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Abstract—Distance estimation is important to many Internet
applications. It can aid a World Wide Web client when selecting
among several potential candidate servers, or among candidate
peer-to-peer servers. It can also aid in building efficient overlay
or peer-to-peer networks that dynamically react to change in the
underlying Internet. One of the approaches to distance (i.e., time
delay) estimation in the Internet is based on placing tracer stations
in key locations and conducting measurements between them. The
tracers construct an approximated map of the Internet after pro-
cessing the information obtained from these measurements.

This work presents a novel algorithm, based on algebraic tools,
that computes additional distances, which are not explicitly mea-
sured. As such, the algorithm extracts more information from the
same amount of measurement data.

Our algorithm has several practical impacts. First, it can reduce
the number of tracers and measurements without sacrificing in-
formation. Second, our algorithm is able to compute distance esti-
mates between locations where tracers cannot be placed.

To evaluate the algorithm’s performance, we tested it both
on randomly generated topologies and on real Internet mea-
surements. Our results show that the algorithm computes up to
50%-200% additional distances beyond the basic tracer-to-tracer
measurements.

Index Terms—Delay inference, end-to-end measurements, net-
work tomography.

1. INTRODUCTION

A. Background

HE Internet is growing at a remarkable rate. However,
there is no central registry that allows users or planners to
track this growth. The basic characteristics of the Internet struc-
ture are only starting to be revealed [1]-[4]. Learning the exact
structure of the network seems to be an unrealistic target.
In many cases, however, an estimate of the distances between
nodes in the network is good enough. The most obvious
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case is when a client needs to select a service from one of
several servers located in distant locations. The World Wide
Web (WWW) is an example of such a situation, as more and
more popular sites open mirror sites that are geographically
scattered. Many methods have been suggested to aid clients in
selecting the best server (e.g., see [5]-[7]). All of them rely on
network delay as one of the most important metrics to consider.
In fact, Obraczka and Silva [7] have found that the single
most important measure in server selection is network delay.
Currently, however, the selection is usually done by the server,
which directs the client to a mirror that is expected to serve it
with the lowest delay (possibly also taking the server load into
account). A special case of the mirror site solution is the well
publicized content delivery network (CDN) [8], which in some
cases replicates information to dozens of mirror sites.

Distance estimation is important also when ones wishes
to optimize overlay networks. Shi and Turner [9] suggested
deploying multicast via overlay services, and suggested
several algorithms which optimize the end-to-end delay.
Ratnasamy et al. [10] suggested to optimize overlay networks
by binning together nodes whose relative delay is short. Other
overlay applications in which distance estimation is useful for
efficient operation include: application-layer anycasting [11],
distributed object repositories, hierarchical caching, etc.

IDMaps [12] is a project that attempts to solve this problem
by placing measurement stations (tracers) at key locations in
the Internet. These tracers periodically measure the distances
among themselves and to other regions of the network. For sim-
plicity, IDMaps uses each autonomous system (AS) as a re-
gion.! The tracers advertise their measurement information to
clients such as SONAR [13] or HOPS [12] servers, and these
servers use the measurements to construct an estimated dis-
tance map of the network. Nodes of an overlay network can
then query these topology servers regarding either distances,?
or more likely coordinates [14], [15] to be used in optimizing
their internal routing.

Measuring the distance (delay) between two IDMaps tracers
can be done in many ways. A seemingly obvious choice is to use
the traceroute program, which returns the IP addresses of
all the routers on the route to the destination and the round-trip
time (RTT) to each one of them. However, this approach suffers
from two limitations.

ILarge ASes such as backbone providers are further divided into smaller re-
gions.

2t was shown in [12] that while the triangle inequality does not hold in a large
percentage of the Internet triangles, its violation is minuscule and does not hurt
the distance approximation.

0733-8716/04$20.00 © 2004 IEEE
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Fig. 1. A motivation for discovering extra distances.

1) The RTT estimates returned by traceroute are not
accurate and are regarded only as very gross estimates of
the real RTTs.?

2) The overhead of performing traceroute is signifi-
cantly higher than that of the obvious alternative, which
is ping.

A simple and effective way to measure delay between two end
points is to use ping. A few time-spaced trains of ping probes
or application level probes can be used to measure the delay be-
tween end points quite accurately. For example, Zeitoun et al.
[16] found that using 8—12 probes is sufficient to achieve a good
propagation delay estimate for a wide range of interprobe dis-
tances. More sophisticated tools such as pathchar (see [17]
for a list) can map the delay, loss and other characteristics of an
entire path between two points. However, these tools typically
require hundreds of probes and several minutes to map a single
multihop path with acceptable accuracy [18], and are thus not
practical for massive usage.

Because of the above-mentioned reasons, the designers of
the IDMaps system chose to use ping trains as its main mea-
surement tool, coupled with a low frequency of traceroute
usage to discover the routes. We refer the reader to [12] and
[16] for further discussions regarding the design of IDMaps. In
turn, our algorithms are designed to extract as much distance
information as possible from this combination of ping and
traceroute data.

B. Contributions

In this paper, we present an algorithm that increases the effec-
tiveness of end-to-end distance measurements at no additional
overhead. Given end-to-end distance measurements (e.g., using
ping) and the routes along which the measurements were con-
ducted (e.g., using traceroute) our algorithm computes ad-
ditional distances, to and between intermediate nodes. The re-
sult is a more detailed distance map, which provides better dis-
tance estimation. For example, consider the situation depicted
in Fig. 1. We have three tracers, T1, T2, and T3, a client, C, and
two possible servers, S1 and S2. Using tracer-to-tracer measure-
ments and tracer-to-AS measurements, we estimate the distance
between the client and the servers by the length of the concate-
nated measured paths C—T1-T2—51 = 40 4 160 + 50 = 250
and C—T1-T3-S2 = 40 + 200 + 40 = 280. As a result, we
will wrongly identify S1 as the closest server to C. However, if
we can discover the additional distance T1—S2 = 150, we can

3Van Jacobson, the developer of t raceroute, also acknowledged this point
at his April 1997 talk at the Mathematical Sciences Research Institute, Berkeley,
CA, and thus, motivated the introduction of pathchar.

better estimate the distance from the client C to the server S2
over the path C—T1-S2 = 40 + 150 = 190, and identify S2
as the closest server.

An alternative way to look at the above is to notice that our al-
gorithm discovers distances to new nodes in the network which
can be used as dummy tracers in the approximated map. It was
shown [12], [19] that the accuracy of pointing a client to the
closest mirror increases with the number of tracers and that one
can select the number of deployed tracers based on the net-
work size and a target accuracy. Given that our algorithm dis-
covers dummy tracers one can deploy less tracers to get the same
accuracy.

The main idea behind our approach is that using the measure-
ment routes, one can identify nodes through which routes be-
tween several tracers pass. We refer to these nodes as crossing
points. A favorable arrangement of these points may enable us
to calculate from the end-to-end measurements the distances to
the crossing points and between them. In the worst case, the
number of crossing points can be zero or they can be arranged
in a way where no additional delay can be calculated. However,
we show that in the Internet this is not the case, using both sim-
ulated networks and Internet traces (from Oct. 1999).

Our algorithm is computationally efficient, and can handle
noisy measurements. It is adapted to handle two types of noise.
Two-sided noise appears when we are interested in the average
delay: in this case, a noisy measurement may be either higher or
lower than the true value. To deal with two-sided noise, we use a
least-squares approximation algorithm (cf. [20, Ch. 31]). One-
sided noise appears when we are interested in measuring the
minimal propagation delay: in this case, a noisy measurement
cannot fall below the true value. To deal with one-sided noise,
we use linear programming with additional slack variables.

To evaluate our algorithm, we studied its performance against
two varieties of synthetic randomly generated networks and also
against data we collected from the Internet. In all cases, our
algorithm succeeded in computing a significant number of dis-
tances between tracers and crossing points, and between dif-
ferent crossing points. For the Internet data, the algorithm dis-
covered additional distances to as many crossing points as the
original tracers, a 100% gain. For randomly generated networks,
the gain was over 200% when we used the Waxman method [21]
and about 50% when we used networks generated according to
the recently discovered power law on the node connectivity [1],
[22].

C. Related Work

Francis et al. described the IDMaps architecture and philos-
ophy of operation in [23]. This paper did not focus on optimizing
the measurement overhead and made only some simple obser-
vations about situations in which measurements can be saved.
Theilmann and Rothermel [24] suggested to use hierarchical
tracer structure to reduce the measurement overhead. A different
approach was suggested by Francis et al. [12] that showed how
spanners [25] can effectively reduce the amount of measure-
ment without sacrificing too much of the estimation effective-
ness. Our algorithm complements all of these approaches, by
extracting more information from the same data that is collected
by the various tracing strategies.
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The MINC project (cf. [26]) aims at using multicast infer-
ence to characterize network loss and queuing delay (rather than
propagation delay). To the best of our knowledge, all their pub-
lished results are for a single multicast tree, where they succeed,
like us, in calculating non measured parameters (queuing delay
and loss) in tree segments. Rubenstein et al. [27] suggested tech-
niques to identify link sharing among measurements, their tech-
niques were later improved by Harfoush er al. [28].

In a recent work, published after the early versions of this
paper [29], [30], Bradford er al. [31] suggested to use tracer-
oute for network discovery and looked at the marginal utility of
“tracerouting” to an increasing number of destinations from a
limited number of origins. They claim success in revealing large
portions of the Internet core, while they fail to reveal much of
the “horizontal” links outside of the core. Their result can ex-
plain why the nodes we revealed in our Internet experiment were
mostly core nodes.

The accuracy of using distance maps such as the ones gen-
erated by IDMaps for the mirror selection and related problems
was studied by Jamin et al. [19]. They found that in about 85% of
the cases the end to end measurements were sufficient to locate
the closest server to the client. Our algorithm can potentially in-
crease this number.

1) Organization: The rest of the paper is organized as fol-
lows. In the next section, we present the model and a simple
example of the idea behind the algorithm. In Section III, we
prove that on a network with a tree topology one can compute
the distances between all the crossing points. In Section IV, we
present the details of algorithm itself. In Sections V and VI, we
describe the evaluation of the algorithm using Internet data and
using synthetic data. We conclude with Section VII.

II. MODEL
A. Definitions

For simplicity of presentation, the network is modeled as an
undirected graph. The directed case is similar, and is discussed
in Section IV-A. The graph structure or size is unknown to the
algorithm and is used only for the purpose of analysis. We as-
sume that measurement stations (tracers) are placed at some
nodes of the graph. The routes between tracers are assumed to be
quasistatic, i.e., they change slowly enough to make their knowl-
edge valuable. On the other hand, the distance between nodes is
assumed to be dynamic. The distance may be the propagation
delay [32], [23], the average delay [24], hop count, or any other
measurable route characteristics. Since delay is the most com-
monly pursued characteristic, we interchangeably use the terms
distance, length, and delay.

We make no assumptions about the routing in the network.
The algorithm is easier to explain when the routing is symmetric
(and we assume this for the generated networks), but it works
just as well for asymmetric routing.

Definition 2.1: A measurement path is the route (list of
nodes) between two different tracers as defined by the network
topology and the underlying routing protocol.*

41f we assume RTT measurement and undirected variables for delay, a mea-
surement path between tracer A and tracer B is simply the route from A to B. We
can also use variables for each direction of every link and then a measurement
path is the concatenation of the two unidirectional paths between A and B.

@ ® © ©

Fig. 2. Five-node network example.

Definition 2.2: The measurement graph is the union of all
the measurement paths, i.e., the graph nodes are the union of all
the nodes along the measurement paths, and the graph edges are
the union of all the links comprising the measurement paths.

Definition 2.3: A non-tracer node whose degree in the mea-
surement graph is greater than two is called a crossing point.

Definition 2.4: A segment is a maximal subpath of a mea-
surement path, whose end-points are either tracers or crossing
points, that does not include an internal crossing point.

Definition 2.5: The segment graph is a graph whose nodes
are the tracers and crossing points, and has a link between two
nodes if there is a segment between these two nodes in the mea-
surement graph.

1) The Problem: Given a set of end-to-end delays between
tracers with their associated routes, find all the possible seg-
ments or groups of consecutive segments whose lengths can be
derived.

B. Example

The following simple example explains the terms defined
above and the problem statement. For simplicity, we assume that
the routing is symmetric and that the measurements are for the
round-trip delay. Thus, all the delays are expressed as round-trip
times.

Consider the five node network of Fig. 2, where tracers are
placed at nodes A, D, and E. Suppose that the following three
(round trip) distances are measured: A-D, E-D, and A-E. Using
traceroute, we obtain the three routes, A-B-C-D, E-B-C-D,
and A-B-E.

Note that it is clearly impossible to compute the distance on
the link B-C separately from the distance on the link C-D, since
every end-to-end measurement path that contains one of these
links also contains the other. This is the motivation for the defi-
nitions of segments and crossing points.

In the example, only node B is identified as a crossing point.
This defines three segments: s; = A—B,so = B—C—-D, and
s3 = E—B. Suppose that, using ping, the distances A-D, E-D,
and A-E were measured to be 4, 7, and 5, respectively.

The following three equations express the ping mea-
surement data, using the segments identified from the
traceroute information as variables

$1+s0=4
82+83:7
81+83:5. (1)

In this case, we have three linearly independent equations with
three variables, which we can solve to obtain the delay in each
of the three segments: s; = 1,52 = 3,s3 = 4. Thus, we are
able to compute all the distances to the crossing point B, even
though no tracer was placed in it. The gain for this example is
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100%: from three measurements we were able to compute three
additional distances, and discover distances to one additional
non-tracer node (a 33% gain).

III. TREE CASE

Suppose initially that each tracer measures the distances to all
other tracers (we will show later that this assumption is stronger
than necessary). Suppose, further, that the resulting measure-
ment graph is a tree, and let ¢ denote the number of tracers. We
prove that in this case, one can find the delay on all the segments
using a simple linear algorithm. For simplicity, we assume that
there is no noise in the measurements. The noise is easily treated
by using least-squares approximation to obtain a solution that
is the closest to all measurement points (more on this issue in
Section IV).

We first note that, with no loss of generality, all the tracers
can be assumed to be placed in leaves of the tree, and not in in-
ternal nodes. Otherwise, the tree can be cut at the internal node
which is a tracer (with this node duplicated to all the resulting
subtrees) and each subtree can be treated independently. An in-
ternal node in the tree with degree greater than 2 is a cross point,
and must be part of, at least, two measurement routes by its def-
inition. However, the existence of two routes indicates that, at
least, a third route passes through the internal node, as stated in
the following lemma.

Lemma 3.1: The number of measurement routes passing
through a crossing point is at least three in a measurement
graph with tree topology.

Proof: Consider a crossing point c. By its definition there
are, at least, three subtrees connected to it. Let /1, [, and I3 be
three leaves each in a different subtree. Obviously, the routes
between any pair of these leaves must pass through c. ]

Fact 3.2: If the measurement graph is a tree, then the seg-
ment graph derived from the measurements is also a tree, which
we call the segment tree. By definition of a segment, internal
nodes of the segment tree cannot have degree 2.

Fact 3.3: In every segment tree with more than two nodes
there exists at least one internal node with degree d > 3 that is
connected directly to, at least, d — 1 leaves. We refer to such an
internal node as an outpost.

Theorem 3.4: The lengths of all the segments in the segment
tree can be computed.

Proof: Consider a crossing point, ¢, with degree d that is
an outpost. By Fact 3.3, at least one such a crossing point exists,
and it is connected directly to d — 1 leaves lo, ..., l4. Let [; be
some leaf node in the part of the tree other than {lo, ..., 14, c}.
The routes between every pair of the leaves [y,...,l; passes
through c. Let s; be the length of the route between cand [;,7 =
1,2,3,...,d; and let the measurements between /; and /; 1 be
b; fori = 1,2,3,...,d — 1, and the measurements between
l; and l4 be by. Obviously, we can solve the following linear
system and obtain the length of so,s3, ..., s4, which are the
segments that connect c to the leaves ls,l3, ... 14

’

s1 + 8o =b
S22 + 83 = by

S1 +

This way one can obtain the length of all the segments that con-
nect all the leave nodes to the crossing point c.

Removing nodes Is,...,l; from the tree does not change
the degree of any internal node (except for the outpost) and,
thus, Fact 3.3 holds for this tree, as well, if it contains more
than two nodes, enabling the repetitive application of the above
procedure.

After the leaves Is, . . ., [4 are removed, we are left with a tree
with a leaf node (¢) which is not a tracer. However, we can use
any of its (removed) leaves, say [2, as a measurement proxy.
The distance between some tracer z and ¢ can be computed by
subtracting the newly computed distance between ¢ and [5 from
the distance between the tracers z and /5.

In the final stage of the algorithm, we are left with a star and
there all the star segments can be easily calculated with the same
equation. ]

Theorem 3.5: All the segment lengths in the tree can be
found using O(t) measurements.

Proof: In the proof of Theorem 3.4, we used d measure-
ments to obtain the length of every d — 1 segments iteratively.
The binary tree is the case that maximizes the number of
measurements we need due to two reasons. First, it maximizes
the number of segments in a tree with ¢ leaves, which is 2t.
Second, the binary tree gives us the worst measurement to gain
ratio, i.e., d/(d — 1) = 3/2. Thus, we need no more than 3¢
measurements. |

Note, of course, that not every set of O(t) measurements is
sufficient for finding all the segment lengths.

IV. ALGORITHM

In this section, we describe our algorithm for general net-
works. We reiterate that the only information available to the al-
gorithm is the set of end-to-end measurements. We do not make
any assumptions about the structure, connectivity, or size of the
network. The algorithm comprises of several phases, which we
describe in the following sections.

A. Interpreting the Measurements

Before the algorithm itself can begin its work, we need to
decide how we wish to interpret the measurements. In particular,
we need to define our variables, so that we can write equations
that correspond to the measurements. For a link (A, B), two
choices exist. We can either define two unidirectional variables,
one for the delay from A to B and one for the delay from B
to A; or we can define a single bidirectional variable, for the
round-trip delay A-B-A.

The decision depends on the nature of the measurements
available to us. If the measurements are truly unidirectional,
then we should clearly use unidirectional variables. If the
measurements are round-trip measurements, and the routing
is symmetric, then we can use bidirectional variables. For
round-trip measurements with asymmetric routing, which is
the situation most appropriate for traceroute and ping
Internet measurements, we can use either unidirectional or
bidirectional variables. Both possibilities have pros and cons.
In Section V, we describe how we interpreted the measurements
in our experimentation.
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Another point to consider is the interpretation of the delay
values that are measured. The simplest and least informative
case is when a measurement value is simply the result of a
single ping. In this case, our algorithm would compute a “snap-
shot” of the delays in the system. However, as discussed in
[23], it is more likely that a set of measurements will be taken
between every two tracers. Then, the delay value that appears
on the right-hand side of our equations can be either the av-
erage delay in the set, or the minimal delay in the set (the latter
is appropriate when we are trying to estimate the propagation
delay and to ignore the queuing delays). Our algorithm is es-
sentially indifferent to the meaning of the delay value, however,
this issue has some implications when dealing with noisy data
(see Section IV-D).

B. Segmentation and Writing the Equations

Once we decided upon the definitions of our basic variables,
in principle, we can write a linear system of equations that de-
scribes the measurements. The left-hand side of each equation is
the sum of all the variables (uni- or bidirectional) corresponding
to the links that appear in a particular measurement path. The
right-hand side of each equation is the measured delay for this
path.

However, as we remarked in the discussion of the example in
Section II-B, there are variables that clearly cannot be solved.
Thus, we need to switch from dealing with individual links to
dealing with segments (recall Definition 2.4). For this, we need
to identify all the crossing points (Definition 2.3). Once we iden-
tify the crossing points, we define our variables per segment, and
write the equations in terms of these segment variables. As we
discussed in the previous section, the segment variables can be
either unidirectional or bidirectional.

1) Notation: Let n denote the number of measurements
and let m denote the number of segments that remain after
the crossing points have been identified. We use x; for
7 = 1,...,m to denote the variables representing the lengths
of the m segments, and b; for ¢+ = 1,...,n to denote the

’

lengths of the given measurement. Let a;; for i = 1,..., n

’

and j = 1,...,m be coefficients such that a;; = 1 if the jth
segment appears on the sth measurement path, and a;; = 0,
otherwise. The general form of the equations obtained after

segmentation is as follows:

a1171 + a12%2 + - - + AT, = by

2171 + A22T2 + -+ + A2 Ty, = bo

121 + an2Z2 + - - + ApmTm = by. 2)

Let A = {a;;} be the n X m matrix induced by the equa-
tions, let x = (z1,..., %) be the vector of variables, and let
b = (b1, ..., b,) be the vector of measurements. Then, we can
rewrite (2) in matrix form as

Ax = b. 3)

C. Solving as Much as Possible

It is highly unlikely that the linear system of (3) is solv-
able. Typically, it is underdefined for some variables and overde-
fined for others. Our goal is to extract as much information as
possible from the given measurements (we show no one can
do better in Section IV-F). Therefore, rather than trying (and
failing) to solve (3), we transform the system of equations into
a new system that isolates all that is solvable.

The transformation is performed as follows. We perform
Gauss-elimination steps on the columns of A, until we to
transform A into the matrix A’ of the following form:

0O --- 0 0 --- 0

* 1 0 0 0

0 0 0

A = 1 0 0
* 0 0

* ok * * 0 --- 0

(“+” means “any number”). Note that the rows of A may also
need to be permuted to reach this structure. Permuting rows of
A is equivalent to reordering the measurements. Let m’ < m
denote the number of nonzero columns in A’. Clearly, the left-
most m/ columns of A’ are linearly independent.

Note that performing Gauss-elimination on the columns of A
is equivalent to multiplying A on the right by a regular m x
m transformation matrix. Let T" be this transformation matrix.
Furthermore, T can be computed incrementally, as the Gauss
elimination progresses, using standard linear algebra. In matrix
notation, we have

A= AT. 4)
We now define a new vector of unknowns, y = (y1,...,Ym)
using the same transformation, i.e.,
x="Ty. 5)
Then, plugging (4) and (5), and using (3), we can write
Ay = ATy = Ax = b. (6)

We end with n equations in the y; variables, that are defined by
the matrix A’. Clearly, the y;’s with 1 < j < m/ are solvable
from the new equations: The top left mn’ x m’ submatrix of A’
is lower triangular and of rank m'. However, these are the only
y; variables that can be solved: columns m’ < j < m in A’ are
all zero.

D. Dealing With Noise

It is highly unlikely that m’ = n and that the new system of
equations defined by

Ay =b @)

is solvable. Typically, m’ < n, and the system of equations
is overdefined. In an ideal situation, when the data contains no
measurement noise, all n equations would be mutually consis-
tent. In reality, however, noisy data would make the over-de-
fined system algebraically unsolvable. To deal with the mea-
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surement noise, we solve (7) for variables y; (1 < j < m/)
using least-squares approximation (cf. [20, Ch. 31]).

In the absence of a detailed characterization of the noise,
using least-squares is the standard noise elimination technique.
In our case, the noise is dominated by the delays injected by
each router along the path. If the router delays are independent
and the path is long enough, the central limit theorem tells
us that their sum approximates a normal distribution, i.e.,
the noise is Gaussian. For Gaussian noise it is known that
the least-squares method provides the maximum-likelihood
estimator (MLE). Therefore, we believe that the least-squares
method is a reasonable noise elimination method for the
problem at hand.

Using the least-squares method we find the values of y; (1 <
j < m/) that minimize the function

> wi | > aly;—bs ®)
g J

where w;’s are some positive weights. In our implementation,
we used w; = 1 for all 7. Other choices of w; are also possible,
e.g., using w; = 1/b?, but using them would make sense only if
we had a more detailed model of the origin of noise. We leave
this issue for future work.

Note that the least-squares approximation inherently assumes
that the error in the equations is two-sided: the measured delay
could be either too high (positive noise) or too low (negative
noise). Whether this assumption is appropriate depends on the
meaning of the b; values (recall Section IV-A). In particular, if
b; is the minimal value selected from a set of measurements,
then allowing for negative error may be an invalid choice. In
such a case, we can solve (7) using linear programming. Let
e = (e1,...,ey,) be a vector of error (or slack) variables. We
can rewrite (7) as an error minimization problem

Ay+e=b

Minimize m;fa,x{ei} s.t. {y S0.e>0

This is a linear program, which allows only positive noise. It can
be solved using any LP solver. Exploring this method of dealing
with noise is also left for future research.

We emphasize, though, that our algorithm introduces no ad-
ditional errors. This is the case regardless of the method we use
for dealing with noise. In an ideal case where measurements
contain no noise, solving equations 1, ..., m’ in (7) suffices to
compute the exact values of y;.

E. Back to Subpaths

At this point, we have solved (7), which gives us the values
of the y; variables for i = 1,...,m’. However, these y;’s do
not directly correspond to lengths we are actually interested
in. Recall that our original x; variables, that represent segment
lengths, are related to the ;s via (5): x = 1'y. The elements of
matrix 7" are not necessarily positive or even integral, since it is
the byproduct of the Gauss elimination. Therefore, we need to
translate the solution from the y domain back to the x domain.

It is not immediately obvious how to perform this reverse
translation. Clearly, not every segment length x; can be com-
puted, since only m’ < m of the 1y;’s were solved. However,

in many cases, we can bypass this problem, using the following
observation. Suppose z; and x;, represent consecutive segments
on some measurement path, between A-B and B-C, respectively.
Even if we are unable to compute x; and zj, separately, we may
well be able to compute their sum z; + x,, which represents the
delay on the concatenated subpath A-C. The same observation
holds for any subpath of a measurement path.

Consider a subpath of one of the measurement paths, which
consists of several consecutive segments. Let these segments
correspond to variables x;, ,...,x;,. Then, the delay p on this
subpath can be expressed as the sum of z;,, ..., z;, (Whichis a
0-1 linear combination of z1, ..., z,,). We can write this com-
bination as a product of a O—1 row vector ¢ and the column
vector x, where ¢;, = 1fork = 1,...,fand ¢, = O else-
where. Formally

m
p=cC-X= E CiZj.
J=1

Note that this representation works for individual segments as
well: variable x; can be expressed using a vector ¢ which is zero
everywhere and has a one in coordinate j.

We would like to check whether the delay p on the subpath is
solvable. Using (5), we can write

pmex=ely =Y ety =Y (z T) s ©

ij j i
Thus, p can be solved if and only if the coefficients of y; for j >
m' are all 0, since these are the y; variables we were unable to
solve. In other words, the delay p on a subpath can be computed

if and only if

S eTy=0  Vji>m' (10)

If the condition in (10) holds, the solution for p is obtained by
plugging in the already solved y; (1 < j < m/) values in (9).
In summary, we need to perform the following procedure after
solving variables y1, ..., Y, in (7):

Procedure compute-subpaths:

For each measurement path M;,« =1,...,n
For each subpath p of M; consisting of segments
Ljys---53T5,
Setc;, =1fork =1,...,¢and ¢, = 0 elsewhere.

If Y, ¢;T;; = 0,Y4 > m/ Then
Compute p using (9)
Else p cannot be solved.

FE. Completeness

A distance, by the metric definition (delay), is a linear com-
bination of end-to-end distances. Using linear algebra, since T’
is nonsingular, a subpath can be expressed as linear combina-
tion of the given distances if and only if it can be expressed as
linear combination of entries of A’y. Since the rank of A’ is
m' and only the first m’ columns of A’ are nonzero, a subpath
can be expressed as linear combination of the given distances
if and only if it can be expressed as linear combination of ¥;’s
(i =1,...,m'), which can be solved by our algorithm.
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G. Example of the Algorithm Operation

To get a better understanding of our algorithm, we include an
annotated run of the algorithm on the network shown in Fig. 3.
The network has four tracers, at A, B, C, E. The routes between
the tracers A, B, and C are symmetric and pass through node D.
These three tracers measure the three round-trip delays among
themselves. Tracer E only measures its round-trip delay to A.
However, the routing between E and A is asymmetric; the route
from E to A passes through B, while the route from A to E uses
the direct link A-E.

For simplicity, we assume no measurement errors in the delay.
Assume that the four round-trip measurements yield the fol-
lowing numbers: A «< B =7,A - C =8B < C =9, and
A — E = 11. There are eight directional links that appear in the
measurement graph: AD, BD,CD,DA,DB,DC,EB, AE.

Let x = (AD,BD,CD,DA,DB,DC,EB,AE), and
b = (7,8,9,11). Then, we can write the following matrix
equation:
1 10 1 1 0 0 O 7
1 01 1 0 1 00 8
01101100 |9 (i
01 01 0 0 1 1 11

It is easy to see that two column pairs are identical. Columns
3 and 6 correspond to links CD and DC, and are united to a
segment representing C-D-C (which is bidirectional). The other
identical pair, columns 7 and 8, corresponds to links EB and AE.
The fact that they are identical means that these two links always
appear together in the equations and are united to a (unidirec-
tional) segment A-E-B. The result is a smaller linear equation
system

12)

X =

—_ O =
=)

7
/ 8
9

=
_0 O O

1
1
0
1

S O = =

0 0 11

where x’ = (AD,DB,BD,DA,CD + DC,EB + AFE).
Next, the matrix (A) in (12) is triangulated using Gauss elim-
ination. The result is the matrix

1 0 0 0 0 O
, |1 =10 0 0 O
AT= 0O 1 2 0 0 0 (3)
0O 0 01 00
with the transformation matrix
1 -1 -1 -1 1 1
0 1 1 0 -1 0
0 O 0 0 1 0
T= 0 O 0 1 -1 1 (14)
0 0 1 0 0 0
0 0 0 0 0 1

Solving the equation A’y = b, we gety = (7, —1,5, 11, %, %),
where “*”” means an arbitrary value.

Now, we can check the solvability of the various seg-
ments. For example, for the unidirectional segment AD
¢ = (1,0,0,0,0,0) and, thus, ¢ = (1,-1,-1,-1,1,1),
which shows that we cannot compute the length of the uni-
directional link AD by itself; the last two entries of c7' are
nonzero. However, checking for the bidirectional segment
pair AD + DA, for which ¢ = (1,0,0,1,0,0), we get
cT = (1,-1,-1,0,0,0), which is solvable since the last two
entries are zero. We get AD + DA = yo —y; —y2 = 3. In
the same way, we also get: BD + DB = y; + y» = 4 and
CD + DC = y3 = 5. These are all the additional segments we
can obtain beyond the original four measurements, a 75% gain,
with one additional nontracer node (D) discovered. Note that
the single measurement . < A did not provide us with any
extra information beyond its own round-trip delay.

H. Algorithm Complexity

Starting with ¢ tracers one may reveal N nodes. Assuming
that the equivalence list is kept in a hash table, converting the NV
nodes to their equivalent is a linear process. Using different hash
tables one can identify the crossing points and the segments in
O(N). Writing the n = O(#?) equations is O(mn), where m is
the number of segments.

Triangulating the equations with the Gaussian elimination re-
quires O(nmm'), where m' is the number of solvable segments.
Each column triangulation requires O(nm) operation and the
process stops when no more lines can be triangulated, i.e., after
m’ iterations.

Checking which of the segments or segment groups are solv-
able requires less than O(nm?). Next we give a more precise
analysis. Under the assumption that the same segment are not
shared by too many traces, there are O(m /n) segments in a trace
on average. This is a small number since O(m) = O(t?) =
O(n), thus, the average cannot be much different from the max-
imum number of segments per path. Since we check whether
any possible consecutive combination of segments in a path can
be solved, we perform O(m?) examinations of the condition in
(10), where m, is the number of segments in a path. As a result,
the cost of performing this stage is O((m/n)?-m(m—m')), per
path, and O(n(m/n)% - m(m —m')) = O((m3(m —m’))/n)
in total.

Calculating the length of a segment or a segment group [using
(9)] is O(m') per solvable segment and O(mn'?) in total. If the
routing does not change and new delay measurements arrive
the complexity of recalculating the delays of all the solvable
segments is only O(m’?).

V. INTERNET MEASUREMENTS

In this section, we describe the experimentation we did
with real Internet measurements. We used publicly accessible
traceroute-ing machines as our tracers, collected data, and
then applied our algorithm to this data.
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A. Preliminary Issues

1) Node Identification: When faced with multiple
traceroutes from different nodes on the Internet, the
first thing we need to address is node identification. The output
of traceroute is normally a list of IP addresses that were
encountered along the path between the end-points. However,
using these Internet protocol (IP) addresses directly as node
identifiers creates two problems.

1) IP address are allocated to interfaces rather than to
routers, so the same router shows up with many different
IP addresses in the traceroute data, depending
on the direction in which the traceroute request
packet arrived at the router. Typically (but not always),
a router will report back the IP address of its interface
which is closest to the traceroute originator. For our
algorithm to give meaningful results, we need to be able
to identify all these different IP addresses as belonging
to the same router.

2) Many backbone carriers have clusters of routers in their
major hubs. A cluster is a collection of several routers, in
very close proximity (usually in the same building), con-
nected by a very fast network (e.g., an FDDI ring or ATM
mesh). From our perspective, every individual router in
the cluster may show up in the traceroute data, with
its (many) IP addresses, and often consecutive tracer-
outes between the same end points go through different
members of the cluster. Since our measurements are in-
herently inaccurate and the members of the cluster are so
close to each other, we argue that dealing with individual
cluster routers is too fine a granularity. The results are
much more meaningful if we treat all the members of a
cluster as one virtual node.

To deal with the first problem, we relied on domain name
system (DNS) queries. Our assumption was that a router usu-
ally has many IP addresses but only one DNS name. Thus, we
translated all the IP addresses to their DNS names, and used
the names as node identifiers. We found that 94% of the IP ad-
dresses that our traceroute data discovered are registered
in DNS. For the remaining 6% of IP addresses we used the IP
address itself as the node identifier. Our experiments showed
this DNS-based node identification to be an effective heuristic.
Govidan and Tangmunarunkit [33] suggest other methods for
alias resolution based on probing routers with user datagram
protocol (UDP) packets destined to a nonexistent port. Using
their method in the context of our algorithms is left as a topic
for further research.

We remark that, originally, we planned to use our algorithms
on the traceroute data from datasets D1 and D2 of [34].
Unfortunately, we were unable to reliably identify which IP ad-
dresses belonged to the same router from the stored datasets.
The datasets do not include the DNS names of the routers and
querying today’s DNS failed on 61% of the IP addresses that
were discovered in the 1994 and 1995 traceroutes. Appar-
ently, most of the routers have been replaced or reconfigured
with different IP addresses over the last five years. Our inability
to use this data was the main motivation for our own data col-
lection effort.

Our solution to the second problem, of identifying and uni-
fying cluster routers into virtual nodes is partly mechanized and
partly art. We relied on two sources of information. One source
is that backbone carriers typically use a clear naming convention
(e.g., all the routers in AlterNet’s Chicago hub have DNS names
ending with chi.alter.net). The other source is that some
carriers actually make their network structure and router naming
conventions publicly available, (e.g., Sprintlink [35], AboveNet
[36]). Combining these sources, we were able to unify all the
major hubs that showed up in our data into virtual nodes. Sim-
ilar solutions were use by Paxson in his Ph.D. dissertation [37].

2) Unidirectional or Bidirectional Variables?: As we dis-
cussed in Section IV-A, we needed to decide whether to use uni-
or bidirectional variables. The routing in the Internet is some-
times asymmetrical, i.e., the return path from B to A may be
totally or partially disjoint from the route from A to B. Unfor-
tunately, traceroute only provides the list of routers on one
direction of the round trip.

Using unidirectional variables with this data would have re-
quired us to take the traceroute from A to B and splice it
with the traceroute from B to A to create the full round-trip
path. Using bidirectional variables was simpler, but we would
effectively be assuming that Internet routing is symmetric.

Our main goal was to explore the power of our algorithm,
rather than to compute highly accurate distances. Furthermore,
we wanted to be able to compare the algorithm’s performance
on Internet measurements with its performance on synthetic net-
works (see Section VI), and the routing was assumed to be sym-
metric on the synthetic networks. Therefore, we chose to use
bidirectional variables.

B. Data Collection

In this experiment, we selected a set of machines (tracers)
and conducted traceroute measurements between all
pairs of machines in this set. We used 33 publicly available
traceroute servers (see list in Fig. 4), out of the 96 U.S.
sites available at www.traceroute.org.

Using 33 tracers, we conducted 33 x 32 = 1056 tracer-
outes. Eight of them were not usable, e.g., one measurement
had a routing loop, and were discarded. The traceroutes
revealed the IP addresses of 2115 interfaces which we identi-
fied using DNS queries. Of these, 122 IP addresses where not
in the DNS database. Using the DNS names, we unified the IP
addresses into 652 virtual nodes (as described in the previous
section). We then proceeded to identify crossing points and seg-
mentize the paths. The result was a segment graph connected by
846 segments.

C. Algorithm’s Performance

The system we fed our algorithm with had 1048 equa-
tions (=1056 — 8) and 846 variables. The algorithm solved
593 of the y variables [recall (6)]. Using procedure com-
pute-subpaths (Section IV-E), our algorithm successfully
computed 499 new distances (in addition to the original 1048
measurements).
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bungi.com
fmp.com
getnet.com
his.com

io.com
iserver.com
maps.vix.com
wvi.com
public.yahoo.com
telcom.arizona.edu
berkeley.edu
nd.edu

sdsc.edu
wisc.edu
above.net
abs.net
acadia.net
comnetcom.net
thor.csu.net
odyssesy.cwis.net
www.denver.net
erie.net

gem.net

gip.net

jet.net
fudge.nortel .net
ntrnet.net
stealth.net
structured.net
tp.net

uen.net
vineyard.net
beacon.webtv.net

Fig. 4. List of domains/host where tracers resided.

Despite the fact that the 33 tracer sites were selected arbi-
trarily, without any attempt to spread them out in any partic-
ular way, we were able to compute the distances to an additional
33 nodes. The list of these discovered “virtual-tracer” nodes is
given in Fig. 5. It includes nine out of the 15 major hub sites of
AlterNet (UUNET) in North America (in Boston, MA, Chicago,
IL, Washington, DC, Dallas, TX, Newark, NJ, Houston, TX,
Los-Angles, CA, New-York, NY, and Palo-Alto, CA), and seven
of Sprintlink’s fourteen sites (in Anaheim, CA, Chicago, IL,
New York, NY, Pennsauken, NJ, Relay, MD, Stockton, CA, and
Cheyenne, WY).

To give a taste of the power of our method, and also to
demonstrate how rich the calculated topology is, we describe
the details of the computed distances for a particular virtual
tracer that our algorithm discovered: the AlterNet site in Los
Angles, CA lax.alter.net. For this site, our algorithm calculated
distances to 11 other virtual tracers: chi.alter.net,
dca.alter.net, nyc.alter.net, ewr.alter.net,
dfw.alter.net, hou.alter.net, pao.alter.net,
sfo-bb.cerf.net,nw.verio.net, sjc.above.net;
Our algorithm also computed distances from the same
site to 17 of the original tracers: thor.csu.net,
trojan.neta.com, sdsc.edu, wvi.com,
yvahoo.com, www . denver .net, maps.vix.com,
beacon.webtv. net, berkeley.edu, xenon.gem.
net, odyssesy.cwis.net, telcom.arizona.edu,
bungi. com, donjon.fmp.com, uen.net, abs.net,
and jet.net. Overall, we managed to compute distances to

sjc.above.com

bos.alter.net

chi.alter.net

dca.alter.net

dfw.alter.net

ewr.alter.net

hou.alter.net

lax.alter.net

nyc.alter.net

pao.alter.net
chicago.bbnplanet .net
nyc.bbnplanet .net
paloalto.bbnplanet.net
sanjose.bbnplanet.net
vienna.bbnplanet.net
sfo-bb.cerf .net
sanfrancisco.cw.net
westorange.cw.net
nchicago-core.nap.net
sl-bb*-ana-*.sprintlink.net
sl-bb*-chi-*.sprintlink.net
sl-bb*-nyc-*.sprintlink.net
sl-bb*-pen-*.sprintlink.net
sl-bb*-rly-*.sprintlink.net
sl-bb*-stk-*.sprintlink.net
sl-gw*-che-*.sprintlink.net
iad.verio.net
or.nw.verio.net
nyc.verio.net

pao.verio.net

phl.verio.net

pvu.verio.net

sjc.verio.net

Fig. 5. List of domains/sites to which distances were successfully computed.

28 other nodes from this node. This is about the average for
the data we collected.

VI. SYNTHETIC NETWORKS
A. Network Generation Models

We used two different network generators, to generate syn-
thetic networks with different characteristics. One generator was
based on work by Waxman [21], the other one is the Inet simu-
lator from University of Michigan [22] which is based on work
by Faloutsos ef al. [1]. The generation algorithms use the fol-
lowing models.

1) EX Model [21]: In the EX model, nodes are placed on
a plane, and the probability for two nodes to be connected by
a link decreases exponentially with the Euclidean distance be-
tween them. This nicely models intranets, but it is now debatable
how well it models the Internet structure.

2) PL Model [1]: In the PL model, the node connectivity
follows a power-law rule: very few nodes have high con-
nectivity, and the number of nodes with lower connectivity
increases exponentially as the connectivity decreases. This
model is based on Internet measurements, where a node is an
autonomous system (AS).

We generated synthetic networks comprised of 600 and 1000
nodes for each of the network generation models. In these net-
works, we assigned tracers randomly to the network nodes. We
varied the number of tracers and rerandomized their locations
in the network.
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Fig. 6. Results of the algorithm testing on real and simulated data. (a) The number of virtual tracers our algorithm discovered, as a function of the number of
tracers. (b) The percentage (out of the number of tracers) of virtual tracers our algorithm discovered, as a function of the number of tracers. (c) The number of new
distances that were calculated, as a function of the number of tracers. (d) The ratio between the number of new distances that were calculated and the number of

measurements, as a function of the number of tracers.

We assumed that routing is symmetric on the synthetic net-
works, and that the routes followed the shortest paths between
tracers. Thus, for each generated network and each random
choice of tracer locations, we solved the all-pairs-shortest-path
problem (limited to pairs of tracers).

In order to compare the results on the synthetic networks with
the Internet measurements, we needed to vary the number of
real tracers. We did this by taking our original 33 tracers and
choosing a random subset of them. We took the shortest paths
between the selected tracers and used those as the simulated
measurement paths.

To demonstrate the robustness of our algorithm, we injected
noise into the simulated delay measurements along each path.
We first chose a random delay d. for every link e in the network.
The delay d. served as the true (ideal) delay, that is not known
to the algorithm. We quantified the amount of injected noise by
a parameter 0 < A < 1. For a given measurement path, we
assigned a measured delay value 7. to every link e along the
path, and r. was chosen uniformly at random from the range
[de(1 — A) : de(1 + A)], and the measurement along the path
was then ) _r.. Note that the same link e may get different
values of r. for different paths it belongs to.

B. Results and Interpretation
Fig. 6 shows our algorithm’s performance on the synthetic
networks together with the results on the Internet measurements.

Fig. 6(a) shows the number of non-tracer nodes our algorithm
was able to discover (i.e., compute at least one distance to).
Fig. 6(b) shows the same data as a percentage of the number of
tracers. We can clearly see that in all cases, as more tracers are
added, the algorithm discovers more non-tracers—in both abso-
lute and relative numbers. The gains are substantial in all cases,
ranging between 70%—214%. We can also see that the network
generation model makes a big difference: for 30 tracers, on the
EX-generated networks our algorithm found 59 and 64 addi-
tional nodes on average (198% and 214%), while on PL-gen-
erated networks the algorithm discovered 21 and 28 nodes on
average.

Fig. 6(c) shows the number of new distances that our algo-
rithm succeed to calculate. Fig. 6(d) shows the same data as a

t
percentage of the number of measurements ( 9 ). We see from

Fig. 6(c) that, again, as more tracers are added, the algorithm
computes more distances. Surprisingly, the algorithm did sig-
nificantly better on the Internet measurements than on any of
the synthetic networks, computing 415 additional distances (for
30 tracers)—more than double the number of additional dis-
tances computed for the closest synthetic network, which is an
EX network. The number of computed distances grows roughly
linearly with the number of tracers ¢, however, Fig. 6(d) shows
that the growth rate is slower than the number of measurements,
which is quadratic in ¢.
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Fig. 7. The root mean square error as a function of the injected noise. Each
point represents the average of ten experiments each on a 1000 node network
with 30 tracers.

Finally, Fig. 7 shows the effects of the injected noise on our
algorithm. Since we know the “true” distance for each link, we
can compare it with the computed distance. The figure shows
how the root of the mean square error in the computed distance
varies with the rate of injected noise A. For each instance, we
calculated the standard deviation of the error. The length of the
vertical bars are the average of the standard deviations over all
the simulation conducted with the same injected noise A. We
can see clearly that on average, our algorithm slightly reduces
the measurement noise: e.g., for 30% injected noise, we found
an average of 27% error in the results. The significance here
is that despite its algebraic components, the algorithm does not
amplify measurement noise. Roughly speaking, the computed
distances are as noisy as the inputs.

VII. CONCLUDING REMARKS

We presented an algorithm that extracts as much distance in-
formation as possible from end-to-end measurement data. The
algorithm performed well on real and on synthetic network mea-
surements. These strong results are achieved with a practical
and reasonable computational complexity. We believe our re-
sults can be readily used to improve mirror placement.

There are several research directions we intend to study. First,
one must understand the best way to handle noise and different
assumptions and noise models. Another important research di-
rection is to understand how to place tracers in the network
in a way that will enable maximal gain from our algorithm.
It is also very interesting to study the interrelations between
our algorithm and spanners [32] in order to achieve an optimal
data-to-overhead ratio.
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