Computing the Unmeasured: An Algebraic
Approach to Internet M apping

Yuval Shavitt!
Bell Labs,
101 Crawfords Corner Rd.,
Holmdel, NJ 07733, USA.
shavitt @eee. org

Xiaodong Sun?
Math Dept., Rutgers Univ.,

110 Frelinghuysen Road,
Piscataway, NJ 08854, USA.

Abstract— Distance estimation is important to many Internet applica-
tions, most notably for a WWW client that needs to select a server among
several potential candidates. Current approaches to distance (i.e., time de-
lay) estimation in the Internet are based on placing Tracer stations in key
locations and conducting measurements between them. The Tracers con-
struct an approximated map of the Internet after processing the informa-
tion obtained from these measurements.

This work presents a novel algorithm, based on Algebraic tools, that
computes additional distances, which are not explicitly measured. As such,
the algorithm extracts more information from the same amount of mea-
surement data.

Our algorithm has several practical impacts. First, it can reduce the
number of Tracers and measurements without sacrificing information. Sec-
ond, our algorithm is able to compute distance estimates between locations
where Tracers cannot be placed. This is especially important when unidi-
rectional measurements are conducted, since such measurements require
specialized equipment which cannot be placed everywhere.

To evaluate the algorithm’s performance, we tested it both on randomly
generated topologies and on real Internet measurements. Our results show
that the algorithm computes up to 50-200% additional distances beyond the
basic Tracer-to-Tracer measurements.

|. INTRODUCTION
A. Background

The Internet is growing at a remarkable rate. However, there
is no central registry that allows users or planners to track this
growth. The basic characteristics of the Internet structure are
only starting to be revealed [7], [5], [4]. Learning the exact
structure of the network seems to be an unrealistic target.

In many cases, however, an estimate of the distances between
nodes in the network is good enough. The most obvious case
is when a client needs to select a service from one of several
servers located in distant locations. The WWW is an example
of such a situation, as more and more popular sites open mir-
ror sites that are geographically scattered. ~ Mirror sites are
used to balance the computation load among the servers, and
also to reduce the average response time to the clients. Other
applications where distance estimation is useful for intelligent
server selection include: distributed object repositories, hierar-
chical caching, etc.

IDMaps [8] is a project that attempts to solve this problem
by placing measurement stations (Tracers) at key locations in
the Internet. These Tracers periodically measure the distances
among themselves and to other regions of the network. The
Tracers advertise their measurement information to clients such
as SONAR [12] or HOPS [8] servers, and these servers use the

1 Also with the Dept. of Electrical Engineering - Systems, Tel-Aviv Univer-
sity, Tel-Aviv 69978, Israel.

2 Research supported by NSF grant CCR-9700239, by DIMACS, and by NSF
STC 91-19999.

sunxd@rat h. rut gers. edu

Avishai Wool Bulent Yener
Bell Labs,

700 Mountain Ave.,
Murray Hill, NJ 07974, USA.
yash@cm org yener @el | -1 abs. com

measurements to construct an estimated distance map of the net-
work.

A distance measurement between two IDMaps Tracers can be
done in two basic ways. The first is to use the t r acer out e
program, which generates a series of packets with increasing
TTL values. The TTL field in the IP header is decreased by one
in every router that handles the packet. When the packet travels
a distance equal to its initial TTL, its TTL value is decreased to
zero, and the packet is dropped. When the packet is dropped,
an ICMP packet is sent from the dropping node to the packet
originator. By this repeating this process until the packets reach
the destination, the source node learns the round-trip time (rtt),
and also the IP addresses of all the nodes on the route to the
destination. A second way to measure distance between Trac-
ers is by using pi ng. In this method, a packet is sent to the
destination, which replies immediately, resulting in a single rtt
measurement.

It is important to note that t r acer out e consumes more
network resources than pi ng: the number of message xhops
of t racer out e is quadratic in the hop distance, while pi ng
uses a linear number of message x hops (a single packet on every
hop in each direction). Due to this, and other reasons which are
beyond the scope of this paper, pi ng is a preferred measure-
ment method. However, since the route stability between two
Tracers is an important characteristic, t r acer out e is also ex-
pected to be used but at a much lower rate than pi ng.

B. Contributions

In this paper, we present an algorithm that increases the ef-
fectiveness of end-to-end distance measurements. Given end-
to-end distance measurements (e.g., using pi ng) and the routes
along which the measurements where conducted (e.g., using
t r acer out e) our algorithm computes additional distances, to
intermediate nodes. The result is a more detailed network map,
and thus provides better distance estimation. Furthermore, our
algorithm can compute delay estimates between sites in which
it is not possible to place Tracers.

Another area where our results can be used is in unidirectional
measurement of properties [10], [3]. To measure unidirectional
delay, special hardware devices are placed in the network. These
devices are synchronized to achieve the required measurement
accuracy (e.g., by GPS [10]). Applying our algorithm to the
unidirectional measurements produces additional unidirectional
distances between nodes in the networks where such special de-
vices are not (or even cannot be) placed.

The main idea behind our approach is that using the mea-

surement routes, one can identify nodes through which routes
between several Tracers pass. We refer to these nodes as cross-
ing points. A favorable arrangement of these points may enable
us to calculate the distances to the crossing points and between
them from the end-to-end measurements. In the worst case, the
number of crossing points can be zero or they can be arranged
in a way where no additional delay can be calculated. How-
ever, we show that in the Internet this is not the case, using both
simulated networks and recent Internet traces (from Oct. 1999).

Our algorithm is adapted to handle noisy measurements using
least-squares approximation algorithm (cf. [6, Ch. 31]).

To evaluate our algorithm, we studied randomly generated
networks of two varieties, and recently collected data from the
Internet. In both cases, our algorithm succeeded to compute a
significant number of distances between Tracers and crossing
points, and between different crossing points. For the Internet
data, the algorithm discovered additional distances to as many
crossing point as the original Tracers, a 100% gain. For ran-
domly generated networks, the gain was over 200% when we
used the Waxman method [17], and about 50% when we used
networks generated according to the recently discovered power-
law on the node connectivity [7]

C. Related work

Francis et al. described the IDMaps architecture and philoso-
phy of operation in [8]. This paper did not focus on optimizing
the measurement overhead, and made only some simple obser-
vations about situations in which measurements can be saved.
Theilmann and Rothermel [16] suggested to use hierarchical
Tracer structure to reduce the measurement overhead. A bet-
ter approach was suggested by Jamin et al. [9] that showed how
spanners [14] can effectively reduce the amount of measure-
ment without sacrificing too much of the estimation effective-
ness. Our algorithm complements all of these approaches, by
extracting more information from the same data that is collected
by the various tracing strategies.

The MINC project (cf. [11]) aims at using multicast infer-
ence to characterize network loss and queueing delay (rather
than propagation delay). To the best of our knowledge, all their
published results are for a single multicast tree, where they suc-
ceed, like us, in calculating non measured parameters (queueing
delay and loss).

Organization The rest of the paper is organized as follows. In
the next Section Il we present the model and a simple example
of the idea behind the algorithm. In Section 111, we show that on
a network with a tree topology one can compute the distances
between all the crossing points. In Section IV we present the
details of algorithm itself. In Sections V and VI we describe
the evaluation of the algorithm using Internet data, and using
synthetic data. We conclude with Section VII.

Il. THE MODEL
A. Definitions

For simplicity of presentation, the network is modeled as an
undirected graph. The directed case is similar, and is discussed
in Section IV-A. The graph structure or size is unknown to the
algorithm, and is used only for the purpose of analysis. We as-
sume that measurement stations (Tracers) are placed at some

nodes of the graph. The routes between Tracers are assumed to
be quasi-static, i.e., they change slowly enough to make their
knowledge valuable. On the other hand, the distance between
nodes is assumed to be dynamic. The distance may be the prop-
agation delay [9], [8], the average delay [16], hop count, or any
other measurable route characteristics. Since delay is the most
commonly pursued characteristic, we interchangeably use the
terms distance, length, and delay.

We make no assumptions about the routing in the network.
The algorithm is easier to explain when the routing is symmetric
(and we assume this for the generated networks), but it works
just as well for asymmetric routing.

Definition 1: A measurement path is the route (list of
nodes) between two different Tracers as defined by the network
topology and the underlying routing protocol.*

Definition 2: The measurement graph is the union of all the
measurement paths. l.e., the graph nodes are the union of all the
nodes along the measurement path, and the graph edges are the
union of all the links comprising the measurement path.

Definition 3: A non-Tracer node that has at least three dif-
ferent neighbors in the measurement graph is called a crossing
point.

Definition 4: A segment is a maximal sub-path of a mea-
surement path, whose end-points are either Tracers or crossing
points, that does not include an internal crossing point.

Definition 5: The segment graph is a graph whose nodes are
the Tracers and crossing points, and has a link between two
nodes if there is a segment between these two nodes in the mea-
surement graph.

The problem: Given a set of end-to-end delays between
Tracers with their associated routes, find all the possible seg-
ments or groups of consecutive segments whose length can be
derived from the data.

B. Anexample

The following simple example explains the terms defined
above, and the problem statement. For simplicity, we assume
that the routing is symmetric, and that the measurements are for
the round trip delay. Thus all the delays are expressed as round

trip times.
A—B—0O—0

)

G

Fig. 1. A five node network example.

Consider the five node network of Figure 1, where Tracers are
placed at nodes A, D, and E. Suppose that the following three
(round trip) distances are measured: A-D, E-D, and A-E. Using
t racer out e the three routes, A-B-C-D, E-B-C-D, and A-B-
E, are obtained.

LIn the unidirectional case a measurement path between Tracer A and Tracer B

is simply the route from A to B. For the bidirectional case, it is the concatenation
of the two unidirectional paths between A and B.

Note that it is clearly impossible to compute the distance on
the link B-C separately from the distance on the link C-D, since
every end-to-end measurement path that contains one of these
links also contains the other. This is the motivation for the defi-
nitions of segments and crossing points.

In the example, only node B is identified as a crossing point.
This defines three segments: s;=A-B, s2=B-C-D, and s3=E-B.
Suppose that, using pi ng, the distances A-D, E-D, and A-E
were measured to be 4, 7, and 5, respectively.

The following three equations express the pi ng measure-
ment data, using the segments identified from the t r acer -

out e information as variables:
s1 + 82 =4
s2 + s3 =7 1)
81 + s3 = 5

In this case, we have three linearly independent equations with
three variables, which we can solve to obtain the delay in each of
the three segments: s; = 1, sy = 3, s3 = 4. Thus, we are able to
compute all the distances to the crossing point B, even though no
Tracer was placed in it. The gain for this example is 100%: from
3 measurements we were able to compute 3 additional distances,
and discover distances to one additional non-Tracer node (33%).

I1l. THE TREE CASE

Suppose initially that each Tracer measures the distances to
all other Tracers (we will show later that this assumption is
stronger than necessary). Suppose, further, that the resulting
measurement graph is a tree, and let ¢ denote the number of
Tracers. We prove that in this case, one can find the delay on all
the segments using a simple linear algorithm. For simplicity, we
assume that there is no noise in the measurements. The noise is
easily treated by using least-squares approximation to obtain a
solution that is the closest to all measurement points (more on
this issue is Section V).

We first note that, with no loss of generality, all the Tracers
can be assumed to be placed in leaves of the tree, and not in
internal nodes. Otherwise, the tree can be cut at the internal node
which is a Tracer (with this node duplicated to all the resulting
sub-trees) and each sub-tree can be treated independently. An
internal node in the tree with degree greater than 2 is a cross
point, and must be part of, at least, two measurement routes by
its definition. However, the existence of two routes indicates
that, at least, a third route passes through the internal node, as
stated in the following lemma.

Lemma 6: The number of measurement routes passing
through a crossing point is at least three in a measurement graph
with tree topology.

Proof: Consider a crossing point ¢. By its definition there
are, at least, three sub-trees connected to it. Let 1, I, and I3 be
three leaves each in a different sub tree. Obviously the routes
between any pair of these leaves must pass through ¢. &

Fact 7: If the measurement graph is a tree, then the segment
graph derived from the measurements is also a tree, which we
call the segment tree. By definition of a segment, internal nodes
of the segment tree cannot have degree 2.

Fact 8: In every segment tree there exist at least one internal
node with degree d > 3 that is connected directly to, at least,
d — 1 leaves. We refer to such an internal node as an outpost.

Theorem 9: The lengths of all the segments in the segment
tree can be computed.

Proof: Consider a crossing point, ¢, with degree d that is

an outpost. By Fact 8, at least one such a crossing point exists,

and it is connected directly to d — 1 leaves Io,...,l;. Letl; be
some leaf node in the part of the tree other than {ls,...,4,c}.
The routes between every pair of the leaves Iy,...,1; passes

through c. Let s; be the length of the route between ¢ and [;,
i=1,2,3,...,d; and let the measurements between [; and l;1
beb; fori =1,2,3,...,d—1, and the measurements between [,
and [be b;. Obviously we can solve the following linear system

and obtain the length of sz, s3, ..., sq4, Which are the segments
that connect ¢ to the leaves Is, I3, ...,14.
s1 + s =
S2 + 83 = b2
51 + sq =bg

This way one can obtain the length of all the segments that con-
nect all the leave nodes to the crossing point c.

Removing nodes I, . . ., [4 from the tree does not change the
degree of any internal node (except for the outpost) and thus
Fact 8 holds for this tree as well, enabling the repetative appli-
cation of the above procedure.

After the leaves [, .. ., 4 are removed, we are left with a tree
with a leaf node (¢) which is not a Tracer. However, we can
use any of its (removed) leaves, say /-, as a measurement proxy.
The distance between some Tracer z and ¢ can be computed by
subtracting the newly computed distance between ¢ and 5 from
the distance between the Tracers z and 5.

In the final stage of the algorithm we are left with a star, and
there all the star segments can be easily calculated with the same
equation. H

Theorem 10: All the segment lengths in the tree can be found
using O(t) measurements.

Proof: In the proof of Theorem 9 we used d measurements
to obtain the length of every d — 1 segments iteratively. The
binary tree is the case that maximizes the number of measure-
ments we need due to two reasons. First, it maximizes the num-
ber of segments in a tree with ¢ leaves, which is 2¢. Second, the
binary tree gives us the worst measurement to gain ratio, i.e.,
d/(d — 1) = 3/2. Thus, we need no more than 3¢ measure-
ments. B

Note, of course, that not every set of O(t) measurements is
sufficient for finding all the segement lengths.

IV. THE ALGORITHM

In this section we describe our algorithm for general net-
works. We reiterate that the only information available to the al-
gorithm is the set of end-to-end measurements. We do not make
any assumptions about the structure, connectivity, or size of the
network. The algorithm comprises of several phases, which we
describe in the following sections.

A. Interpreting the measurements

Before the algorithm itself can begin its work, we need to
decide how we wish to interpret the measurements. In particu-

lar, we need to define our variables, so that we can write equa-
tions that correspond to the measurements. For a link (A,B),
two choices exist. We can either define two unidirectional vari-
ables, one for the delay from A to B and one for the delay from
B to A; or we can define a single bidirectional variable, for the
round-trip delay A-B-A.

The decision depends on the nature of the measurements
available to us. If the measurements are truely unidirectional,
then we should clearly use unidirectional variables. If the mea-
surements are round-trip measurements, and the routing is sym-
metric, then we can use bidirectional variables. For round trip
measurements with asymmetric routing, which is the situation
most appropriate for t racer out e and pi ng Internet mea-
surements, we can use either unidirectional or bidirectional vari-
ables. Both possibilities have pros and cons. In Section V we
describe how we interpreted the measurements in our experi-
mentation.

Another point to consider is the interpretation of the delay val-
ues that are measured. The simplest and least informative case
is when a measurement value is simply the result of a single
pi ng. In this case our algorithm would compute a “snapshot”
of the delays in the system. However, as discussed in [8], it is
more likely that a set of measurements will be taken between
every two Tracers. Then the delay value that appears on the
right-hand-side of our equations can be either the average delay
in the set, or the minimal delay in the set (the latter is appro-
priate when we are trying to estimate the propagation delay and
to ignore the queueing delays). Our algorithm is essentially in-
different to the meaning of the delay value, however this issue
has some implications when dealing with noisy data (see Sec-
tion 1V-D).

B. Segmentation, and writing the equations

Once we decided upon the definitions of our basic variables,
in principle, we can write a linear system of equations that de-
scribes the measurements. The left-hand-side of each equation
is the sum of all the variables (uni- or bidirectional) correspond-
ing to the links that appear in a particular measurement path.
The right-hand-side of each equation is the measured (unidirec-
tional or round-trip) delay for this path.

However, as we remarked in the discussion of the example in
Section 11-B, there are variables that clearly cannot be solved.
Thus, we need to switch from dealing with individual links to
dealing with segments (recall Definition 4). For this, we need to
identify all the crossing points (Definition 3). Once we identify
the crossing points, we define our variables per segment, and
write the equations in terms of these segment variables. As we
discussed in the previous section, the segment variables can be
either uni- or bidirectional.

Notation: Let n denote the number of measurements, and let
m denote the number of segments that remain after the cross-
ing points have been identified. We use z; for j = 1,...,m
to denote the variables representing the lengths of the m seg-
ments, and b; fori = 1, ..., n to denote the lengths of the given
measurement. Leta;; fori =1,...,nandj =1,...,m be co-
efficients such that a;; = 1 if the jth segment appears on the ith
measurememt path, and a;; = 0 otherwise. The general form of

the equations obtained after segmantation is as follows:

a11T1 + a2 +--+ aimTm =b;

a1 + axpry +---+ amTm =b
AN

Gn1T1 + ap2®2 +: + GumTm = by

Let A = {a;;} be the n x m matrix induced by the equa-
tions, let x = (xy,...,z.,) be the vector of variables, and let

b = (b,...,by) be the vector of measurements. Then we can
rewrite Equation (2) in matrix form as
Ax =bh. 3)

C. Solving as much as possible

It is highly unlikely that the linear system of Equation (3) is
solvable. Typically, it is under-defined for some variables and
over-defined for others. Our goal is to extract as much infor-
mation as possible from the given measurements (we show no
one can do better in Section IV-F). Therefore, rather than trying
(and failing) to solve Equation (3), we transform the system of
equations into a new system that isolates all that is solvable.

The transformation is performed as follows. We perform
Gauss-elimination steps on the columns of A, until we to trans-
form A into the matrix A’ of the following form:

1 0 --- 00 0

* 1 00 0

“. 0 0 0

A = * 1 0 0
* x 0 0

*x ¥ x x 0 --- 0

(“«x” means ‘any number’). Note that the rows of A may also
need to be permuted to reach this structure. This is equivalent to
reordering the measurements. Let m’ < m denote the number
of non-zero columns in A’. Clearly, the leftmost m' columns of
A’ are linearly independent.

Note that performing Gauss-elimination on the columns of A
is equivalent to multiplying A on the right by a regular m x
m transformation matrix. Let T' be this transformation matrix.
Furthermore, T' can be computed incrementally, as the Gauss
elimination progresses, using standard linear algebra. In matrix
notation, we have

A = AT. 4)

We now define a new vector of unknowns, y = (y1,..-,Ym)
using the same transformation, i.e.,

x="Ty. (5)

Then, plugging (4) and (5), and using Equation (3), we can write

Ay=ATy = Ax =b. (6)

We end with n equations in the y; variables, that are defined by
the matrix A’. Clearly, the y;’s with 1 < j < m' are solvable
from the new equations: The top left m' x m' sub-matrix of A’
is lower triangular and of rank m'. However, these are the only
y; variables that can be solved: columns m’ < j < m in A’ are
all zero.

D. Dealing with noise

It is highly unlikely that m' = n and that the new system of
equations defined by
A'ly=b ()

is solvable. Typically, m’ < m, and the system of equations is
over-defined. In an ideal situation, when the data contains no
measurement noise, all n equations would be mutually consis-
tent. Inreality, however, noisy data would make the over-defined
system unsolvable exactly.

To deal with the measurement noise, we solve (7) for vari-
ables y,;(1 < j < m') using least-squares approximation (cf.
[6, Ch. 31]). Using this method we find the values of y;(1 <
j < m') that minimize the function

> wi(d ajy; —bi)?, (8)
@ J

where w;’s are some positive weights. In our implementation
we used w; = 1 for all i. Other choices of w; are also possible,
e.g., using w; = 1/b2, but using them would make sense only if
we had a more detailed model of the origin of noise. We leave
this issue for future work.

Note that the least-squares approximation inherently assumes
that the error in the equations may be either positive (mea-
sured delay is too high) or negative (measured delay is too
low). Whether this assumption is appropriate depends on the
meaning of the b; values (recall Section IV-A). In particular,
if b; is the minimal value selected from a set of measurements,
then allowing for negative error may be an invalid choice. In
such a case, we can solve (7) using linear programming. Let
e = (e1,...,ey,) be a vector of error (or slack) variables. We
can rewrite (7) as an error minimization problem;

L Ay+e=b,
Minimize mzax{ei} s.t. {y S0,e>0.

This is a linear program, which allows only positive noise. It can
be solved using any LP solver. Exploring this method of dealing
with noise is also left for future research.

We emphasize, though, that our algorithm introduces no ad-
ditional errors. This is the case regardless of the method we use
for dealing with noise. In an ideal case where measurements
contain no noise, solving equations 1,...,m’ in (7) suffices to
compute the exact values of y;.

E. Back to sub-paths

At this point, we have solved (7), which gives us the val-
ues of the y; variables fori = 1,...,m’. However, these y;’s
do not directly correspond to lengths we are actually interested
in. Recall that our original z; variables, that represent segment
lengths, are related to the y;°s via Equation (5): x = T'y. Theel-
ements of matrix T" are not necessarily positive or even integral,
since it is the byproduct of the Gauss elimination. Therefore, we
need to translate the solution from the y domain back to the x
domain.

It is not immediately obvious how to perform this reverse
translation. Clearly, not every segment length z; can be com-
puted, since only m' < m of the y;’s were solved. However,

in many cases we can bypass this problem, using the following
observation. Suppose x; and z;, represent consecutive segments
on some measurement path, between A-B and B-C, respectively.
Even if we are unable to compute z; and z;, separately, we may
well be able to compute their sum z; + x, which represents the
delay on the concatenated sub-path A-C. The same observation
holds for any sub-path of a measurement path.

Consider a sub-path of one of the measurement paths, which
consists of several consecutive segments. Let these segments
correspond to variables z;,,...,2;. Then the delay p on
this sub-path can be expressed as 0-1 linear combination of
Zj,...,Tj,. We can write this combination as a product of a
0-1 row vector ¢ and the column vector x, where ¢;, = 1 for
k=1,...,¢and ¢ = 0 elsewhere. Formally,

m
p=cCc-X= E CjZyj.
j=1

Note that this representation works for individual segments as
well: variable z; can be expressed using a vector ¢ which is
zero everywhere and has a 1 in coordinate j.

We would like to check whether the delay p on the sub-path
is solvable. Using Equation (5), we can write

p=c-x=cTy= ZciTi]‘yj = Z(Z Cz'Tij)yj- 9)
ij i

J

Thus, p can be solved if and only if the coefficients of y; for j >
m' are all 0, since these are the y; variables we were unable to
solve. In other words, the delay p on a sub-path can be computed
if and only if

> eTy =0, Vji>m'. (10)

If the condition in Equation (10) holds, the solution for p is
obtained by plugging in the already solved y;(1 < j < m/)
values in Equation (9). In summary, we need to perform the fol-

lowing procedure after solving variables y1, ...,y in Equa-
tion (7):
Procedure compute-sub-paths:
Foreach measurement path M;, i =1,...,n
Foreach sub-path p of M; consisting of segments =, ,...,x;,
Setcj, = 1fork=1,...,£2and c;, = 0 elsewhere.

It ciTij = 0,Vj > m’ Then
Compute p using (9)
Else p cannot be solved.

A detailed example of the algorithm operation appears in [15].

F. Completeness

A distance, by the metric definition (delay), is a linear com-
bination of end-to-end distances. Using linear algebra, since T
is non-singular, a sub path can be expressed as linear combina-
tion of the given distances if and only if it can be expressed as
linear combination of entries of A'y. Since the rank of A’ is
m' and only the first m' columns of A’ are nonzero, a sub path
can be expressed as linear combination of the given distances
if and only if it can be expressed as linear combination of ;s
(¢ =1,...,m'), which can be solved by our algorithm.

G. The algorithm complexity

Starting with ¢ Tracers one may reveal N nodes. Assuming,
that the equivalence list is kept in a hash table, converting the
N nodes to their equivalent is a linear process. Using different
hash tables one can identify the crossing points and identifying
the segments in O(N). Writing the n € O(#?) equations is
O(mn) where m is the number of segments.

Triangulating the equations with the Gaussian elimination re-
quires O(nmm'), where m/' is the number of solvable segments.
Each column triangulation requires O(nm) operation, and the
process stops when no more lines can be triangulated, i.e., after
m/ iterations.

Checking which of the segments or segment groups are solv-
able requires less than O(nm?2). Next we give a more precise
analysis. On the average, there are ”* segments in a trace. This
is a small number since O(m) = O(t*) = O(n), thus the av-
erage cannot be much different from the maximum number of
segments per path. Since we check whether any possible con-
secutive combination of segments in a path can be solved, we
perform O(m?2) examinations of the condition in Equation (10),
where my is the number of segments in a path. As a result, the

cost of performing this stage is O ((%)2 -m(m — m’)), per

path, and O (n (%)2 -m(m — m’)) =0 (W) in to-
tal.

Calculating the length of a segment or a segment group (us-
ing Equation 9) is O(m') per solvable segment, and O(m'?) in
total. If the routing does not change and new delay measure-
ments arrive the complexity of recalculating the delays of all the
solvable segments is only O(m'?).

V. INTERNET MEASUREMENTS

In this section we describe the experimentation we did with
real Internet measurements. We used publically-accessible
t racer out e-ing machines as our Tracers, collected data, and
then applied our algorithm to this data.

A. Preliminary issues
A.1 Node identification

When faced with multiple tr acer out es from different
nodes on the Internet, the first thing we need to address is node
identification. The output of t r acer out e is normally a list of
IP addresses that were encountered along the path between the
end-points. However, using these IP addresses directly as node
identifiers creates two problems:

1. Routers are multi-homed by definition, so the same router
shows up with many different IP addresses inthe t r acer out e
data, depending on the direction in which the tracerout e
request packet arrived at the router. Typically (but not always)
a router will report back the IP address of its interface which
is closest to the t r acer out e originator. For our algorithm to
give meaningful results, we need to be able to identify all these
different IP addresses as belonging to the same node.

2. Many backbone carriers have clusters of routers in their ma-
jor hubs. A cluster is a collection of several routers, in very
close proximity (usually in the same building), connected by a
very fast network (e.g., an FDDI ring or ATM mesh). From our

perspective, every individual router in the cluster may show up
in the t r acer out e data, with its (many) IP addresses, and
often consecutive t r acer out es between the same end-points
go through different members of the cluster. Since our measure-
ments are inherently inaccurate, and the members of the cluster
are so close to each other, we argue that dealing with individ-
ual cluster-routers is too fine a granularity. The results are much
more meaningful if we treat all the members of a cluster as one
virtual node.

To deal with the first problem, we relied on DNS queries.
We found that 94% of the IP addresses that our t r acer out e
data discovered are registered in DNS. Our assumption was that
usually a router has many IP addresses but only one DNS name.
Thus, we translated all the IP addresses to their DNS names, and
used the names as node identifiers. Our experiments showed this
DNS-based node identification to be an effective heuristic.

We remark that, originally, we planned to use our algorithms
on the t r acer out e data from datasets D1 and D2 of [13].
Unfortunately, we were unable to reliably identify which IP ad-
dresses belonged to the same router from the stored datasets.
The datasets do not include the DNS names of the routers, and
querying today’s DNS failed on 61% of the IP addresses that
were discovered in the 1994 and 1995t r acer out es. Appar-
ently, most of the routers have been replaced or reconfigured
with different IP addresses over the last five years. Our inabil-
ity to use this data was the main motivation for our own data
collection effort.

Our solution to the second problem, of identifying and unify-
ing cluster-routers into virtual nodes is partly mechanized, and
partly art. We relied on two sources of information. One source
is that backbone carriers typically use a clear naming convention
(e.g., all the routers in AlterNet’s Chicago hub have DNS names
ending with chi . al t er . net). The other source is that some
carriers actually make their network structure and router naming
conventions publically available, (e.g., Sprintlink [2], AboveNet
[1]). Combining these sources, we were able to unify all the ma-
jor hubs that showed up in our data into virtual nodes.

A.2 Unidirectional or bidirectional variables?

As we discussed in Section IV-A, we needed to decide
whether to use uni- or bidirectional variables. The routing in
the Internet is asymmetrical, i.e., the return path from B to A
may be totally or partially disjoint from the route from A to B.
Unfortunately, t r acer out e only provides the list of routers
on one direction of the round trip.

Using unidirectional variables with this data would have re-
quired us to take the t r acer out e from A to B and splice it
with thet r acer out e from B to A to create the full round-trip
path. Using bidirectional variables was simpler, but we would
effectively be assuming that Internet routing is symmetric.

Our main goal was to explore the power of our algorithm,
rather than to compute highly accurate distances. Furthermore,
we wanted to be able to compare the algorithm’s performance
on Internet measurements with its performance on synthetic net-
works (see the next section), and the routing was assumed to be
symmetric on the synthetic networks. Therefore, we chose to
use bidirectional variables.

bungi . com

fnp. com
getnet.com
his.com

io.com

i server.com
Maps. vi X. com
wvi . com

publ i c. yahoo. com
tel com ari zona. edu
ber kel ey. edu

nd. edu

sdsc. edu

W sc. edu

above. net

abs. net
acadi a. net
commet com net

t hor. csu. net
odyssesy. cw s. net
www. denver . net
erie. net

gem net

gi p. net

j et.net

fudge. nortel . net
ntrnet. net

st eal t h. net
structured. net
tp. net

uen. net

vi neyar d. net
beacon. webt v. net

Fig. 2. The list of domains/hosts where Tracers used in the
Internet experiments resided.

B. Data collection

In this experiment we selected a set of machines (Tracers)
and conducted t r acer out e measurements between all pairs
of machines in this set. We used up to 33 publicly available
t racer out e servers (see list in Figure 2), out of the 96 US
sites available at www. t r acer out e. or g.

Using 33 Tracers, we conducted 33x32=1056 tr acer -
out es. Eight of them were not usable, e.g., one measurement
had a routing loop, and were discarded. The tracer out es
revealed the IP addresses of 2115 interfaces which we identi-
fied using DNS queries. Of these, 122 IP addresses where not
in the DNS database. Using the DNS names, we unified the IP
addresses into 652 virtual nodes (as described in the previous
section). We then proceeded to identify crossing points and seg-
mentize the paths. The result was a segment graph connected by
846 segments.

C. The algorithm’s performance

The system we fed our algorithm with had 1048 equations
(= 1056 —8) and 846 variables. The algorithm solved 593 of the
y variables (recall Equation (6)). Using procedure conput e-
sub- pat hs (Section IV-E) our algorithm successfully com-
puted 499 new distances (in addition to the original 1048 mea-
surements).

Despite the fact that the 33 Tracer sites were selected arbitrar-
ily, without any attempt to spread them out in any particular way,
we were able to compute the distances to an additional 33 nodes.

sj c. above. com
bos. al ter. net

chi.al ter. net

dca. al ter. net

df w. al ter. net

ew . al ter.net

hou. al ter. net

| ax. al ter. net

nyc. al ter. net

pao. al ter. net

chi cago. bbnpl anet . net

nyc. bbnpl anet . net

pal oal t 0. bbnpl anet . net

sanj ose. bbnpl anet . net

vi enna. bbnpl anet . net
sfo-bb. cerf. net
sanfranci sco. cw. net

west or ange. cw. net

nchi cago- cor e. nap. net

sl - bb*-ana-*. sprintlink. net
sl -bb*-chi-*.sprintlink. net
sl -bb*-nyc-*. sprintlink. net
sl - bb*-pen-*.sprintlink. net
sl -bb*-rly-*.sprintlink.net
sl - bb*-stk-*.sprintlink. net
sl -gws-che-*.sprintlink. net
i ad. verio. net
or.nw. veri o. net

nyc. veri o. net

pao. veri o. net

phl . veri o. net

pvu. veri o. net

sj c.verio. net

Fig. 3. The list of domains/sites to which distances were suc-
cessfully computed.

The list of these discovered “virtual-Tracer” nodes is given in
Figure 3. It includes nine out of the fifteen major hub sites of
AlterNet (UUNET) in North America (in Boston, MA, Chicago,
IL, Washington, DC, Dallas, TX, Newark, NJ, Houston, TX,
Los-Angles, CA, New-York, NY, and Palo-Alto, CA), and seven
of Sprintlink’s fourteen sites (in Anaheim, CA, Chicago, IL,
New-York, NY, Pennsauken, NJ, Relay, MD, Stockton, CA, and
Cheyenne, WY).

To give a taste of the power of our method, and also to
demonstrate how rich the calculated topology is, we describe
the details of the computed distances for a particular virtual
Tracer that our algorithm discovered: the AlterNet site in Los-
Angles, CA (l ax. al ter.net). For this site, our algo-
rithm calculated distances to 11 other virtual Tracers: chi .
alter.net, dca.alter.net, nyc.alter.net, ew.
alter.net, dfw alter.net, hou. al ter. net, pao.
al ter.net,sfo-bb. cerf.net,pao. verio. net,nw.
veri o. net, sjc.above. net; Our algorithm also com-
puted distances from the same site to 17 of the original Trac-
ers: thor.csu.net, trojan.neta.com sdsc. edu,
wvi . com yahoo. com ww. denver. net, naps. vi X.
com beacon. webtv. net, berkel ey. edu, xenon.
gem net, odyssesy.cw s.net, tel com ari zona.
edu, bungi . com donj on. f np. com uen. net, abs.
net, and j et. net. Overall, we managed to compute dis-
tances to 28 other nodes from this node. This is about the aver-
age for the data we collected.

V1. SYNTHETIC NETWORKS
A. Network generation models

We used two different network generators, to generate syn-
thetic networks with different characteristics. One generator
was based on work by Waxman [17], the other on work by
Faloutsos et al. [7]. The generation algorithms use the following
models.

EX model [17] — In the EX model, nodes are placed on a
plane, and the probability for two nodes to be connected by
a link decreases exponentially with the Euclidean distance be-
tween them. This nicely models intranets, but it is now debat-
able how well it models the Internet structure.

PL model [7] — Inthe PL model the node connectivity follows
a power-law rule: very few nodes have high connectivity, and
the number of nodes with lower connectivity increases expo-
nentially as the connectivity decreases. This model is based on
Internet measurements, where a node is an autonomous system
(AS).

We generated synthetic networks comprised of 600 and 1000
nodes for each of the network generation models. In these net-
works, we assigned Tracers randomly to the network nodes. We
varied the number of Tracers, and re-randomized their locations
in the network.

We assumed that routing is symmetric on the synthetic net-
works, and that the routes followed the shortest paths between
Tracers. Thus, for each generated network and each random
choice of Tracer locations, we solved the all-pairs-shortest-path
problem (limited to pairs of Tracers).

In order to compare the results on the synthetic networks with
the Internet measurements, we needed to vary the number of
real Tracers. We did this by taking our original 33 Tracers, and
choosing a random subset of them. We took the shortest paths
between the selected Tracers, and used those as the simulated
measurement paths.

To demonstrate the robustness of our algorithm, we injected
noise into the simulated delay measurements along each path.
We first chose a random delay d, for every link e in the network.
The delay d. served as the true (ideal) delay, that is not known
to the algorithm. We quantified the amount of injected noise by
a parameter 0 < XA < 1. For a given measurement path, we
assigned a measured delay value r. to every link e along the
path, and r. was chosen uniformly at random from the range
[de(1 — A) : de(1 4+ A)], and the measurement along the path
was then) r.. Note that the same link e may get different
values of r, for different paths it belongs to.

B. Results and interpretation

Figure 4 shows our algorithm’s performance on the synthetic
networks together with the results on the Internet measurements.

Figure 4(A) shows the number of non-Tracer nodes our al-
gorithm was able to discover (i.e., compute at least one distance
to). Figure 4(B) shows the same data as a percentage of the
number of Tracers. We can clearly see that in all cases, as more
Tracers are added, the algorithm discovers more non-Tracers—
in both absolute and relative numbers. The gains are substantial
in all cases, ranging between 70%-214%. We can also see that
the network generation model makes a big difference: for 30
Tracers, on the EX-generated networks our algorithm found 59

35

PL 1000 —e— '

30 - b

25 1

20 - b

Error in results (percent)

10 |- b

0 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Error in measurememts (percent)

Fig. 5. The root mean square error as a function of the injected noise. Each point
represents the average of ten experiments each on a 1000 node network with
30 Tracers.

and 64 additional nodes on average (198% and 214%), while
on PL-generated networks the algorithm discovered 21 and 28
nodes on average. We can also see that the algorithm’s per-
formance on Internet data is close to its performance on PL-
networks, lending some support to the argument that the power-
law rule is a good model for the Internet structure.

Figure 4(C) shows the number of new distances that our
algorithm succeed to calculate. Figure 4(D) shows the same
data as a percentage of the number of measurements (;) We
see from Figure 4(C) that, again, as more Tracers are added,
the algorithm computes more distances. Surprisingly, the al-
gorithm did significantly better on the Internet measurements
than on any of the synthetic networks, computing 415 additional
distance—more than double the number of additional distances
computed for the closest synthetic network, which is an EX net-
work. The number of computed distances grows roughly lin-
early with the number of Tracers ¢, however, Figure 4(D) shows
that the growth rate is slower than the number of measurements,
which is quadratic.

Finally, Figure 5 shows the effects of the injected noise on
our algorithm. Since we know the “true” distance for each link,
we can compare it to the computed distance. The figure shows
how the root of the mean square error in the computed distance
varies with the rate of injected noise A. For each instance, we
calculated the standard deviation of the error. The length of the
vertical bars are the average of the standard deviations over all
the simulation conducted with the same injected noise A\. We
can see clearly that on average, our algorithm slightly reduces
the measurement noise: e.g., for 30% injected noise, we found
an average of 27% error in the results. The significance here
is that despite its algebraic components, the algorithm does not
amplify measurement noise. Roughly speaking, the computed
distances are as noisy as the inputs.

VI1lI. CONCLUDING REMARKS

We presented an algorithm that extracts as much distance in-
formation as possible from end-to-end measurement data. The

Discovered Nodes
D ()]
o o

AO

N
o

0
0 10 20 30
Tracers
(A
500 ;
<~ EX 600
—>- PL 600
40011 A Internet
a O- EX 1000
% 300} | ©- PL 1000
o 0
a8 .
= 200 <
()
= g
100 1
0 L L
0 10 20 30
Tracers

©

Discovered Nodes (percent)

250

200t

150+

100t

50}

Tracers

(B)

80

60}

40}

New Distances (percent)

20 30
Tracers

©)

0 10

Fig. 4. Results of the algorithm testing on real and simulated data: (A) The number of virtual Tracers our algorithm discovered, as a function of the number of
Tracers. (B) The percentage (out of the number of Tracers) of virtual Tracers our algorithm discovered, as a function of the number of Tracers. (C) The number
of new distances that were calculated, as a function of the number of Tracers. (D) The ratio between the number of new distances that were calculated and the

number of number of measurements, as a function of the number of Tracers.

algorithm performed well on real and on synthetic network mea-
surements. This strong results are achieved using a practical and
reasonable computational complexity. We believe our results
can be readily used to improve mirror placement.

There are several research directions we intend to study. First,
one must understand the best way to handle noise and differ-
ent assumptions and noise models. Another important research
direction is to understand how to place Tracers in the network
in a way that will enable maximal gain from our algorithm. It
is also very interesting to study the inter-relations between our
algorithm and spanners [9] in order to achieve optimal data to
overhead ratio.

REFERENCES

Abovenet—global one-hop network.
net wor k/ net wor k. ht m .

Sprint internet services. htt p: // www. sprintlink. net/ maint/.
G. Almes, S. Kalidindi, and M. Zekauskas. A one-way delay metric for
IPPM, September 1999. Request for Comments: 2679.

Albert-LaszI6 Barabési and Réka Albert. Emergence of scaling in random
networks. SCIENCE, 286:509 — 512, 15 October 1999.

W. Cheswick, J. Nonnenmacher, Cenk Sahinalp, R. Sinha, and K. Varad-
han. Modeling internet topology. Technical Report Technical Memoran-
dum 113410-991116-18TM, Lucent Technologies, 1999.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
Cambridge, MA: MIT Press, 1990.

(1]

[2]
(3]

(4]
(5]

http://ww. above. net/

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In ACM SSGCOMM, August
1999.

Paul Francis, Sugih Jamin, Vern Paxson, Lixia Zhang, Daniel Gryniewicz,
and Yixin Jin. An architecture for a global internet host distance estimation
service. In |EEE Infocom’ 99, New-York, NY, USA, March 1999.

Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia
Zhang. On the placement of internet instrumentation. In IEEE Infocom
2000, Tel-Aviv, Israel, March 2000.

Sunil Kalidindi and Matthew J. Zekauskas. Surveyor: An infrastructure
for internet performance measurements. In INET'99, San Jose, CA, USA,
June 1999.

F. LoPresti, N.G. Duffield, J. Horowitz, and D. Towsley. Multicast-based
inference of network-internal delay distributions. UMass Computer Sci-
ence Technical Report TR99-55, November 1999.

K. Moore, J. Cox, and S. Green. Sonar - a network proximity ser-
vice. Internet-Draft, htt p: // www. net | i b. or g/ ut k/ proj ect s/
sonar / , February 1996.

V. Paxson. End-to-End Routing Behavior in the Internet.
Transactions on Networking, 5(5):601-615, 1997.

David Peleg and Alejandro A. Schaffer. Graph spanners. Journal of Graph
Theory, 13(1):99 - 116, 1989.

Y. Shavitt, X. Sun, A. Wool, and B. Yener. Computing the unmeasured:
An algebraic approach to Internet mapping. DIMACS TR 2000-15, 2000.
Wolfgang Theilmann and Kurt Rothermel. Dynamic distance maps of the
internet. In IEEE Infocom 2000, Tel-Aviv, Israel, March 2000.

Bernard M. Waxman. Routing of multipoint connections. |EEE Journal
on Selected Areas in Communications, 6(9):1617-1622, December 1988.

|IEEE/ACM

