj′ = (1 − ξU ) the edge is in the “DOWN” state where

wd
jj′ = 10000. The traveler can obtain information about the state of the edge (j, j′) only when

traversing the edge (i, s), with the topology probability: T (i, s) = ξT .
The traveler has to chose between different travel options: a) The “safe” path through vertex

k which guarantee a cost of 1001 or; b) The “risky”3 path through vertex j with cost that depends
on the state of edge (j, j′), either 10002 or 3 or; c) Travel to vertex i, obtain information about
the status of edge (j, j′) and then, according to the obtained information, chose whether to go
through vertex k, j or return to vertex i.

Next we will calculate the expected cost of the different routing policies. The cost of the
path through vertex k is deterministic and does not depend on the a priori knowledge of the
state of the edge (j, j′)

C(s, t, {·})k = 1001 (4)
3The risky policy is taken by a traveler that must reach the destination at some specific time (for example to

catch a plane that leaves in 10 time units). If not there by that time the traveler care less about the path cost
(anyway he needs to reschedule).
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The cost of the path through vertex j without any a priori knowledge about the state of the
edge (j, j′)

C(s, t, {X})j = 10002(1− ξU ) + 3ξU (5)

If the traveler needs to choose between traveling through k or j (without first traveling to
vertex i) then his optimal routing policy depends on the value of his information vector:

C∗(s, t, {X})kj = min(1001, (1− ξU )10002 + 3ξU )
C∗(s, t, {1})kj = 3

C∗(s, t, {10000})kj = 1001

When the traveler moves to vertex i without any a priori knowledge about the state of the
edge (j, j′) the expected cost of his routing policy assuming one trial to obtain information is:

C(s, t, {X})(1)
i = 2 + ξT [ξUC∗(s, t, {1})kj ] + (1− ξU )C∗(s, t, {10000})kj ] + (1− ξT )C∗(s, t, {X})kj

= 2 + ξT [3ξU + 1001(1− ξU )] + (1− ξT )C∗(s, t, {X})kj

When the traveler routing policy is to cycle between vertices s and i until it obtains infor-
mation, the expected number of cycles he will need is 1/ξT . Therefore

C(s, t, {X})i = 2(1/ξT ) + 3ξU + 1001(1− ξU )

For the above example there is a threshold topological probability, ξ0, such that for ξT ≥ ξ0

C∗(s, t, {X})i < C∗(s, t, {X})kj (6)

Meaning that for ξT ≥ ξ0 the traveler’s optimal routing policy when he has no information
about the state of the stochastic edge is the one that makes a detour through node i until it
obtains information about the state of the stochastic edge. Fig. 2 illustrates this by plotting
the equilibrium line of Eq. 6 for different values of ŵis. The area above the line is where the
inequality holds and the traveler is making a detour to gather information. The minimum of
the curves in Fig. 2 is when Eq. 5 and Eq. 4 are equal; in this example at ξU = 0.90028.

3 The Routing Algorithm

3.1 Solution approach

The problem of finding the optimal routing in gossip networks belong to the class of online
decisions problems. In these problems an agent is faced with the opportunity of influencing the
behaviors of a probabilistic system as it evolve. At each step the agent receives information about
the system state and performs an action accordingly. His goal is to chose a sequence of actions
which causes the system to perform optimally with respect to some predetermine criteria. In the
literature such problems can be found under the topics of Markov decision processes, stochastic
programming , and optimal control. Similar to other online decisions problems, we solve the
problem of optimal routing in gossip networks using dynamic programming and, in general,
share the same “curse of dimensionality”, which leads to intractable solutions. It is well known
in online decisions problems that information pays off, in our algorithm we were able to quantify
the importance of information.

A traveler starts his journey from vertex s with information vector I(s) and wants to reach
vertex t. During his journey, there is a probability that he will learn, through gossiping, about
the states of the stochastic edges and accordingly update his information vector I(·). At every
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vertex r ∈ V he reaches, the traveler makes a routing decision, based on his updated information
vector. The expected cost of a routing policy between a source vertex, s, and a destination vertex,
t, through a neighbor vertex, r, is:

C(s, t, I(s))r = ŵsr +
∑

I(r)∈B(I(s),(s,r))

P (I(s), I(r), T (s, r)) ·Q(I(r)) · C(r, t, I(r)) (7)

The weight of edge (s, r) is known and its value is ŵsr. B(I(s), (s, r)) is the set of all the
possible information vectors I(r) of the traveler when reaching vertex r, assuming that at vertex
s it has the information vector I(s). P (I(s), I(r), T (r, s)) is the gossip probability that the
information vector will change from I(s) into I(r) on the edge (s, r). And Q(I(r)) is the a priori
probability that the network G is in a state corresponding to the information in I(r).

3.2 Dynamic Programming Algorithm

The optimal routing policy from vertex s to vertex t in the gossip networks, C∗(s, t, I(s)), is the
one that minimizes the expression in Eq. 7. Namely, the one that selects the policy with the
smallest expected cost. Thus, we can write the following dynamic program:

C∗(s, t, I(s)) = min
r∈Ns

{ŵsr+
∑

I(r)∈B(I(s),(s,r)) P (I(s), I(r), T (r, s)) ·Q(I(r)) · C∗(r, t, I(r))} (8)

where Ni is the group of neighbors of vertex i.
In Bellman-Ford’s dynamic programming algorithm for deterministic shortest path [1] one

finds for each vertex the shortest path to a destination. In gossip networks, we need to find for
each vertex the shortest path for each possible state of the vertex’s information vector I(·).

Specifically, for each vertex u ∈ V we keep a table, TBL(u), that has l rows (l is defined
in Eq. 1 or Eq. 2 according of the model in use). Each row holds the information vector state
(sk ∈ I) the distance to destination, (DD) and a pointer to next vertex (PN).

The relaxation processes for each edge (u, v) and for each information vector state sk is:

DD(u, sk) = ŵuv +
l∑

m=1

P (sk, sm, T (u, v))Q(sm)DD(v, sm) (9)

For each source vertex state, sk, the algorithm checks what is the probability that during the
travel on the edge (u, v) the state sk will change into sm, (m = 1 . . . l). Each gossip probability
P (sk, sm, T (u, v)) is multiplied by the destination vertex distance DD(v, sm) and the probability
Q(sm) that the network will be in state sm.

The complete algorithm GOSSIP DP is presented in [12] . The algorithm can be used to
produce the optimal routing policy in gossip networks by the following steps: Before the traveler
starts his journey he builds his optimal routing policy by calculating TBL for all the vertices
of the network using the algorithm GOSSIP DP. During his journey the traveler updates his
information vector and navigates on the network using the information in TBL. Every time the
traveler reaches a new vertex u ∈ V with information vector state sk = I(u) he looks for the
next vertex in PN(u, sk).

The proof that the algorithm GOSSIP DP provides the optimal solution for routing in gossip
network is a direct extension of a general dynamic programming optimality proof [13]. The proof
is omitted due to space limitations.

Due to space limitations we state here the following theorem without proof, which appears
in [12].
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Theorem 3.1 The GOSSIP DP algorithm complexity under the G-IWC model and G-DWC
models is O(nmδ(2β + 1)δ) and O(nmδ22R) respectively.

Although the optimal solution to the gossip networks problem is intractable in general,
we presented above two special cases where the optimal solution is tractable regardless of the
network size. In the first case a polynomial solution is obtained when the number of stochastic
edges δ is small. The second case is when the number of realizations in the network is relatively
small.

4 Discussion

4.1 Characteristics of traveling in Gossip Networks

In this section we will discuss the characteristics of optimal routing in gossip networks under
the proposed GOSSIP DP algorithm. For the simplicity of the discussion we use the following
assumptions: The network is in the G-IWC model with one stochastic edge, and the traveler’s
expected shortest path from source to destination contains a stochastic edge. The stochastic
edge can be either in the “UP” or “DOWN” states. In the “UP” state the stochastic edge weight
is similar to the weight of the deterministic edges, in the “DOWN” state its weight is higher
than the weights of the deterministic edges. Once we analyze the parameters that influence
routing under those assumptions, expanding the model to the case of several stochastic edges
with several stochastic states is straightforward as we demonstrate in the numerical analysis in
the next section.

A traveler in the gossip networks that is navigating using our optimal routing policy can
be viewed as operating in three different regimes: “WIN”, “LOSE”, and “NEUTRAL”. In the
“WIN” regime the traveler reduces his travel cost by gossiping. In the “NEUTRAL” regime
obtaining information doesn’t change the gossip traveler’s path cost. In the “LOSE” regime
obtaining information actually increases the traveler path cost. The operating regime is a result
of the following parameters: the magnitude of the difference between the values of the actual
weight of the stochastic edges (ŵe) and their expected weights (ωSE), the values of the topology
probability (ξT ), and the magnitude of the difference between the values of the stochastic edges
actual state (ξA) and a priori probability to be in the “UP” state (ξU ) Next we will explain the
influence of each parameter.

The magnitude of the difference between the traveler’s a priori knowledge (ωSE) and the ac-
tual weight of the stochastic edges (ŵe), denoted by ∆ω = |ωSE−ŵe|, determines the influence of
obtaining information on the traveler’s path cost. When ωSE and ŵe are similar, a gossip trav-
eler will not have an advantage over a non-gossip traveler, they both know a priori the “correct”
stochastic state. However, above some critical difference, ∆ω > ∆C obtaining information will
decrease the traveler’s path cost. For example, when ωSE “tells” the travelers that a stochastic
edges is in the “UP” state and the actual state is “DOWN” a non-gossip traveler may include
this edge in its path while a gossip traveler will reduce his path cost by bypassing it in advance.
The value of ∆C is determined by the difference that will cause the non-gossip traveler to take
the wrong path, meaning that he will bypass the stochastic edge when it’s “UP” or traveler
through it when it’s “DOWN”.

Fig. 3 illustrates the different possible types of paths a traveler can have for different values of
topology probability (ξT ). When there is no gossiping (a) the probability to receive information
is zero thus the optimal policy is determined a priori before the start of the journey and has no
recourse. In this case the optimal policy is the one that minimize the expected weights. When
ξT is maximal (b) the traveler learns about the state of all the stochastic edges on the traversal
of the first edge, (s, r), and then travels to the destination t with full knowledge about ŵe and
therefore without changing his course. When ξT is in between (c) the traveler’s path is composed
of three phases, the initial phase is until the traveler obtains any information about the state of
the stochastic edges. Then, in the learning phase, the traveler may recalculate and recourse his
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path according to the updated information vector – his optimal policy is a collection of different
branches. When the traveler has full information about ŵe, at some vertex u, he travels to the
destination without changing his course. The higher ξT the quicker the gossip traveler will learn
about the state of the network and therefore minimize the learning phase in his travel which
leads to decrease in the policy cost.

According to the optimal policy, stated in Eq. 8, one of the parameters that determines the
relative weight of each branch in the path is the a priori probability of the network to be in
certain stochastic state, denoted here by ξU . The closer ξU is to ξA (small ∆ξ = |ξU − ξA|) the
more efficient the learning phase will be. Efficient learning means that the traveler is directed
toward the “right” direction by giving higher relative weight to the “right” branch. When
there is a relatively large difference between ξU and ξA the branches in the learning phase will
direct the traveler to the “wrong” direction and as a result the cost of his policy will increase.
For example, when the a priori probability of the stochastic edge to be in the “UP” state is
small (ξU ≈ 0) the optimal policy will direct the gossip traveler to branches that detour the
stochastic edge. When the stochastic edge is actually in the “DOWN” state this direction is
justify, however when the actual state of the stochastic edge is “UP” the direction will maximize
the gossip traveler learning phase and his total traveling costs.

The operating regime that the traveler experiences is determined by the combined values
of the parameters, ∆ω,ξT , and ∆ξ. Fig. 4 is a state diagram that illustrates the influence of
the parameters on the network regime. When ∆ω is below some threshold, ∆C , the a priori
knowledge of the network state is close enough to the true value, and thus increasing the path
length to obtain information can not benefit the gossip traveler. As a results, in this case,
the network can be either in the “NEUTRAL” or “LOSE” regimes. The “LOSE” regime is
obtained when the learning phase is relatively large (increase in ∆ξ), however a larger topology
probability shortens the learning phase and pushes the network into the “NEUTRAL” regime.
The ultimate network regime is determined by the relation between those two parameters ξT ,
and ∆ξ. Similarly, when ∆ω is above the threshold, ∆C , gossiping helps the gossip traveler
to reduce his policy costs. The network can be either in the “WIN” or “NEUTRAL” regimes
according to the relation between ξT , and ∆ξ. In the next section, we will demonstrate the
above discussion using the simulation results.

5 Numerical Analysis

We preformed an extensive simulation study on grid networks under the G-IWC model. The
results obtained in the simulations confirmed the discussion in Section 4.1 regarding the char-
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acteristics of optimal routing in gossip networks. Due to space limitations the reader is referred
to [12] for details.

6 Conclusions

This paper presented and investigated a new model for information gathering in stochastic net-
works, the gossip networks. Gossiping could lead to some unusual phenomena, in our example
network the optimal routing policy directs travelers to make a detour in order to gather infor-
mation and minimize their expected path cost. The optimal traveling policy in gossip network is
given by a dynamic programming equation. Although the algorithm that solves the equations,
GOSSIP DP, is intractable in general, we presented two tractable special scenarios. We are
currently working on heuristics for solving the general case.

We showed in [12] that the influence of gossiping on the optimal policy cost is determined by
several parameters. Surprisingly, in some parameter combinations gossiping can lead to slightly
longer expected cost for the traveler. However, in most cases, a traveler can benefit, and in some
cases significantly, from gossiping.
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