
1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3071441, IEEE
Transactions on Network and Service Management

1

FlowPic: A Generic Representation for Encrypted
Traffic Classification and Applications Identification

Tal Shapira∗ and Yuval Shavitt†

School of Electrical Engineering, Tel-Aviv University
Email: ∗talshapira1@mail.tau.ac.il, †shavitt@eng.tau.ac.il

Abstract—Identifying the type of a network flow or a specific
application has many advantages, such as, traffic engineering, or
to detect and prevent application or application types that violate
the organization’s security policy. The use of encryption, such as
VPN, makes such identification challenging. Current solutions
rely mostly on handcrafted features and then apply supervised
learning techniques for the classification.

We introduce a novel approach for encrypted Internet traffic
classification and application identification by transforming basic
flow data into an intuitive picture, a FlowPic, and then using
known image classification deep learning techniques, CNNs, to
identify the flow category (browsing, chat, video, etc.) and the
application in use.

We show that our approach can classify traffic with high
accuracy, both for a specific application, or a flow category, even
for VPN and Tor traffic. Our classifier can even identify with
high success new applications that were not part of the training
phase for a category, thus, new versions or applications can be
categorized without additional training.

Index Terms—Internet traffic classification, applications identi-
fication, security management, image recognition, Convolutional
Neural Networks.

I. INTRODUCTION

INTERNET traffic classification has become a very popular
research field in recent years [1], [2], [3], [4] as it is used for

QoS implementations, traffic engineering, law enforcement,
and even malware detection. However, due to the growing
trends of Internet traffic encryption and an increase in usage
of VPNs and TOR, this task is becoming much harder. Most
of the current techniques for classifying encrypted traffic rely
on extracting statistical features (also called feature extraction)
from a traffic flow. This is followed by a process of feature se-
lection to eliminate irrelevant features, and finally use shallow
methods of supervised learning, such as decision trees, SVM
(Support Vector Machine), KNN (K-Nearest Neighbors), etc.,
for the classification.

Over the past few years, advances in deep learning [5]
have driven tremendous progress in many fields. Convo-
lutional Neural Networks (CNNs) have especially brought
breakthroughs in the field of image classification [6], which
is the leading field of CNNs research. With these advances,
the use of CNNs has become common in many domains [5]
such as medical uses, sentence classification, visual document
analysis, age and gender classification, and genomics. In
addition, image classification reached maturity that allows it
to be integrated in commonly used products, such as smart
phones.

In this paper, we introduce a novel approach for classifying
Internet traffic into categories (VoIP, video, file transfer, chat
and browsing) and for application identification. We build
on the excellent results achieved for image recognition by
transforming Internet flows into images. For each flow, our
method creates an image from the packet sizes and packet
arrival times, we term it a FlowPic. These FlowPic images
are fed into a CNN that classify them with astonishing high
accuracy, e.g., we can classify a traffic category with an
accuracy of over 96%, except for browsing (see Table IV).
The method is so effective that it classifies traffic that passes
through VPN with an accuracy above 99.2%, and achieves
good results even for traffic that traverses Tor (over 89% except
for file transfer). We further show in Table IV that even when
our CNN is trained only with traffic that does not pass through
VPN or Tor, we can still classify VPN traffic category with
a good accuracy: 78.9% to 99.4% depending on the category.
Furthermore, we train the same model with 10 VoIP and video
applications and classify them with an accuracy of 99.7%, and
we train again with 5 VoIP and video applications that pass
through VPN and classify them with an accuracy of 100.0%.
Chen et al. [7] also suggested using a flow picture and feeding
it to a CNN. Their picture captures the auto-convolution of the
flow parameters and is not intuitive to a human eye.

Finally, it seems we capture the intrinsic characteristics
of a category behavior. We show that even if we train the
network on a category while excluding some applications,
e.g., by training without Facebook video data, we still manage
to classify Facebook video to the correct category, with an
accuracy of 99.9%. This means that the appearance of a new
application or a new version may not break an already trained
network.

Our contribution is a generic approach for Internet traffic
classification, that takes advantage of all time and size related
information available in a network flow, instead of using
information from manually extracted features. Moreover, our
model can deal with a short time window of a unidirectional
flow instead of the entire bidirectional session. We use the
exact same architecture for all the experiments in the paper:
classification of traffic categories, encryption techniques (non-
VPN, VPN, or Tor) and application identification - we made
no attempt to gain extra accuracy by adapting the architecture
to the exact problem.

Another advantage of our approach is that we do not rely
on the packet payload content, and thus do not breach privacy.
Unlike methods that classify based on the packet payload
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content [8], [9], [10], [11], our storage requirement is quite
minimal, since for each packet we need to transfer only two
words of data from the forwarding engine to where the analysis
is done, which makes near real-time classification feasible.

The rest of the paper continues as follows. After describing
related work in Sec. II, we describe the dataset in Sec. III.
Sec. IV describes the creation of the FlowPics and their basic
structure. Sec. V describes the CNN architecture and training.
Sec. VI presents our experiments and their results. Finally,
the last two sections conclude the paper and discuss future
research directions.

II. RELATED WORK

Three types of Internet traffic classification problems were
recently studied: 1) Internet traffic categorization [12] also
called traffic characterization such as VoIP, File Transfer,
Video etc., 2) Internet application identification [13], [14]
such as Facebook, YouTube, Skype etc., and 3) user actions
identification [15] in a specific application like sending text
message on apple iMessage [16] or watching a specific video
on YouTube [17], [18].

There are many different approaches for solving these
classification problems, which can be divided into three main
categories: 1) Payload based traffic classification methods [19],
[20], also called deep packet inspection (DPI). These methods
are problematic because of their invasion of privacy, they are
computationally expensive and are incapable of dealing with
most of today’s traffic due to use of encryption, 2) Port based
methods - based on packet headers fields values, where the
most commonly is the TCP/UDP port number. Port based
methods, which are fast and simple, were widely used in the
past, but with the increased use of dynamic ports and default
ports, their efficiency declined, and 3) Statistics and machine
learning based methods [21] - usually by manually extracting
size and time related features and applying complex patterns
or supervised learning algorithms as classifiers. In addition,
there are also works that present hybrid approaches [22],
which combine a classifier based on the well-known port
numbers, packet payload signatures, and more. We will focus
on describing the most relevant works, basically those that use
statistics and machine learning methods.

There are many works that focused on the process of
features generations. In 2005, Moore et al. [23] created a list,
based on a bidirectional flow, containing 248 descriptors such
as RTT (round-trip delay time) statistics, size-based statistics,
inter-arrival time statistics, frequencies, and so on. At the same
year, Moore and Zuev [24] applied a Naive Bayes Kernel
estimator using their discriminators to categorize network
traffic. Fahad et al. [25] investigated the task of feature
selection (FS). They chose five well known FS techniques and
proposed an integrated FS approach, that used all the others, to
obtain an optimal feature set. They evaluated their techniques
on the descriptors list of Moore et al. [23]. While they admitted
that their integrated FS technique was computationally more
expensive than the others, they provided increased robustness
and performance that led to a significant gain in accuracy.

There are many works that use only flow-based features (i.e.
time and size related features). Gil et al. [26] used statistical

time-related features such as flow bytes per seconds, inter-
arrival time, etc. They generated bidirectional flows of Non-
VPN and VPN traffic, applied C4.5 and KNN as classifiers and
achieved accuracy levels above 80%. Zhang et al. [27], [28]
used 20 simple unidirectional flow-based statistical features
and applied a bag of words (BoF) technique to model correla-
tion information in traffic flows of the same application. They
introduced a new robust traffic classification (RTC) scheme,
that used their BoF-based traffic classifier, and showed that
their performance is significantly better than the most common
machine learning methods.

There are some recent works that involve the use of neural
networks. Ertam and Avci [29] used a genetic algorithm (GA)
for the selection of features out of 12 attributes, then applied
a wavelet kernel based extreme learning machines (ELM)
over a dataset that contained 7 classes of regular traffic (non-
VPN), and achieved an accuracy over 95%. Lopez-Martin et
al. [11] used a recurrent neural network (RNN) combined with
a CNN to classify traffic based on 6 features for each packet
in the session. They achieved an accuracy of over 95% using
ports information and 84% without ports information, which
emphasized the weakness of their method. There are several
works that introduced a new approach that are based on the
packet payload content. Wang et al. [8], [9] converted each
packet payload to a normalized byte sequence, and used it
as an input for artificial neural networks. Moreover, using
1-D Convolution Neural Networks (CNNs, see Sec. V for
details), they improved the classification results over the ISCX
VPN-nonVPN traffic dataset [26], relative to previous works.
Lotfollahi et al. [10] applied almost the same method using
CNNs and auto-encoders over the same dataset, and achieved
good performance. Payload based methods work very well on
the test data, however because these methods rely on raw data
(bytes values), they may be overfitted to the bytes structure
of the specific applications, and not be able to generalize
the characteristic of internet categories to classify unknown
applications. Moreover, these methods can not work in case
of using encryption techniques such as VPN and Tor. Wang
et al. [9] success in VPN classification is due to the usage
of training data and test data that are based on the same
encryption method and encryption keys.

Chen et al. [7] converted flow data to a picture of the flow
parameter auto-convolution and fed it to a neural network,
however, they did not describe their method sufficiently to
enable comparison. They showed results for two experiments:
classification of 5 protocols (FTP, HTTP, SSH, TFTP, and
TLSV) and classification of 5 applications. The latter clas-
sification got an accuracy far below ours, but on a different,
unpublished dataset.

After we published our initial results [1], several additional
papers looked at related problems. Among them are Zhang et
al. [30], which proposed an autonomous model update scheme
to be able to handle new applications, and Pacheco et al. [31],
which emulated satellite communications and presented a
framework to classify heterogeneous Internet traffic with deep
learning techniques for this type of communication.

Aceto et al. [4] reproduced different DL techniques and
set into a systematic framework for comparison using mobile
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Table I: List of captured protocols and applications for each traffic category and encryption technique.

Non-VPN VPN Tor
VoIP Google Hangouts, Facebook,

VoipBuster and Skype
Google Hangouts, VoipBuster
and Skype

Google Hangouts, Facebook
and Skype

Video Google Hangouts, Facebook,
Netflix, Vimeo, YouTube and
Skype

Netflix, Vimeo and YouTube Vimeo and YouTube

File Transfer FTPS, SCP, SFTP and Skype FTPS, SFTP and Skype FTP, SFTP and Skype
Chat Google Hangouts, Facebook,

AIM Chat, Skype, ICQ and
WhatsApp Web

Google Hangouts, Facebook,
AIM Chat, Skype and ICQ

Google Hangouts, Facebook,
AIM Chat, Skype and ICQ

Browsing Firefox and Chrome - Firefox and Chrome

encrypted traffic, and concluded that DL algorithms indeed
constitute a promising approach, but yet to reach the maturity
level of DL in other fields. Following their last work, Aceto
et al. [32] introduced a multimodal deep learning framework
for mobile encrypted traffic classification, named MIMETIC.
However, their framework uses both payload data and pro-
tocols fields for the classification. Iliyasu and Deng [33]
addressed the challenges associated with establishing ground
truth labels of large encrypted traffic datasets and therefore
introduced a semi-supervised approach using DCGAN. Their
approach achieved good accuracy with a very small number
of labeled samples.

A recent work by Hardegen et al. [34] proposed a flow
data stream processing pipeline to solve a new type of prob-
lem. They trained deep learning models on NetFlow data to
predict flow characteristics that can be used for network traffic
optimization.

Qin et al. [35] were among the first to understand the need
to avoid handcrafted feature selection (i.e., manually extracted
features), and used instead the payload size distribution (PSD)
probability of the packets in a bidirectional flow. Then, they
employed the Renyi cross-entropy to identify the similarity
between one PSD and that of a specific application. As we
show later in Sec. IV-A, in our work we extend the use
of PSD and construct a 2-dimensional histogram for flow
representation, that is a PSD of the packets for each time
interval. Thus, we utilize both time-related and size-related
features in the flow.

III. THE DATASET

In order to examine our method, we use labeled datasets of
packet capture (pcap) files from the Uni. of New Brunswick
(UNB): "ISCX VPN-nonVPN traffic dataset" (ISCX-VPN)
[26] and "ISCX Tor-nonTor dataset" (ISCX-Tor) [36], as well
as our own small packet capture (TAU) [1]. ISCX-VPN
consists of captured traffic with a total of 7 traffic types
(VoIP, Chat, etc.) for both regular traffic sessions (Non-VPN)
and sessions over VPN. ISCX-Tor consists of the same 7
captured traffic traffic types for both regular traffic sessions
(Non-VPN) and sessions over Tor. Since the UNB datasets
do not contain enough flows for chats, we captured traffic
of Whatsapp web chat, Facebook chat and Google Hangout
chat. We use a combined dataset only from the five categories

that contains enough samples: VoIP, Video, Chat, Browsing,
and File Transfer. For these categories we have 3 encryption
techniques: non VPN, VPN (for all classes except Browsing)
and TOR. Notice that our categories differ slightly from those
suggested in [26], [36]. All the applications that were captured
in order to create the dataset, for each traffic category and
encryption technique, are shown in Table I.

A. Dataset Preparations
The dataset is made of capture files, each corresponds to

a specific application, a traffic category and an encryption
technique. However, all these captures also contain sessions of
different traffic categories, since while performing one action
in an application, many other sessions occur for different tasks
simultaneously. For example, while using VoIP over Facebook,
there is another STUN session taking place at the same time
for adjusting and maintaining the VoIP conversation, as well
as an HTTPS session of the Facebook site.

In order to prevent these kinds of mistakes in our dataset,
we keep only the flows that belong to the correct category by
manually removing sessions, which obviously did not match
the label category, e.g., UDP packets within a TCP stream, or
removing packets that are destined to IP addresses of other
known services. As already mentioned, our dataset consists of
pcap files, each file is labeled according to the corresponding
application, encryption technique, and traffic category. We
split each pcap file to unidirectional flows, where each flow
is defined by a 5-tuple {source IP, source port, destination
IP, destination port, protocol}. We made our dataset publicly
available1.

B. Data Augmentation
In order to increase the number of samples for the training

set, and in order to reduce overfitting, we divide each unidirec-
tional flow to equal size blocks. In our experiments, we split
each session to 60-second blocks [26] with an overlapping
time of 45 seconds (A difference of 15 seconds between the
beginning of two adjacent blocks). Our method is drawn from
the use of object bounding box masks [37] (also known as
sliding windows) as is done in object detection tasks. For ex-
ample, 10 minutes of a VoIP conversation consists of 10 non-
overlapping session blocks or 37 overlapping session blocks,

1https://www.eng.tau.ac.il/~shavitt/FlowPic.htm
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each block is slightly different than the other. It should be
noted, that the data augmentation process comes after splitting
all sessions to a training set and a test set, ensuring that
there is no overlapping in a single session between a training
block and a test block. The total number of overlapping 60-
second session blocks, for each traffic category and encryption
technique is shown in Table II.

Table II: Number of session blocks in each traffic category
and encryption technique.

Non-VPN VPN Tor
VoIP 3304 2872 2978
Video 1553 302 754
File Transfer 1174 242 1126
Chat 635 1061 422
Browsing 3191 - 2026

C. Sensitivity Analysis

To evaluate the effect of the data augmentation process on
the results, we compared the results of class vs. all tasks (see
Sec. VI-A for further information) for data with only non-
overlapping 60-second session blocks with the overlapping-
session dataset described above. By training on overlapping
samples, we don’t achieve any improvement for classes with
many non-overlapping samples; VoIP, Video and Browsing;
However, we achieve an improvement of 0.5% in the classifi-
cation accuracy for chat and file transfer, which do not contain
enough non-overlapping samples.

We performed a thorough analysis of the sensitivity of our
approach to the FlowPic construction, by running experiments
with different block sizes. We tested our method over non-
overlapping block sizes of 15, 30, 60 and 120 Sec for class
vs. all tasks (see Sec. VI-A for further information). The
differences in the average accuracy were up to 1.25% for
different block sizes, which is not significant. For the rest of
the paper, we choose a block size of 60 seconds.

IV. IMAGE TRANSFORMATION PHASE

A. FlowPic Construction

As a pre-processing stage, we extract records from each
flow, which comprised of a list of pairs, {IP packet size, time
of arrival} for each packet in the flow. Then, we merge all lists
of the same traffic category and the same encryption technique
to a single set.

Our goal is to construct an image that is built from a flow-
based two-dimensional histogram. As mentioned in Sec. II,
this image can be seen as an array of payload size distributions
(PSDs) [35], where each PSD belongs to a specific time
interval of the unidirectional flow. At the first stage, we plot
all record pairs by defining our X-axis as the packet arrival
time, and Y-axis as the packet size. An absolute majority of the
packet sizes do not cross the 1500 bytes (which is the Ethernet
MTU value), thus we disregard all packets with size greater
than 1500 (less than 5% of all packets), and limit our Y-axis
to be between 1 to 1500. For the X-axis, first we normalize all
time of arrival values by subtracting the time of arrival of the
first packet in the flow. For simplicity, we set the 2D-histogram

to be a square image. For this purpose, we normalized all time
of arrival values to be between 0 to 1500 (namely, 60 seconds
is mapped to 1500). Then we insert all normalized pairs to a
two dimensional histogram, where each cell holds the number
of packets that arrive at the corresponding time interval and
have the corresponding size.

The result of this process is a 1500x1500 histogram, where
the sum of the values in the histogram is equal to the total
number of packets in the original time window (without those
we ignored). We store each histogram in an image matrix and
term it a FlowPic. Later on, we use these images as inputs to
our model.

B. FlowPics Exploration

Figure 1 illustrates some difficulties of internet traffic clas-
sification. Each category of Internet traffic consists of many
applications and services, each of which behaves differently
(The examples shown in Figure 1 are for video streaming.).
Netflix, for example, transmits packets with almost fixed
sizes (depending on the video), while applications such as
Skype, Facebook and Google Hangout transmits much widely
distributed sizes. A second problem that can be recognized
while examining Figure 1, is that a video flow is not limited to
display elements only, but also includes audio streaming that
behave the same as VoIP, and a small packet streaming for
coordination and control that looks like chat transmission. In
contrast, on Skype for example, there is a separation between
the video flow and the audio flow.

Figure 2 shows FlowPics of multiple traffic categories
passing through different encryption services. It is easy to
notice the effect of the choice of encryption technique, on the
flow behavior for each traffic category: there are categories
that their FlowPics behave totally different between different
encryption techniques. For example, as can be noticed in
Figure 2, a chat flow, without any use of VPN or Tor, contains
a small number of small sizes low-frequency packets, whereas
through a VPN, couple of flows are combined into one session,
and whereas through Tor, all flows being transmitted from a
user, are combined into one massive encrypted session. When
a VPN or Tor flow is a mixture of more than one flow, we
assume that the labeled flow is sufficiently dominant, such that
the other flows can be viewed as noise.

Another noticeable behavior, is that a Tor’s encryption traffic
flow is composed of discrete packet sizes, as opposed to
many packet sizes in a non-VPN traffic. This is caused due
to the use of a block cipher encryption. Exploring FlowPic
images reinforces our initial motivation. While there are some
powerful features that are easy to identify, such as the fact that
VoIP traffic consists of lots of high-frequency small packets,
there are also some unique patterns that can not be explicitly
represented by numerical features. Therefore, the use of deep
learning methods will result in a significant advantage.

V. CONVOLUTIONAL NEURAL NETWORKS

A. Background

Convolutional Neural Networks, also known as ConvNets
or CNNs, that were first introduced by LeCun et al. [38],
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(a) Facebook (b) Google Hangouts (c) Netflix

(d) Skype (e) Vimeo (f) YouTube

Figure 1: Examples of FlowPics for several video applications. Note that for illustration purposes, black pixels represent any
value between 1 and 255, while white pixels represent the value 0 (namely, there is no arrival of packets with the corresponding
size in the corresponding delta time.).

have a major role in the field of deep learning [39]. Compared
to standard feedforward neural networks with similarly-sized
layers, CNNs have much fewer trainable parameters and so
they are much easier to train.

The convolutional layer produces layers that are called
features maps. Each unit in a feature map is connected to
a local region of the previous layer through a set of weights
called filter (or kernel). The result of the convolution in each
unit is then passed through an activation function. All units
in a feature map share the same filter (known as parameter
sharing). As a results, the number of filters determines the
number of feature maps in the next layer. Parameter sharing
makes the representation approximately invariant to small
translations of the input, causes the layer to have a property
called equivariance to translation. By making the filter smaller
than the input (an attribute called local receptive fields), we
need to store much fewer parameters, which both improves
the efficiency of the learning and reduces overfitting.

The pooling function replaces the output of a certain layer
with a summary statistics of the nearby outputs (also referred
to as spatial sub-sampling). Its function is to reduce the spatial
size of the representation, in order to reduce the amount of
parameters and computations in the network, and hence to
also reduce overfitting. The most popular pooling function is
the max-pooling [40], which outputs the maximum value in a
rectangular neighborhood of the previous layer.

A typical CNN usually ends with several fully-connected
layers, in which neurons between two adjacent layers are fully

pairwise connected, where the last fully-connected layer is
called the output layer. The most common output layer is
the softmax layer, which is a generalization of the logistic
function that normalized a K-dimensional vector of arbitrary
real values, where K is the number of classes, to a K-
dimensional probability distribution vector of real values in
the range [0, 1] that add up to 1, each value represent a class
score (or probability).

B. The Architecture

Our goal is to find a single architecture that yields satis-
factory results for many kind of internet traffic classification
problems. We chose to apply a LeNet-5 style architecture [41],
with some optimization techniques [6]. We use the same
architecture for all sub-problems.

As depicted in Figure 3, our LeNet-5 style architecture
comprises seven layers, not counting the input, where the
ReLU activation function [42] is applied to the output of every
convolutional and fully-connected layer. As mentioned before,
our input is a 2-dimensional 1500x1500 matrix (pixel image).
The first layer is a 2-dimensional convolutional layer (labeled
as CONV1) with 10 filters of size 10x10 with a stride of
5 (leading to an overlap of 5). Each neuron in CONV1 is
connected to a 10x10 neighborhood in the input. The outputs
of CONV1 are 10 feature maps of size 300x300. CONV1
contains a total number of 1,010 trainable parameters (1000
weights and 10 bias parameters).
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(a) Non-VPN: VoIP (b) VPN: VoIP (c) Tor: VoIP

(d) Non-VPN: Video (e) VPN: Video (f) Tor: Video

(g) Non-VPN: File Transfer (h) VPN: File Transfer (i) Tor: File Transfer

(j) Non-VPN: Chat (k) VPN: Chat (l) Tor: Chat

(m) Non-VPN: Browsing (n) Tor: Browsing

Figure 2: Examples of FlowPics, where each row corresponds to a different traffic category and each column corresponds to a
different encryption technique. Note that for illustration purposes, black pixels represent any value between 1 and 255, while
white pixels represent the value 0 (A value of 0 meaning that there is no arrival of packets with the corresponding size in the
corresponding delta time.).
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Figure 3: An illustration of the architecture of our LeNet-5 style CNN. The network consists of an input of 1500x1500 image,
following by two convolutional blocks stacked on top of each other, each block consists of a convolutional layer followed by
a max-pooling layer. Next, the output is flattened into a one-dimensional vector and it is connected to a fully-connected layer.
The ReLU activation function is applied to the output of every convolutional and fully-connected layer. We use dropout in the
CONV2 and the fully-connected layer, and softmax as the final layer for classification.

The next layer is the first max-pooling layer with 10 feature
maps of size 150x150, where each unit in each feature map is
connected to a 2x2 neighborhood in the corresponding feature
map in CONV1. Layer CONV2 is the second convolutional
layer with 20 filters of size 10x10 with a stride of 5, contains
a total number of 20,020 trainable parameters. The outputs of
CONV2 are 20 feature maps of size 30x30. The next layer
is the second 2x2 max-pooling layer results with 20 feature
maps of size 15x15. The next layer is a standard flatten layer
that converts the 20 feature maps to a one dimensional layer
of size 4500. Our next layer is a fully-connected layer of size
64, contains a total number of 288,064 trainable parameters.
Finally, our output layer is the softmax layer whose size
depends on the classification sub-problem: 2 for Class vs.
All, 5 for multiclass traffic categorization, 3 for encryption
techniques multiclass classification and 10 for the multiclass
application identification task. The last layer contains 65×m
trainable parameters, where m is the number of classes. Note
that the parameter m is the only difference in the architecture
between the different problems.

C. Training Specifications

In order to reduce overfitting, in addition to the data
augmentation procedure, we use the dropout [43] technique
to prevent complex co-adaptations on the training data. This
is done during the training time by randomly setting to zero
the output of each neuron with a predefined probability.
This prevents the network from counting on the presence of
a particular neuron during trainning, and therefore reduces
overfitting. During the test evaluation we use all neurons,
but multiply their output by the ’dropout’ probability. In our
CNN (Figure 3), we use dropout with a probability of 0.25
in CONV2 and dropout with a probability of 0.5 in the fully-
connected layer.

The training was done by optimizing the categorical cross
entropy [44] cost function, that is a measure of the difference
between the softmax layer output and a one-hot encoding
vector of the same size, representing the true label of the

sample. For the optimization process we use the Adam [45]
gradient-based optimizer. The Adam optimization algorithm
is an extension to the stochastic gradient descent algorithm.
Adam has recently been widely used in many deep learning
applications because it efficiently achieves better results than
other optimization algorithms. We used the default hyper-
parameters (α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8)
as provided in Kingma et al. [45] and set our batch size to
128.

We build and run our networks using the Keras [46] library
with Tensorflow [47] as its backend. In order to compare
reliably between all sub-problems results, we run our network
for 40 epochs of 10 batches each, and save the result which
achieve the best accuracy during the training process (which is
commonly used as an "early stopping" technique). We trained
all of our networks for 40 epochs, which took between 5
to 10 minutes for an epoch. As demonstrated in Figure 4,
our network attains convergence after running on 10 - 15
epochs for the multiclass traffic categorization over VPN.
More important, the test accuracy curve reaches saturation,
in addition to a small variance between the learning curve and
the test curve, which ensure we haven’t reached overfitting
and the stability of our results. In all experiments, our CNN
reaches convergence after running on 10 to 25 epochs.

Using our method during test over a newly collected packet
trace will cause an end-to-end latency, between the traffic
capture and the classification, of TBS + TFC + TML, where
TBS is the customized block size (15, 30 or 60 Sec.), TFC is
the FlowPic construction time and TML is our CNN running
time to perform classification. In our experiments, we have
found that both TFC and TML are 0.1 Sec., which are
negligible compare to the block size.

VI. EXPERIMENTS AND RESULTS

In this section we report our experimental results. Due to
the lack of standard datasets, the comparison of our results to
previous works (Table III) is challenging. Even the few papers
that used the same datasets as we did [26], [36], [9], [13] are
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Figure 4: An example of training and test accuracy curves
as a function of the number of epochs, of our CNN running
for multiclass traffic categorizations over VPN. Each epoch
consists of 1280 samples. Convergence is attained after 10-15
epochs.

not always directly comparable due to selection of categories,
evaluation criteria, etc. Moreover, unlike previous works, we
created balanced datasets for reliable evaluation in most of our
experiments, but also report evaluation on imbalanced datasets.
We will discuss these differences while presenting the results.

A. Labeling Datasets for Different Problems

After creating the pre-processed dataset as mention before,
we generate sub-dataset for each sub-problem. Table II shows
that the dataset is imbalanced, a problem that can lead to a
poor classification performance, since usually classifiers seek
an accurate performance over a full range of instances, and
therefore tend to classify most of the data into the majority
class [48]. Thus, we created a balanced dataset for each sub-
problem, by maintaining equality in quantities such that the
number of samples in each class is equal to the number of
samples in another class. For class vs. all datasets, the specific
class is equal to the number of samples in all others classes
together, such that the ratio between the quantities of the other
classes remains constant. We do it using a random undersam-
pling method [48] with predefined distribution, by randomly
removing samples from major classes, until the dataset become
balanced. This preserves the initial distribution of samples
in each class. Moreover, we can now reliably compare the
method’s performance for different traffic categories.

1) Multiclass: We examine three kinds of multiclass clas-
sification problem:

a. Traffic categorization - consists of an equal number of
samples for all traffic categories that were mentioned
before. We create multiclass datasets for 3 encryption
techniques: non-VPN, VPN and Tor. In addition, we
create (we are the first to do this) a merged dataset
in order to classify traffic, regardless of the encryption
technique. Our motivation for creating the merged dataset
is to examine how the encryption technique influences the
traffic behavior. As we will show, flow-based information

has a good representation of traffic types, such that our
method can generically identify a traffic category with
no dependence of the encryption technique. The merged
dateset contains an equal number of sessions of each
encryption technique for each traffic category.

b. Multiclass encryption techniques - consists of 3 classes
representing the encryption techniques; Non-VPN (con-
tains only regular sessions), VPN and Tor. For each of
the above classes we create an equally balanced merged
dataset containing all internet traffic types.

c. Application identification - in order to demonstrate the
strength of our method, we create a dataset consists of
10 classes representing VoIP and video applications over
non-VPN encryption technique, and two more datasets
consists of 5 VoIP and video applications over VPN and
5 VoIP and video applications over ToR, as listed in
Table I. Figure 1 illustrates differences between FlowPic
images of video applications. We choose VoIP and video
applications because of the large amount of examples we
have for the training process, and the large number of
applications .

2) Class vs. All: A class vs. all dataset consists of samples
of the specific traffic category, and an equal number of samples
of all other traffic categories with an equal share. As done
in the multiclass traffic categories datsets, we construct class
vs. all datasets for 3 encryption techniques: non-VPN, VPN
(for all classes except Browsing) and TOR, as well for a
merged datasets. Each traffic category merged dateset contains
an equal number of sessions for each encryption technique.

As mentioned before, each of the above sub-problems was
trained using its own training set and evaluated using its own
test set. We randomly split each sub-problem datatset; we use
90% of the samples as a training set and 10% of the samples
as a test set.

B. Evaluation Criteria

We use the accuracy criterion to evaluate our model per-
formance, since it is one of the most common evaluation
criteria in the field of deep learning. For the imbalanced
dataset evaluation, we also use the macro F1-score since it
equalizes the contribution of all classes. Accuracy is defined
as the proportion of samples for which the model produces the
correct output of all predictions made. Classified test samples
are divided into four categories:
• True Positive (TP) - the number of correctly classified

positive samples.
• True Negative (TN) - the number of correctly classified

negative samples.
• False Positive (FP) - the number of negative samples

incorrectly classified as positive samples.
• False Negative (FN) - the number of positive samples

incorrectly classified as negative samples.
Therefore, a formal definition of the accuracy for multiclass

classification is

Accuracy =

∑
i∈classes TPi∑

i∈classes(TPi + FPi)
,
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Table III: A summary of our results for different traffic classification problems, with comparison to best known previous
results over the ISCX dataset. It is important to note that these are not accurate comparisons. This is due to the use of different
categories, different classification entities, imbalanced datasets, etc.

Problem FlowPic Acc. (%) Best Previous Result Remark
Non-VPN Traffic Categorization Balanced - 85.0

Imbalanced - 93.8
(89.7 Pr.)

84.0% Pr., Gil et al. [26] Different categories [26], used
imbalanced dataset

VPN Traffic Categorization Balanced - 98.4
Imbalanced - 97.6

98.6% Acc., Wang et al. [9] [9] Classify raw packets data

Tor Traffic Categorization Balanced - 67.8
Imbalanced - 86.9
(66.3 Pr.)

84.3% Pr., Gil et al. [26] Different categories [26], used
imbalanced dataset

Traffic Categorization over
Merged Dataset

Balanced - 83.0 No previous results

Non-VPN Class vs. All 97.0 (Average) No previous results
VPN Class vs. All 99.7 (Average) No previous results
Tor Class vs. All 85.7 (Average) No previous results
Encryption Techniques Balanced - 88.4 99.0% Acc., Wang et al. [9] [9] Classify raw packets data,

not including Tor category
Applications Identification Balanced - 99.7

Imbalanced - 94.2
93.9% Acc., Yamansavascilar et
al. [13]

Different classes

Applications Identification over
VPN

Balanced - 100.0 No previous results

where TPi and FPi are the true positive and the false positive
of the class i, respectively. For visualizing the results of
the multiclass problems, we use the normalized confusion
matrix (Figures 5, 6, 7). In a confusion matrix, each row
represents the actual class while each column represents
the predicted class. In a normalized confusion matrix, each
diagonal value represents the recall of the corresponding class,
defined by RC = TP

TP+FN . Furthermore, we use the top-2
categorical accuracy as a second criteria for the multiclass
classification problems. Top-K categorical accuracy (or top K-
error rates) [49] is widely used for evaluation of multiclass
classification problems with a large number of classes.

The Macro F1-score, which we used for the imbalanced
dataset evaluation, is defined as the average of the F1 scores
across all classes, where the F1-score is defined for each class
by: F1 = 2 ∗ PR∗RC

PR+RC and the precision is defined by PR =
TP

TP+FP .

C. Traffic Categorization Problems

A summary of the results for all multiclass classification
problems, as described in Sec. VI-A1, is presented in Table III.
We discuss here the first four rows, which contain the results
of the traffic categorization problems.

The most noticeable result is that it is significantly more
difficult to classify correctly internet traffic categories over
Tor, as the last leads to an accuracy of 67.8%. Classification
over VPN and Non-VPN achieves better performances: an
accuracy of 98.4% and 85.0%, respectively. Note that for
the imbalanced datasets our results are significantly better.
Additional results on imbalanced datasets appear in Sec. VI-G
and Table VI.

Table IV: Class vs. all classification accuracy performances
for VoIP, Video, File Transfer, Chat and Browsing. For each
class, our CNN was trained over a training set of a certain
encryption technique, and was tested on 3 test sets, each
consists of samples of the specific class with one of the
following encryption techniques: Non-VPN, VPN and Tor.
The diagonal values (in bold) represent the accuracy when the
test set consists of the same traffic category and encryption
technique as the training set.

Class Accuracy (%)

VoIP

Training/Test Non-VPN VPN Tor
Non-VPN 99.6 99.4 48.2

VPN 95.8 99.9 58.1
Tor 52.1 35.8 93.3

Video

Training/Test Non-VPN VPN Tor
Non-VPN 99.9 98.8 83.8

VPN 54.0 99.9 57.8
Tor 55.3 86.1 99.9

File Transfer

Training/Test Non-VPN VPN Tor
Non-VPN 98.8 79.9 60.6

VPN 65.1 99.9 54.5
Tor 63.1 35.8 55.8

Chat

Training/Test Non-VPN VPN Tor
Non-VPN 96.2 78.9 70.3

VPN 71.7 99.2 69.4
Tor 85.8 93.1 89.0

Browsing

Training/Test Non-VPN VPN Tor
Non-VPN 90.6 - 57.2

VPN - - -
Tor 76.1 - 90.6
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Figure 5: Confusion matrices of the 4 traffic categorization problems; over non-VPN, over VPN, over Tor and a merged dataset.
The rows of the confusion matrices correspond to the true label for each class, and the columns correspond to the predicted
label for each class.

Table V: Class vs. All classification accuracy performances
for merged datasets of VoIP, Video, File Transfer, Chat and
Browsing . Each traffic category merged dataset contains an
equal number of sessions for each encryption technique.

Class Accuracy (%)
VoIP 99.7
Video 99.9

File Transfer 77.4
Chat 89.3

Browsing 90.2

As mentioned in Sec. II, the UNB group [26], [36] used
time-related features to categorize traffic over the same ICSX
datasets, and gained a best average precision (which defined by
Pr = TP

TP+FP ) of 84.0% for Non-VPN traffic categorization,
89.0% for VPN traffic categorization and 84.3% for Tor traffic
categorization. However, they report the best results from

two algorithms (C4.5, random forest); and for each dataset,
results from a different algorithm was reported. Remember,
that all of our results (for all problems) use the exact same
CNN architecture (with different trained weights). Wang et
al. [9] use the first 784 bytes of each flow to categorize
traffic over the ISCX VPN-nonVPN dataset and achieved a
best accuracy of 83.0% and 98.6% for non-VPN and VPN
traffic, respectively, using different representations. Note, that
they did not include the browsing category, citing difficulties
in separating it from other categories. Fig. 5 shows that the
difficulty in distinguishing between browsing and chat was the
main cause of our accuracy degradation.

The confusion matrix in Figure 5c shows that the reason
for the performance degradation in classifying Internet traffic
categories over Tor, is that our model failed to characterize file
transfer traffic over Tor. We later report that even distinguish-
ing file transfer from all the others, is hard over Tor traffic (see
Table IV). Second thing to notice is that, apart from the results
for Tor traffic categorization, a top-2 accuracy of 81.0%, our
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model achieves a top-2 accuracy between 95% to 100% for all
other multiclass classification tasks. As can be inferred from
the confusion matrices in Figure 5, our network is sometimes
confused between chat sessions and browsing sessions, since
both contain a very small number of low-frequency packets,
which makes them difficult to distinguish even by a human
eye (Figure 2).

Furthermore, we apply the network that was trained using
the merged training set (and achieve an accuracy of 83.0% for
the merged test set) over 3 test sets: Non-VPN, VPN and Tor.
We do it in order to show how learning the generic behavior of
each traffic category, regardless of the encryption technique,
is reflected in the performance on each one of the encryption
techniques. We are the first to report results from training all
encryption techniques together. This experiment achieves an
accuracy of 88.2% for the Non-VPN test set, 98.4% for the
VPN test set and 67.8% for the tor test set. These results imply
that the unique characteristics of different traffic categories
over Tor are quite different from the characteristics of these
categories over VPN or non-VPN traffic, and sometimes even
completely different (such as for file transfer).

D. Class vs. All Problems

In many cases, there is a need to distinguish a single traffic
category from the rest. To the best of our knowledge, we are
the first to report such results. Table IV shows a summary
of the results of class vs. all classification problems, by
comparing different traffic categories over different encryption
techniques, as described in Table I. For each traffic category,
our CNN was trained over 3 training sets according to different
encryption techniques. Each one of the trained networks was
tested on 3 test sets, consist of samples from the trained class
with one of the above types of encryption techniques: Non-
VPN, VPN and Tor.

By averaging the results of each one of the encryption
techniques, taking into account only the values of the diagonals
for all traffic categories (where the test set consists of the same
traffic category and encryption technique as the training set),
we get an average accuracy of 97.0% for non-VPN traffic,
99.7% for VPN (not including browsing traffic, as mentioned
before) and 85.7% for Tor. By taking the average of the above
averages we get a total average accuracy of 93.7%. Clearly,
except for identification of file transfer over Tor, our method
succeeds well in characterizing and identifying different cate-
gories of Internet traffic that pass through different encryption
techniques.

Examining the results, there are quite large differences
between the characteristic of each one of the traffic categories
using different encryption techniques. As a results, learning to
identify a certain traffic category that passes through a certain
encryption service, doesn’t guarantee the ability to identify the
same traffic category (and even the same application) through
another encryption service. Not surprisingly, by comparing the
results from Table IV, it is clear that Tor posses a much harder
challenge than VPN.

Moreover, it can be easily deduced that the behavior of a
traffic session over Tor, is much closer to the behavior of the
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Figure 6: A confusion matrix of the multiclass encryption
techniques classification problem.

same traffic type over VPN than regular (Non-VPN) traffic,
and vice versa. This insight is consistent with the fact that Tor
adds additional encryption layers, which envelop each other.

Table V presents the results for class vs. all problems over
merged datasets. The results show that our method is able
to well identify the unique generic features of each traffic
category regardless of the encryption technique. These results
also show that there is a certain difficulty in identifying file
transfer traffic, that can be explained by noticing at Figure 2
that a FlowPic of file transfer over Tor is totally different than
a FlowPic of file transfer over non-VPN or VPN. This is due
to the reason that the file transfer traffic that was examined,
usually results with uniform packet size flows, whereas over
Tor, many flows are combined to form a merged flow with
different packet sizes.

1) Classification of an Unknown Application: We show
that our method is independent of a specific application
characteristics. For this purpose, we create a video vs. all
dataset, while excluding all Vimeo and YouTube samples
from the training set. Although Vimeo and YouTube FlowPics
are both totally different than all other videos, our network
achieves an accuracy of 83.1% over a test set consists of
Vimeo and YouTube samples and an equal number of non-
video samples. We repeat the process, but now we exclude all
Facebook samples instead, and achieve an accuracy of 99.9%.
This can be explained by the fact that Facebook FlowPics look
similar to those of Google Hangouts and Skype (see Figure 1).
We repeat the same procedure to create a VoiP vs. all dataset
while excluding all Facebook samples from the training set.
We achieve an accuracy of 96.3%. This is the first paper to
report this type of results.

E. Encryption Techniques Classification

Our network achieves an accuracy of 88.4% classifying en-
cryption techniques, regardless of the specific traffic category.
In our results, all confusions occurs between Non-VPN and
VPN, while Tor is almost hermetically separated with a recall
of 97.7% (and a precision of 100.0%).

As already mentioned in Sec. II, the UNB group [26],
[36] used time-related features to categorize traffic over the
ISCX datasets. However, they separated the problem into two:
classifying VPN from non-VPN and classifying Tor from non-
Tor. They achieved a precision of 89.0% for VPN [26]; and
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94.8% for Tor [36]. Note that while our CNN worked in harder
conditions (we used both datasets together), we reached better
results in both cases.

Wang et al. [9] use the first 784 bytes of each flow to
categorize traffic; they only used the VPN and non-VPN
datasets. Not surprisingly, they reached an accuracy of 99.9%,
since the VPN encryption changes the payload data.

F. Application Identification

We test the performances for classifying VoIP and Video
applications over non-VPN traffic. Figure 7 shows that our
method almost completely separates the various applications,
resulting in an accuracy of 99.7%. We repeat the same
experiment for classifying 5 VoIP and Video applications
over VPN traffic (The dataset had only have 5 applications
over VPN with sufficient number of samples), and achieve
an accuracy of 100.0% (see Figure 8). We do not succeed
to classify 5 classes representing VoIP and video applications
over Tor, achieving only an accuracy of 44.3%. However, we
do succeed to separate between the VoiP applications and the
video applications almost hermetically. These results, on top of
the previous results, demonstrates the ability of our approach
to identify the unique strong features of Internet traffic flows.

Yamansavascilar et al. [13] constructed 111 flow features
and used k-NN algorithm to achieve an overall accuracy of
93.9% classifying 14 classes of applications over the ISCX
VPN-nonVPN dataset. For example, they achieved an accuracy
of 45.1%, 80.10% and 86.30% classifying Skype-VoIP, Vimeo
and YouTube, respectively. Using our method for classifying
10 VoIP and Video applications traffic over the ISCX dataset,
we achieved an overall accuracy of 99.7%, and an accuracy (as
defined in Sec. VI-B) of 99.7% ,99.4% and 98.9% classifying
Skype-VoIP, Vimeo and YouTube, respectively. A similar
experiment using an imbalanced dataset achieves an accuracy
of 94.2%.

G. Imbalanced Datasets

Up until now, we reported results of our models on balanced
datasets since in many cases that we examined, they give
more weight to less frequent classes, which are harder to
classify. However, it is also important to test our results on
the imbalanced dataset to see how the model performs in such
a scenario, especially since previous works mostly looked at
this scenario.

We evaluate four problems: Non-VPN traffic categorization,
VPN traffic categorization, Tor traffic categorization, and
application identification (10 VoIP and VPN classes). For
evaluating each task, we conducted 5-fold stratified cross-
validation while making sure that each session appears either
in the training or the test set. Then, we split each session into
15-second non-overlapped blocks.

In our evaluation, we compared FlowPic with 5 ML models
that have been widely used for Internet traffic classification
in the literature [21], [26]: Decision Trees (DT), k-Nearest-
Neighbors (k-NN), Support Vector Machine (SVM), Naive
Bayes classifier (NB), and a two-layer neural network (MLP).
We used the python scikit-learn package [50] to run the ML

models with default parameters. We evaluate each of the ML
models using the following 10 statistical flow-based features
as input since these features have been widely used in previous
works [7], [23], [24], [25], [26], [36]:
• Packet size statistics: mean, minimum, maximum, and stan-

dard deviation of packet sizes.
• Inter-arrival time statistics: mean, minimum, maximum, and

standard deviation of time differences.
• Flow Bytes per second (BPS).
• Flow packets per second (PPS).
We extract these features for each 15-second block. Notice that
since our comparison is based only on unidirectional flow, we
include only features for one direction.

A summary of the results is presented in Table VI. As
shown, except for one task, FlowPic outperforms the other
algorithms both in terms of accuracy and macro F1-score.
For the non-VPN (i.e., regular) traffic categorization, FlowPic
achieves the second-best score, sightly below DT. This can be
explained by the significant imbalance between the categories,
as ’VoIP’ has 2423 samples, while ’chat’ has only 245
samples, which is about 10 times less.

In summary, a CNN with a non-complex architecture,
achieves great results in a relatively short evaluation time for
a variety of traffic classification problems.

VII. CONCLUDING REMARKS

In this paper, we introduce a novel approach for encrypted
internet traffic classification, both for categorizing traffic types
and for identifying specific applications, based only on time
and size related information. We showed that our method
generically captures traffic characterization without overfitting
a specific application. The cost of using only flow-based
records is low in terms of memory resources, storage and
running times, and therefore practical for deployment. In
addition, our model relies only on a short time window of a
unidirectional flow, and does not require reliance on the entire
bidirectional session in order to successfully classify internet
traffic. Note that one can improve classification by classifying
several time windows (possibly with partial overlapping) and
use voting for better classification, and vote spreading for
classification confidence.

The key insight behind our approach is the transformation
of Internet traffic flows into FlowPic images. From this point,
we take advantage of current advances in the field of image
recognition using deep learning methods, and design a CNN
architecture based on the LeNet-5 [41] to successfully classify
our FlowPics. As we show, flow-based features are fairly
immune to encryption techniques such as Tor or VPN, so our
approach is able to distinguish between different Internet traf-
fic categories that pass through different encryption techniques
or a merged dataset, and even distinguish between encryption
techniques regardless of the traffic category itself.

Finally, as we demonstrate over the ISCX VPN-
nonVPN [26] and ISCX Tor-nonTor [36] datasets, our method
has the ability to successfully classify different applications
of a particular traffic category, and also capable of identify-
ing traffic category of an unfamiliar application, by learning
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Figure 7: A confusion matrix of the VoIP and video applications identification problem.

Table VI: Comparison of FlowPic with common ML algorithms using imbalanced datasets for the following problems: Non-
VPN traffic categorization (non-VPN), VPN traffic categorization (VPN), Tor traffic categorization (Tor), and application
indetigication (Apps).

Problem FlowPic DT KNN SVM NB MLP
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Non-VPN 0.9376 0.8340 0.9422 0.8532 0.8777 0.7138 0.5187 0.3443 0.5187 0.3443 0.8403 0.6388
± 0.0284 ± 0.0551 ± 0.0115 ± 0.0196 ± 0.0089 ± 0.0222 ± 0.1171 ± 0.0537 ± 0.1171 ± 0.0537 ± 0.0538 ± 0.1002

VPN 0.9759 0.9170 0.9492 0.8664 0.9162 0.7588 0.9154 0.6711 0.5249 0.4017 0.9320 0.8018
± 0.0117 ± 0.0466 ± 0.0130 ± 0.0457 ± 0.0133 ± 0.0568 ± 0.0202 ± 0.0359 ± 0.1850 ± 0.0719 ± 0.0510 ± 0.1133

Tor 0.8694 0.6493 0.7755 0.6331 0.6203 0.4434 0.5196 0.2298 0.5841 0.2359 0.5874 0.4357
± 0.0678 ± 0.1051 ± 0.0870 ± 0.0888 ± 0.0753 ± 0.0508 ± 0.0577 ± 0.0471 ± 0.0411 ± 0.0426 ± 0.1467 ± 0.0783

Apps 0.9422 0.9355 0.9180 0.9091 0.7964 0.7404 0.4230 0.2625 0.1880 0.1225 0.5189 0.4135
± 0.0561 ± 0.0573 ± 0.0677 ± 0.0621 ± 0.0667 ± 0.0529 ± 0.0409 ± 0.0480 ± 0.0832 ± 0.0460 ± 0.0711 ± 0.0501
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Figure 8: A confusion matrix of the VoIP and video applica-
tions identification over VPN Traffic.

enough samples of other application of the same traffic cate-
gory.

VIII. FUTURE RESEARCH DIRECTIONS

We made no effort to optimize the CNN architecture, and
simply used one that is known to work well for image recog-
nition. Examining other known architectures may improve
results, or simplify the training process. We can also optimize
our CNN by changing hyper-parameters such as the number of
layers, layer sizes, activation functions, etc. Furthermore, we
can also reduce run-time and memory consumption by playing
with input parameters like block length and the resolution of
the number of bytes in a packet. For example, the input size
to the system can be reduced to a coarser matrix of 300x300
by reducing the packet size resolution. Furthermore, we can
also reduce the number of bits per pixel by using binning. At
the extreme we can use a single bit per pixel creating binary
images, such that black pixels represent an arrival of at least
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one packet with the corresponding size at the corresponding
time interval.

While our 15 seconds classification time is certainly not
problematic in most cases, it may still be a limiting factor
for some applications. Thus, an interesting research direction
would be to look for methods that would produce a faster clas-
sification. While there are already several published solutions,
we believe there is still room for improvement.
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