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Abstract—There is an increasing need to quickly and efficiently One method to obtain distance information is for the ini-
learn network distances, in terms of metrics such as latency or tiating host to measure it itself, using either unicasing,
bandwidth, between Internet hosts. For example, Internet content traceroute ) or multicast (expanding ring search) tools.

providers often place data and server mirrors throughout the In- While th tool ¢ their utility i I
ternet to improve access latency for clients, and it is necessary to lié tese 100IS are easy 10 USe, el LUliity IS generaily

direct clients to the nearest mirrors based on some distance metric limited by their overhead. For instance, the latency of running
in order to realize the benefit of mirrors. We suggest a scalable a singletraceroute  can exceed the latency of a Web page
Internet-wide architecture, called IDMaps, which measures and gaccess itself. More important still, a large number of hosts
disseminates distance information on the global Internet. Higher -\ aying independent and frequent measurements could have a
level services can collect such distance information to build a vir- .

tual distance map of the Internet and estimate the distance between severe impact on the Internet. Ideally, measurements made by
any pair of IP addresses. We present our solutions to the measure- ON€ system (host or router) should be made available, with low
ment server placement and distance map construction problems in overhead, to other hosts.

IDMaps. We show that IDMaps can indeed provide useful distance A yseful general service for the Internet should enable a host

estimations to applications such as nearest mirror selection. to quickly and efficiently learn the distance between any two
_Index Terms—Distributed algorithms, modeling, network ser-  hosts. To be widely useful, such a service should provide an an-
vice, scalability. swer with a delay overhead less than the speedup gained using
the service. A simple protocol for such a service, SONAR, was
|. INTRODUCTION discussed inthe IETF as early as February 1996 [2], and in April

1997 as a more general service called Host Proximity Service

T IS increasingly the case that a given service request fro I—?OPS) [3]. Both of these efforts proposed lightweight client-
client can be fulfilled by one of several Internet servers. EX-

. i i . rver query/reply protocols similar to the DNS query/reply pro-
amples range from short-lived interactions such as a single é?ev queryireply p m queryireply p

to the | i . lationshin bet ol. The specifications also required each server to produce an
page access, 10 the long-term peering retationship between t<J;{¥1%Wer in a very short time—preferably, though not necessarily,

news (NNTFP) servers. In all such interactions, all other thm(;/ using information already stored locally. As stated, both ser-
I

be_.\mg equal, it is adyantageoqs fo access the “nearest S€Nieks need some underlying measurement infrastructure to pro-
with low latency or high bandwidth. Even when all other things.

) : ide the distance measurements.
are not equal, for instance, when different Web servers have (M -

f i " it i stil ful to include the dist In this paper, we propose a global architecture for Internet
erent response imes, 1t 1S still usetut to include the distance A8st distance estimation and distribution which we call Internet
each candidate host as a factor in making a selection [1].

Distance Map Service (IDMaps). We intend to have IDMaps
be the underlying service that provides the distance information
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for a general IDMaps service to provide near-instantaneous imerk conditions, and will only adjust to “permanent” topology
formation about current delays and bandwidth seen betwedranges. Instantaneous or near-instantaneous (within 15 or 20 s)
two Internet hosts, even though such information could be vdpad information is both impossible to distribute globally and of
useful to some applications. diminishing importance to future applications: as the Internet
Rather, we have taken the opposite tack—we determin@@ves to higher and higher speed, the propagation delay will
roughly the best service we may be able to provide givdiecome the dominant factor in distance measurenients.
technology constraints and the need for global scalability of theScope of the Distance InformatioWe assume that the dis-
service, and then considered whether there are applicationstésrce information applies only to the “public” portion of the In-
which this level of service would be useful. We now turn to grnet—the backbone networks, border gateway protocol (BGP)
discussion of the resulting goals. information, and possibly the public side of firewalls and border
Separation of FunctionsWe envision IDMaps as an under-routers of private networks. Even if distance information of pri-
lying measurement infrastructure to support a distance informéte networks were obtainable, it may be desirable not to in-
tion query/reply service such as SONAR. The full separation efude it for scalability reasons. This is not to suggest that dis-
IDMaps and the query/reply service is necessary because tdece information inside private networks is not important. We
different functionalities place different constraints on the twbelieve the architecture presented in this proposal can be repli-
systems. The requirements for IDMaps are relative accuracyagted within a private network, but otherwise do not address dis-
distance measurements with low measurement overheads, wigiigce measurement within private networks.
the requirements for the query/reply service are low query la-
tency, high aggregate query throughput, and reasonable storBgelternative Architectures and Related Works
requirement's. By decqupling the different functionalities, we The primary motivation of IDMaps is to provide an estimate
can streamline the design of IDMaps to perform measuremefi§ye gistance between any two valid IP addresses on the In-

W'th. low overheads and allow the query/reply service to malfgrnet. Itisimportant to discuss this motivation because it signif-
flexible uses of the measured distances.

Distance Metrics: Our goal is to provide distance informa—ic_antly differer_1tiates Il?Maps from other services that also pro-
tion in terms of latency (e.g., round-trip delay) and, where po ide d|stan_ce mformatpn, 9., the SPAND a_nd Remos _pro;ects
sible, bandwidth. Latency is the easiest distance metric to ptal: [21: Which are localized service that provides only distance
vide, and luckily the most generally useful. There are two relnformation between hosts close to a dl_stance server and_ remote
sons latency information is easy to provide. First, it is ead}PSts on the Internet. Such a service is simpler to provide be-
to measure. A small number of packets can produce a gdogiH'Se Fhe amount of |nf0rmat|on each distance server has' to
coarse-grain estimate. Second, two different paths may haverk with scales proportionally to the number of possible desti-
the same latency such that while our probe packets may hations (V). When all sites on the Internet require distance ser-
travel the same path as the path actually taken by the uséfi§e, however, the aggregated load of localized distance service
data packet, the reported latency would still be useful (see Figs@ales on the order @f>. The amount of measurement traffic
and accompanying text). Bandwidth is also clearly important feinder IDMaps will likely be much smaller than thé* order
many applications, but compared to latency, bandwidth is mddecause of the global sharing of distance information and as a
difficult to provide. It is more expensive to measure, and it igesult of our application of graph compression techniques such
also more sensitive to the exact path—a single low-bandwidik¢-spanners (see Sections I1I-C and IV-D). The administrative
link dictates the bandwidth for the whole path. cost of setting up and maintaining IDMaps service is also fixed.

Accuracy of the Distance InformatioriVe believe highly  Stemmetal.in [4] argue for the use of passive monitoring be-
accurate distance estimates (say, within 5% of the distangguse it does not send additional traffic to perturb actual Internet
measured by the end-host itself) are impossible to achieyaffic. Although the nonintrusive nature of passive monitoring
efficiently for a large-scale Internet service. While we may big very appealing, it has several limitations:
able tq achieve this Ievell of accuracy for each path measureqi) Passive monitoring can only measure regions of the In-
an estimate based on triangulation of such measurements will = yo o4 that application traffic has previously traversed. For
see an accumulation of the error terms. Instead, our goal is to example, a client trying to choose the nearest among mul-

obtain accuracy within a factor of 2 with very high probability tiple copies (or mirrors) of a Web server requires distance
and often better than that. We expect this level of accuracy . . : ; o
information to all mirrors, whereas a passive monitoring

o be adequate for SONAR and HOPS servers. Being able to system can only provide distance information to mirrors
distinguish systems that are very close, very far, or somewhere y y pro
that have been previously accessed.

in between is useful for a wide range of applications. For those When | h . o
that require more accurate measurements, they may at least us%) en Internettopology anges, passive momtonr_lg may
be forced to recollect most, if not all, of its distance infor-

this coarse-grained information as a hint to server selection. ) . 4 )
Timeliness of the Distance Informatio/e must consider mation. Distances in IDMaps are collected from multiple

two kinds of distance information—load sensitive and “raw” intermediatepoints on the Internet; this allows the dis-

(distances obtained assuming no load on the network, which fance database to locate any topological change and up-

generally can be approximated by saving the minimum of a  date only those actually affected.

number of measurements). In the interest of scalability, we plan

to prowde the raw distance information with an update fre-. While propagation d_elaylslow_erbounded byg_eographlcdlstance,|t|sdeter
mined by topological distance. Given the dynamic nature of Internet topology,

quency on the Order_ of days_, or if necessary, hours.. In Othﬁlﬁnges to topological distances can be scalably tracked only by an automatic
words, the distance information will not reflect transient netystem such as IDMaps.
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Host in BGP prefix in AS
(Autonomous System)

A2 + P cost

A = number of ASs

P’ = number of BGP prefixes
(A<<P)

H? cost
H = number of Hosts

B2 +P cost
B = number of Boxes

B=7

Fig. 1. Various forms of distance information.

3) Localized passive monitoring systems require human ef- 2) What are IDMaps’ components?
fort to install and maintain at each site. The responsibility 3) How should the distance information be disseminated?
of deploying passive-monitoring-based distance service
rests on the administrator of each individual network antl. Various Forms of Distance Information

rec:\tlvrelf Cgrt"?“n fzxy;:ertlse land redsczur(_:est_ l\IN'th IDIv"?‘ps'The conceptually simplest and most accurate form of distance
network administrators only need to install a querying. o mation IDMaps can measure consists of distances between

system, which can be standardized similar to the Domaé%y pair of globally reachable IP addresq@s shown in Fig. 1).

Name System (DNS). The distance from one IP address to another is then determined

4) Finally, passive monitoring typically requires Measurgs,, <imoiv indexing the list to th it t s
ment or snooping of network traffic, which may raise prihy simply indexing the list to the appropriate entry (using a

. ashing algorithm) and reading the number. The large scale of

vacy and Sec%”'ty concer_ﬁg. . ) ) this information (on the order df 2, whereH , number of hosts,

Another alternative to providing distance information ORq g pe hundreds of millions) makes this simple form of dis-
the Internet is by charting the physical connectivities betweg . infeasible—as does the task of finding all such hosts in an
nodes (hosts and routers) on the Internet and Compu“”%\?er-changing Internet in the first place.
spanning tree on the resulting connectivity map. DistanCeSthe neyt simplest would be to measure the distances from
between pairs of nodes can then be estimated by their distanggsy giobally reachable Address Prefix (AP) on the Internet to
on the spanning tree. We call this alternative the hop-by-h@Qery other (Fig. 1). An AP is a consecutive address range of
approach. The projects described in [6], [7], for examplgpo 5qdresses within which all hosts with assigned addresses are
provide snapshots of the Internet topology at the hop-by-h@gigistant (with some tolerance) to the rest of the Internet. De-
level. This approach largely relies on sending Internet Contr@rmining the distance from one IP address to another is only
Message Protocol (ICMP) packets to chart the Intemet. Tqqhiy more complicated than the first approach—each IP ad-
minimize perturbation to the network, each snapshot of thgess s first mapped into its AP, and the AP is then indexed in
topology is usually taken over a period of weeks, hence, g, jist. Unlike determining the global set of IP addresses, deter-
result does not adapt well to topological changes. More Seftining the set of APs, while nontrivial, seems feasible (see Sec-
ously, however, due to the recent increase in security awarengss |1-p). The scale of the information, however, is still pro-
on the Internet, such measurement probes are often mistak@fkive. The number of assigned classless interdomain routing

for intrusion attempts. (CIDR) blocks [8] is around 100000 as of March 2001 and
growing; there are probably several times as many distinct APs
lll. IDM APS ARCHITECTURE as there are CIDR blocks. Probing, disseminating, and storing
This section outlines the IDMaps architecture. Specificalljhe full list of (P?) pairs of AP—AP distances (easily a terabyte,
we address the following three questions: given 200000 APs, assuming on average two APs per CIDR
1) What form does the distance information take? plock, and 25 bytes per list entry) is probably out of the ques-
tion.

2Active measurements can also raise security concerns, e.g., Denial of Service
attacks. We try to address these security concerns in the design of protocols usédnderstanding here that different IP addresses may be reachable at different
in IDMaps, which will be reported in a future publication. times, given technologies like NAT and dial-up Internet access.
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Clearly, some way of further compressing this informatioaquality if for all vertices:, b, cinagraph(C'(a, ¢) < C(a, b)+
is needed. One way is to keep a list of distances from evefy(b, ¢) [9] [in the remainder of the paper, we use the nota-
Autonomous System (AS) to every other. The AS is the urtibn (a, b) interchangeably withC(a, b)]. If distances(a, b)
of path information carried by the BGP inter domain routingnd(b, ¢) are known, then from the triangle inequality we have
protocol. BGP also maps blocks of IP addresses into their ASisat (a, ¢) is bounded above b, b) + (b, ¢), and below by
This shrinks the size of the information #? + P/, whereA |(a, b) — (b, ¢)|. If either of the two distances is small relative
(A <« P)is the number of ASs an#’ the number of BGP- to the other, the bound is tight and the estimate accurate. De-
advertised IP address blocks (not an AP by the above definitisiving a distance estimate from this bound has been referred to
but of the same order of magnitude in size). While still a larges “triangulation” [10].
list, maintaining it is certainly feasible (there are about 10 000 A key point to keep in mind is that any time we estimate a
ASs as of March 2001). The resulting accuracy of the estimateidtance fronu to ¢ based on distances to an intermediayy
distances, however, is highly suspect. Many ASs are globalvie are to some degree relying on what we will tegfficient
scope, and multiple ASs can cover the same geographic are#oliting: that Internet routing does indeed strive to find low-la-
is often the case that some IP hosts are very close to each oteacy paths, and that the routes used by two nearby hosts will
(both in geographical and latency terms) yet belong to differenbt be drastically different from each other. This assumption can
ASs, while other IP hosts that are very far apart belong to the violated due to policy-based routing, and also by the use of
same AS. large layer-2 “clouds” by ISPs that are invisible at the network

Yet another form of distance information includes some clutyer, and hence contain significantly complex topology that are
tering of APs, but at a smaller unit than the AS. We can selessmpletely hidden from network-layer-only viewpoints such as
certain systems, which we will callracers,to be distributed available to IDMaps. If efficient routing is violated, it can render
around the Internet, so that every AP is relatively close the triangle inequality incorrects, <) might be much higher
one or more Tracers. The distances between these Tracersttagia(a, b) + (b, ¢) or much lower thar(a, b) — (b, c)|.
then measured, and so are the distances between APs and th&ife now present results from rudimentary experiments done
nearest Tracer(s). The distance between any two APs can thanhe Internet to explore the feasibility of using triangulation to
be calculated as the sum of the distance from each AP to distimate distances. Our intention here is not to test whether the
nearest Tracer, and the distance between the two Tracers. frfegle inequality holds over all parts of the Internet (indeed it
resulting accuracy depends on the number of Tracers and whéses not [11]), but only whether using triangulation to estimate
they are located. Assuming that we can manipulate the numbiétances on the Internet, independent of IDMaps, is at least
and location of Tracers, we have a tuning knob for increasitfigasible.
accuracy at the expense of measuring more raw distances.  We analyze end-to-enttaceroute measurements col-

This approach scales & + P, whereB is the number of |ected using the Network Probe Daemon (NPD) tool described
Tracers. Assuming that, the number of APs, is a manageablén [12]. A number of sites on the Internet were recruited to
number (no more than several hundred thousand), the question NPDs. At random intervals, each NPD measured the route
then becomes, how big should we make If B is on the order to another NPD site usintyaceroute. In this paper,we
of 10000, then the size of the listis quite large. If, howeseis  analyze thetraceroute  data collected by the NPDs in
on the order of 500, then th8* component is roughly the sametwo experiments: the November 3 to December 21, 1995
as theP” component and, at least in terms of simple storage aggperiment 1) and the September 4, 1996 to January 24,
lookup, definitely manageable. 1997 experiment02). We split experimenD1 into six data

Of the four forms of distance information mentioned abovegts, and experimed??2 into three data sets. The data sets are
the last one appears to have the best scalability with reasonai@overlapping in time. Thirty-three hosts distributed around
estimation accuracy. We decided to use this form of distangg globe participated in experimeii?1, 48 in experiment
information in IDMaps. There are thus three main component$2. A description of the measurement process, such as inter
of IDMaps: APs, Tracers, and the raw distances, which we caleasurement interval, number of measurements per period,
virtual links (VLs). We further differentiate VLs into two types:etc., and data cleansing done on the collected data are available
those between Tracér€Tracer—Tracer VLs) and those betweein [12] for the D1 data set and in [13] for th®2 data set.
Tracers and APs (Tracer—AP VLs). Before we examine eachin addition, we collected two more data sef33.1 and
component in greater detail, we first evaluate the basic assunps 2, using the Multiple Traceroute Gateways (MTGs)[14]
tion that we can estimate the distance between two points asdiiging January 2000. The MTGs are a collection of volun-
sum of distances between intermediate points. In analytic termgy Web sites, each of which can riraceroute from
this assumption relates to whether the triangle inequality holdgelf to a specified remote address. Data B&t1 contains

Triangulation on the Internet:Given a graphz with a set traceroute s from 33 Traceroute Gateways measuring
of verticesV’, a cost functiorC'is said to satisfy the triangle in- distances to all the others continuously in a round-robin fashion

4If the internal topology of each AS is known, a more accurate distance cher a period Of_ five days. Each round took 20 to 40 min. Data
be computed as the shortest-path across the internal topologies of transit 88§ 3.2 contains thetraceroute s from 74 Traceroute
between the two hosts. Gateways measuring distances to all the others exactly once.

SThe actual distances used would not include the legs from the Tracers to theilEor each data set. we estimate the Iatency between every
backbone routers, since this part of the path is not used by other hosts. For, the ’ . .
sake of readability, however, we referto the distance between one Tracer's rolt@iCETOUte  sourcess, and everyraceroute _ d?St'nat'on’
and another Tracer’s router simply as the distance between the two Tracersd, as the minimum of the end-to-end roundtrip times reported
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TABLE | 1
NUMBER OF TRIANGLES OBTAINED FROM EACH DATA SET 09 L
Data Set | Hosts | Total Paths | Shortest Paths 0.8 |
D11 26 12,192 590
D1.2 31 17,448 804 07 F
D1.3 30 15,050 733 06 |
D14 33 16,878 830 w
D15 | 33 27,366 980 8 o5
D1.6 32 26,936 960 04|
D21 45 128,244 2,663
D22 | 48 | 138468 2,790 03T
D23 39 95,925 2,229 02k
D3.1 33 31,955 1,047
D3.2 73 341,674 5,138 o1}
0 0 0.5 1 15 2 2.5 3

across all of th@raceroute s froms to d. From each data (@.c¥(@b)+be)

set, we then compute a set of triangles, each involving threg. 2 cumulative Distribution Function (CDF) of the ratio of
such minimum latencyraceroute  s: from a hostz to an- (a, ¢)/((a, b) + (b, ¢)) for shortest-path triangles.

other hosth, from hostb to a third hoste, and from host: to

hoste. Column 2 of Table | lists the number of triangles we ob 1
tained from each of the 11 data sets. Column 3 lists the numl
of shortest-path triangles computed from each data set. Gi\
all the bs that can potentially be used to estimate the distan 08 | y
(a, ¢)as(a, b)+(b, c), we call the path that uses thé¢hat pro- 07 F J
vides the smallega, b) + (b, ¢) theshortest-path triangle.

We use only the additive form of triangulation [estimating,,
(a, ¢) using(a, b) + (b, ¢)] in this paper because concatena8
tion of distances involving multiple intermediary pointsis mucl 0.4 v
simpler for the additive form and, as we show below, the r
sulting estimates are acceptable for our purposes. We empha
that computing distances on the Internet is not a straightforwe
process and there is future work needed on distance meas 0.1
ment and estimation; however, we also caution against int 0 . . .
preting the triangulation results presented here as an indicat 0 0.5 1 1.5 2
of how well IDMaps will perform. We expect IDMaps to per- @c)((aby+b.c)
form better than the results presented here due to the more 'g_e—
liberate placement of Tracers under IDMaps. For example, \{vﬁ'c)
expect the additive form of triangulation to hold more preva-
lently when Tracers are placed strategically and addresses are
aggregated into APs (see Sections I1I-B and IV-D). that the actual Qistance betweeandc in about 40% of the tri-

Fig. 2 shows the ratios ofa, )/((a, b) + (b, <)) for all angles fprmed is short'er than half th_e sun(cgfb) and(b, ¢),
shortest-path triangles in our data sets. The closer this ratid¥gich gives good indication that triangulating shortest-paths
to 1, the smaller the triangulation error. Without differentiatin§/!l More closely approximate the actual distances. Note that
which curves belong to which data set, we observe that betw: gh (a, <) to be 100 times longer thafa, b) + (b, ¢) is as bad
75% and 90% of triangulation estimates fall within a factor of 3S fOr it to be 100 times shorter. _
of the real distances. We reported similar results involving only !N SUmmary, while we cannot as yet make any claim as to the
the D1 andD2 data sets in an earlier version of this work ([15]poteptlal accuracy of triangulation in IDMaps, results pr'esented
though an analysis error in that paper incorrectly reports the fij- thiS section suffice to argue that the use of the additive form
ures), and this was also shown by [11]. Studying the extrerﬂEt”an_QUlat'on as a method to estimate distances on the Internet
cases at both ends of the distributions, we found(ihat) being Is feasible.
orders of magnitude smaller thamn )+ (b, ¢) is mostly caused
by « andc being colocated. On the other extrertie, ¢) being B- Tracer Placement

09 |

06 | .

o

5_

3. Cumulative Distribution Function (CDF) of the ratio of
/((a, b) + (b, ¢)) for all triangles.

much larger thafa, b)+(b, c) is mostly caused by larde, ¢). ~ As mentioned above, the resulting accuracy of IDMaps
We were not able to track down why these paths have very logigtances depends on the number of Tracers and where they are
distances in general (see, however, [11]). located. Ideally, Tracers should be placed where they are able

For comparative purposes, we also show in Fig. 3 the cumto-obtain accurate raw distance information. In this section, we
lative distribution function of the triangulation error from trian-briefly review two graph theoretic approaches we can apply to
gles involving all potentiabs. The figure shows, for example,determine the number and placement of Tracers, namely the
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E-HST and the minimumK-center algorithms. These algo- Algorithm 1 (Greedy placement)
rithms have been used to determine placement of fire stations,

ambulance placement, etc. [16]. More formal descriptions of LL—N:

these algorithms are available in [17], [18]. The assumption 2. h < max(L)

we make in applying these algorithms to the Tracer placement 3. while (diam(h) > D)
problem is that the most accurate distance information can be 4. L+ L—-h

obtained by minimizing the maximum distance between an AP 5. L+ LUN,

and its nearest Tracer. Given a graph, these algorithms partition 6. h <+ maz(L)

it into subgraphs satisfying certain conditions. Since IDMaps
cannot assume prior knowledge of Internet topology, the5& - Greedy placement of centers onahiST tree.
algorithms are mostly useful in informing and evaluating our
placement heuristics. We describe three placement heuristica@ues in each partition into several smaller child partitions. The
Section IlI-B-3. diameter of a partition is defined to be the furthest distance be-
We use the generic term “center” in place of “Tracer” in théween two nodes in the partition. More formally, theHST al-
following descriptions. We present two variants of the centgorithm consists of two phases. In the first phase, the graph is
placement problem: in the first case, the maximal center-nogeursively partitioned as follows: A node is arbitrarily selected
distance is given, and one is required to find the minimal numbieom the current (parent) partition, and all the nodes that are
of centers needed to satisfy this constrain; in the second case within a random radius from this node form a new (child) parti-
number of centers is given, and one needs to decide the locatibos. The value of the radius of the child partition is a factor of
of these centers such that the maximum distance between a nodemaller than the diameter of the parent partition. This process
and the nearest center is minimized. Each of the two algorithmeurses for each partition, until each node is in a partition of
described below can be used to solve both of these problem#s own. We then obtain a tree of partitions with the root node
Number of Centers:Given a networkd with NV nodes (that being the entire network and leaf nodes being individual nodes
is, the topology isa priori known), and é&oundD, one has to in the network. In the second phase, a virtual node is assigned
find a smallest set of centefg: such that the distance betweernio each of the partitions on each level. Each virtual node in a
any node and its nearest centél, € S is bounded by>. The parent partition becomes the parent of the virtual nodes of the
performance metricKy;..,) is the size of this se{f«|). More child partitions. The length of the links from a virtual node to
formally, find the minimalK such that there is a s C V its children is half the partition diameter. We embed the virtual
with |S¢| = K andVv € V: d(v, C,) < D, whereC, is the nodes in the original graph based on a technique developed by
nearest center to. Awerbuch and Shavitt [19]. Together, the virtual nodes also form
Center PlacementFor the placement of a given number of tree.
centers, one could consider the following metit.(, x): given The randomization of a partition radius is done so that the
a networkG with ¥V nodes, and a numbéf, find a set of centers probability of a short link being cut by partitioning decreases
Sc of size K that minimizes the maximum distance betweeaxponentially as one climbs up the tree. Hence, nodes close to-
a node and the nearest center. This problem is known as tfsther are more likely to be partitioned lower down the tree.
minimum K -center problem. We take advantage of this characteristic of the resukihtST
While our Tracer placement problem is similar in spirit to théree to devise the following greedy algorithm to find the number
center placement problem articulated above, for Tracer placd-centers needed when the maximum center-node distance is
ment we have to consider other practical deployment issubsunded byD. Let noder be the root of the partition tregy;
primarily that we do not know the Internet topologypriori, be the children of nodé on the partition tree, and be a list
and that the Internet topology changes dynamically. Furthef partitions sorted in the decreasing order of the partition di-
more, we must consider the willingness of network owners tometer at all times. Lehax(£) denote the partition at the head
host Tracers, and the managerial and financial constraints ondffi¢he list, anddiam (max(L)) its diameter. Fig. 4 presents our
number of Tracers we can afford to deploy and maintain. Hengggedy algorithm on the-HST tree (see [19] for a more formal
our goal is not to determine the minimum number of Tracers rgresentation of the algorithm). The algorithm pushes the centers
quired to provide distance estimates at a given precision, ldawn the tree until it discovers a partition with diametep.
rather to evaluate the effectiveness of various Tracer placem&he number of partitiong£|, is the minimum number of cen-
and number of Tracers. In Section IV-D-4, we present resutexrs required to satisfy the performance meffig,,.,. To select
from experiments with different number of Tracers. We use tlike actual centers, we can simply set the virtual nodes of these
graph theoretic results only as yardsticks to evaluate the perfpartitions in£ to be the centers.
mance of our placement heuristics presented in Section 11I-B-3;The k-HST-based greedy placement algorithm presented
we do not intend to directly use these graph theoretic algorithmisove tells us the number of centers needed to satisfy the
in actual deployment of Tracers for reasons cited above. performance metrié’;..,. For any given budget of centers, the
1) k-HST: We present in this subsection a placement algaigorithm above can also be used to determine their placement.
rithm based ork-hierarchically well-separated treg4:-HST) For example, to placd{ centers, we simply change line 3
[17]. Intuitively, think of the algorithm that generateg:a1ST in Fig. 4 to “while (£| < K).” Obviously, the performance
as a top-down graph partitioning algorithm that transformsraetric Py;,,,, may no longer be satisfied fdf below a certain
graph into a tree of partitions by recursively dividing far-apartumber.
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Algorithm 2 (2-approximate minimum K'-center [18]) 3) Tracer Heuristics: The graph theoretic approaches de-

scribed above assume known network topologies. However, the

1. Construct G%,G3,...,G2, topology of the Internet may not be known to all parties at any

2. Compute M; for each G? one time. Furthermore, the Internet topology changes continu-

3. Find smallest ¢ such that |M;| < K, say j ously, from physical and algorithmic causes. In this paper, re-
4. M; is the set of K centers sults from the graph theoretic algorithms are used as yardsticks
to evaluate the performance of our Tracer placement heuristics.

Fig. 5. Two-approximate algorithm for the minimulf- center problem. Given a number of Tracers and an unknown topology, we

devise the following heuristics for Tracer placement:

2) MinimumXK-Center: The placement of a given number Stub-AS:Tracers are placed only on stub Autonomous Sys-
of centers such that the maximum distance from a node to #§&1s (ASs). This would most likely reflect the initial deploy-
nearest center is minimized, known as the minimiftenter mentof Tracers on the Internet, when Tracers would be run from
problem, is NP-complete [20]. However, if we are willing toend hosts.
tolerate inaccuracies within a factor of 2 (2-approximate), i.e., Transit-AS: Tracers are placed only on transit ASs, i.e., ASs
the maximum distance between a node and the nearest cefitatare connected to several neighboring ASs and are willing to
being no worse than twice the maximum in the optimal case, tf@ITy traffic from one of its neighbors to another. This reflects
problem is solvable in QV|E|) [18]. In contrast to thé:-HST ~ deployment of IDMaps on ISP backbones. As IDMaps becomes
algorithm, one can intuitively think of the minimuds-center More popular, we hope that there will be enough incentives for
algorithm as a bottom-up approach to graph partitioning: it cdretwork providers and institutions with private networks to de-

lects nearby nodes into clusters. ploy IDMaps. For networks that do not have IDMaps deployed,
More formally, the minimum¥ -center algorithm receives as Tracers could still be run from end hosts.
input a graphG = (V, E) whereV is the set of nodest = Mixed: Tracers are randomly, with uniform distribution,

V x V, and the cost of an edge= (v;, v2) € E, c(e), is the placed on the network. This is the simplest placement method
cost of the shortest-path betwegrandu,. All the graph edges and does not assume any knowledge of network characteristics.
are arranged in nondecreasing order by eoste;) < ¢(e;) <  [tmeans Tracers are placed on both stub and transit ASs (hence
oo < dem), letG; = (V, E;), whereE; = {e1, ea, ..., ¢;}. the name “Mixed”). In terms of deployment, this placement
A square graphof G;, G2 is the graph containing” and edges reflects IDMaps being partially deployed on some ISPs.

(u., v) wherever there is a path betweeandv in G; ofatmost ~ The choice of these very simple placement heuristics reflects
two hopsu # v. An independent seif a graphG; = (V, E)is our intention to delimit how well IDMaps can be expected to
asubset’’ C V such that, for alk, v € V7, the edgdu, v) is perform. While the graph-theoretic approaches described in
notin E. An independent set @2 is thus a set of nodes ifi; the previous section assume full knowledge of the underlying
that are at least three hops apartin We also define anaximal network topology, our placement heuristics intentionally as-

independent se¥ as an independent &t such that all nodes sume minimal knowledge of the underlying network topology.
in V — Vv’ are at most one hop away from noded/ih Knowing the performance of these boundary cases, we can

The outline of the minimun¥ -center algorithm from [18] €valuate the benefits of further refinements to the algorithm,

is shown in Fig. 5. The basic observation is that the cost of tfef example, by iteratively using the distance map collected
optimal solution to thé( -center problem is the cost of, where 0 compute better placement. As we show in Section 1V-D-1,
i is the smallest index such thét; has a dominating setof €ven these most rudimentary placement heuristics can give
size at most. This is true since the set of center nodes is §ry good results.
dominating set, and i7; has a dominating set of siZ€, then
choosing this set to be the center§ guarantees that the distaRC&/ tyal Links
from a node to the nearest center is bounded;byhe second
observation is that a star topologyd#, transfers into a clique  Once Tracers are placed on the Internet, they start tracing
(full-mesh) inG?. Thus, a maximal independent set of site each other and APs (defined in Section Ill-A). The resulting dis-
in G? implies that there exists a sethfstars inGZ, such thatthe tance information are advertised to IDMaps’ clients. Clients of
cost of each edge in it is bounded By;: the smaller the, the IDMaps, such as SONAR or HOPS servers, collect the adver-
larger theK. The solution to the minimunik’-center problem tised distance information and construct distance maps. In this
is the G? with K stars. Note that this approximation does natection, we first discuss the Tracer-to-Tracer part of the distance
always yield a unique solution. map; then we discuss Tracer-to-AP virtual links.

The 2-approximate minimuni-center algorithm can also 1) Tracer—Tracer Virtual Links:As of March 2001, there
be used to determine the number of centers needed to sat@sfy close to 100 000 routing address prefixes in the Internet [8].
the performance metri€;,,, by picking an index: such that Assuming we have 5% as many Tracers (see Section IV-D-4
c(er) < D/2. The maximum distance between a node and tlfier the effect of having more or less Tracers) and each Tracer
nearest center ¥ is then at mosP, and the number of centerstraces to every other Tracer, there will be millions of VLs to
needed i§My|. be continually traced and advertised. Where efficient routing

and triangle inequality hold (see Section IlI-A), it is not nec-

6A dominating set is a set db nodes such that every € V" is either inp ~ €SSary 1o list allB? Tracer—Tracer distances to achieve good

or has a neighbor itD. accuracy. For example, given a number of Tracers in the Seattle
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ISPA raw distance Algorithm 3 (t-spanner [21])

ISPA )
1. sort E by cost ¢ in non-decreasing order

2.6+ (V,E'),E' + 0

ISPB 3. for each edge (u,v) in E do
Seattle ISPB 4. if (t * c((u,v)) < de(u,v))
5. E <+ (uv)UE'
ISPA Boston
Fig. 7. Thet-spanner algorithm.
ISPA
ISPB
ISPB

Fig. 6. Distance measurement reduction.

and Boston areas, it would almost certainly not be very use!
to know all of the distances between thérknowing the dis-
tance of one Tracer from each area would likely allow a suft

cient distance approximation between hosts in Seattle and hc 5 2
in Boston (Fig. 6).
We now generalize the above observations by applyii 4
the ¢-spanner algorithm [21] to distance map construction. E ISP 3 ISP 2 E

t-spanner of a graph is a subgraph where the distance betw
any pair of nodes is at mosttimes larger than the distance
in the original graph [22], [23]. Formally, given a graph 2 C: Client 1
G(V, E), at-spanner is a subgraghf (V, E'), E/ C F such M: Mirror
that dg/(u, v) < t-dg(u, v), Yu, v € V. The number of T: Tracer
edges required to build a 5-spanner, for example, on a gre
with N nodes is bounded by (@7%/2). Fort = log N, the
bound on the number of edges required {S\). We examine Fig. 8. Network with multiple connections to the Internet.
the effect of using different values on the performance metric
P, in Section IV-D.

Cai [24] showed that the minimurirspanner (&-spanner
with the minimum number of edges) is an NP—compIet@

problem. However, asymptotically, the algorithm of Althofefn€ir t-spanners. _ _
et al. generates, from a grap&(V, E), a t-spanner whose 2) Tracer—AP Virtual Links:Recall that an Address Prefix

edge count is on the same order of magnitude as the optirifal’) iS & consecutive address range within which all assigned
t-spanner [21]. Fig. 7 presents thespanner algorithm of addresses are eqwdlsta_mt (with some hy_stere3|s) t(_) the rest of the
Althofer et al. [21]. It first sorts, in increasing order, all thenternet. l_JnIess an AP is preconfigured into a dedlcatgd Tracer
edges inG by the edge cost. The edges are examined starti(‘ﬁfe Section llI-D), only the Tracers nearest to the AP_ itself can
with the shortest. An edde:, v) is added to the spanné if it discover and subsequently advertise the Tracer—AP distance. As
a result, when a Tracer first discovers an AP, it assumes itself to
Je the nearest Tracer and advertises its distance to the AP as the
quire IDMaps clients to first collect and store & VLs ad- Tracer—AP distance. Thereafter, however, other Tracers should

vertised by theB Tracers. It also assumes that ondespanner probe the AP to determine if they may be closer. If one is, then it
is computed, it will remain static. In reality, we do not eXpe&dvertises its closer distance. Upon hearing this, the Tracer with

all IDMaps clients to be able to stof@? VLs. As the under- the longer distance can stop advertising its distance to the AP.

lying Internet topology changes, we expect the set of VLs that Ve also ;tudy whether it is sufficient for each AP to be traced
makes up the-spanner to change from time to time. To keeBy only a single Tracer. If an AP has more than one path to the

track of topological changes, Tracers continually trace and d&St Of the Internet, having a single Tracer tracing to that AP

vertise allB? VLs—albeit at different frequencies, with higherCOU|d result in inaccurate distance estimates between this AP

frequencies for those used by thepanner and those that aré’md hosts that are not sharing paths with the Tracer. Fig. 8 shows
a network of four ISPs and three APs. One Tracer each is placed

in ISP1, ISP2, and ISPS3, i.e., T1, T2, and T3, respectively. The

"We recognize that geographical distance does not directly relate to netwpilhel on each link denotes the distance of the link. Consider the
distance (though often the two are related), for instance because of multipgi

- . . .
traffic exchange between global ISPs. We use geographical locations her%qgow'ng scenario. M”’rorls M1 and M2 of a service are placed
simplify the discussion. in AP3 and AP2, respectively. Assume that Tracer T1 traces to

AP 3 AP 2

less stable; accordingly, IDMaps clients must continually ex-
mine each new advertisement of a VL and continually update

improves the distance betweerandv by at least a factor of.
To apply thet-spanner algorithm described above would r
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AP1, T2 traces to AP2, and T3 traces to AP3. Client C in AP
will then be directed to mirror M1 in AP3 instead of M2 in AP2. Internet hosts:
Had Tracer T2 also traced to AP1, the client would have be« SONAR/ HOPS Clients

directed to M2. We investigate the effect of having more tha

one Tracer tracing to each AP in Section IV-D-6. = & ¢ @ T 0 o o oL TS - — e
IDMaps Client:
SONAR/ HOPS Servers

D. Discovering APs

APsin IDMaps are the endpoints of distance information. Tt
difficulty in grouping Internet hosts into APs is that the addres distances via simple query/reply
blocks advertised by ISPs in BGP do not necessarily represer protocol.
group of addresses in a single Internet “location.” Insidean IS— — — — &> — — — — — — — — — - — —
a BGP-advertised block may be further partitioned into mar
subblocks (i.e., APs) that are topologically far away from eac
other. The only direct way the address ranges of these subblo
can be learned is by querying the ISPs’ routers using simg
network management protocol (SNMP), or by listening to the..
internal routing protocols. Where ISPs themselves have setlglj% Basic model: Two tiers of functionalit
Tracers, these methods can be used. Ideally, a large number it ' ! Y
Tracers should be installed by each ISP to provide accurate dis- ) . ]
tance information for each site. These “dedicated” Tracers caifnulations on generated network topologies. In this section, we
easily be configured with site AP information. For APs not cowdive a brief summary of the three topology generation processes
ered by either of the above, “general purpose” Tracers will ha#ged in this study. Then we describe how we “deploy” IDMaps
to discover the address boundaries of APs. Due to space coh-the generated topologies. Finally, we describe how the per-
straint, we will report on our AP discovery algorithm in a futuréormance metrid?,,,;, is computed.
publication.

IDMaps Clients calcuate distances
on behalf of Internet hosts. Convey

IDMaps Service

Tracers measure network distances,
advertise virtual topology over
multicast groups. Clients calculate
end-to-end distances.

A. Topology Generation

E. Distance Information Dissemination We use three models to generate network topologies: the

In this section, we explore how distance information proA/axman model [25], Tiers [26], and a model based on AS-con-
duced by IDMaps can be collected by higher level services fiectivity observed from data collected on the Internet (“In&t”).
the context of a complete distance map service. Fig. 9 illustrat§ge decided to use more than one topology generator because
a three-tier model of a distance map service. At the bottom af actual topology of the Internet is still under research. The
the Tracers (T) that measure and advertise raw Internet distanggsman model provides us topologies with exponential growth
(VLs). In the middle layer, we havtbMaps Clients(iC), or a5 hop-count increases, whereas the Inet generator generates
simply Clients, that collect the raw distances and buNital  graphs with power-law vertex degree frequency distribution.
distance mapf the Internet. SONAR and HOPS servers are €¥me Tiers generator generates networks with hierarchical

amples of potential IDMaps Clients. These Clients use the digz, cture. More detailed description of the topology generation
tance maps computed to answer queries from their clients () -asses can be found in [27].

which are user applications such as a web browser or a napster

client. IDMaps_ itself is concerned only W_ith the infr_astructur%_ Simulating IDMaps Infrastructure

at the bottom tier that collects and advertises raw distances. ) ) .

IDMaps Tracers continuously send probe packets to “ex-Once a network is generated, we “build” an IDMaps infra-

plore” the Internet to measure distances. Measured distancesSfdcture on it. In this section, we describe how the various

then advertised to Clients. Upon receiving such advertisemenitgacer placement and distance map computation algorithms and

each Client independently determines the usefulness of {iuristics are implemented.

advertised information and handles it appropriately. To captureTracer Placement.n Section [lI-B, we described two

topological changes, instead of completely disregarding virtugiiaph-theoretic approaches and three heuristics to Tracer

links not currently used by Clients, Tracers will simply reducplacement. To implement the graph-theoretic approaches, we

the frequencies at which they trace and advertise these linkscompute Tracer placement using the algorithms described. To

When an Internet host is interested in learning the distaniceplement Stub-AS Tracer placement, givéhTracers, we

between two hosts, it queries a Client. The Client then rungak B nodes with the lowest degrees of connectivity to host

shortest-path algorithm to determine the end-to-end distanceTedcers. Conversely, for Transit-AS placement, we pigk

the two hosts in its distance map. The result of the computatinodes with the highest degrees of connectivity. We implement

is sent back as a reply to the host. A more thorough descriptigtixed Tracer placement by giving equal probability to all

and examination of the distance information dissemination Pr@odes on the generated network to host a Tracer.

tocol used by IDMapS will be reported in a future publication. Distance Map Computatiom distance map consists of two

parts: Tracer—Tracer VLs and Tracer—AP VLs. Each Tracer ad-

IV. PERFORMANCEEVALUATION vertises the VLs it traces. We do not simulate VL tracing and

To study the various algorithms presented in this paper priokg,  |net  topology ~ generator is  available  online  at:
to the deployment of IDMaps on the Internet, we conduct somep://topology.eecs.umich.edu/inet/
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advertisement or AP discovery in this study, and we only simu- TABLE I

late a single IDMaps Client. Since IDMaps Clients operate in- SIMULATION PARAMETERS
dependently, the use of a single IDMaps Client has no loss of Topology | Placement B|TTMap |T/AP
generality for the performance metrics evaluated here. The sim- Waxman | Stub-AS 10 | full-mesh 1
ulated IDMaps Client has a full list of Tracers and their loca- Tiers Transit-AS 20|2-spanner | 2
tions. The Tracer—Tracer part of the distance map is computed Inet Mixed 40| 10-spanner| 3
either assuming a full-mesh among all Tracers, or by executing Min K-center | 100

the originalt-spanner algorithm shown in Fig. 7. k-HST

Each AP (node) can be traced by one or more Tracers. When

_each AP is traced by a single Tracer, _the Tracer nearest to anfg‘ﬁows. In each simulation experiment, we first placéfrom
Is assigned to trace the_ AP.1fan AP is _traced by more thgn 8% 24) server mirrors in our simulated network. We place the
Tracer, Tracers are assigned to the AP in order of increasing frors such that the distance between any two of them is at

tance. In our simulations,_ we assume all edges are bidirectio 8. stl /»n the diameter of the network. We consider all the other
and paths have symmetric and fixed costs. We will reportont Bdes on the network as clients to the server and compute for

effect O.f mefa\:,uremel;llt. ertr_or and stability on IDMaps perfore-ach client the nearest mirror according to the distance map ob-
mance in a future publication. r_[>ained from IDMaps and the nearest mirror according to the ac-

Once a distance map is built, the distance between two Aks,, topology. For a given-mirror placement, we compufe,,

.A and B is estimated by summing up the.dlstance fraimo as the percentage of correct IDMaps’ answers over total number
its nearest Tracery, the distance fronB to its nearest Tracer of clients

.TB’ and tthz S|sttance _tFenNeémﬂ?n;jj;?. Z\{rlen a full-mesﬂh On the Internet, a client served by a server 15 ms away would
IS computed between racers, tig 1o 1 distance IS exactly Probably not experience a perceptible difference from being
the length of the shortest path between them on the underly ved by a server 35 ms away, or that a server 200 ms away
network. Otherwise, they are computed from thepanner. If will not appear much closer than one 150 ms away. We con-

A and B have mulltlple Tracers tracing to them, the (j|stanc der IDMaps’ server selection correct as long as the distance
betweenA and B is the shortest among all combinations o etween a client and the nearest mirror determined by IDMaps
_Tracer—AP VLs and Tracer—Tracer VLs for the Tracers and A iwithin a factor ofA times the distance between the client and
involved. the actual nearest mirror (here, we use- 2).

We repeat this procedure for 1000 differentnirror place-
) ) __ ments, obtaining 100®,,, values in each experiment. In the
Ultimately, IDMaps will be evaluated by how useful its disyext section, we present our simulation results by plotting the

tance information is to applications. We evaluate the perfaipmplementary distribution functierof theseP,,,,, values.
mance of IDMaps using nearest mirror selection as a proto-

typical application and adopt an application-level performan¢g sjmulation Results

metric P,,, which measures how often the determination of the Table II zes th ¢ f imulati Th
nearest mirror to a client, using the information provided bﬁ/ avie [l summarizes the parameters of our simuiations. The

IDMaps, results in a correct answer, i.e., the mirror the clie Fadlng of each column specifies the name of the parameter,

would have been redirected based on a shortest-path tree (,icwj th? varlcl)us \lla:ju‘(‘a_? trleld ar:al_h?tet: mﬂghe resp;cltwe colurrtm.

structed from the underlying physical topology. Incidentally, th eco tumn 3 € et cl)pq ogyﬂ:s fPI €three ?,:'0 F S Wei.utsetho

localized distance measurement service (see Section |I-B) sgvgwera € random fopologies. The “Flacement: column liSts the
is

C. Performance Metric Computation

as provided by [4], [28] in effect constructs a shortest-path tr ?C(;r] placerrl;ent ?'gTo”tth and heurlstfgdc;rlﬁédtolumt\r;l K
from each client (or stub network) to all mirrog,,;, thus can S the number of Tracers we use on “NOde NEtWOrks.

be considered as comparing the performance of IDMaps agai QF “T-T Map” column lists _the methods used to compute the
banng P bsag acer—Tracer part of the distance map. The “T/AP” column

the localized services in the best-case scenario for the localize: . .
ts the number of Tracers tracing to an AP. We experimented

services, i.e., the distances from the clients to all mirrors al‘%

knowna priori and are obtained at no cost. Performance corW—Ith almost all of the 540 possible combinations of the param-

parison between localized services and IDMaps in the commgj§"s On 1000-node networks and several of them on 4200-node

case must take into account the shortcomings of localized Sré?__tworks. In addition, we also examined the case of having more

vices (see Section II-B), chief among which is the time lag ifurrors for_ a few representative simulation scenarios.

obtaining distance to “uncharted” parts of the Internet due to | '€ Major results of our study are:

the “on-demand” nature of the service, the additional cost of 1) Mirror selection using IDMaps gives noticeable improve-

collecting distance information due to the lack of information ment over random selection.

sharing between clients, and the cost of maintaining each in-2) Network topology can affect IDMaps’ performance.

stance of the localized service. 3) Tracer placement heuristics that do not rely on knowing
Considering, however, that the goal of IDMaps is not to pro-  the network topology can perform as well as or better

vide precise estimates of distances between hosts on the In- than algorithms that requira priori knowledge of the

ternet, but rather estimates of relative distances between a source topology.

(e_.g., a client) and a set of _potent|a_1l destlnatlo_ns (g.g., SErVe¥The complementary distribution functiafir (x) = 1 — F(x), whereF(x)
mirrors), we adopt a lax version of this measure in this paper,iaghe cumulative distribution function of the random variable
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Fig. 10. Three-mirror selection on 1000-node network with ten Tracers. (a) Inet. (b) Waxman. (c) Tiers.

Complementary Distribution Function

4) Adding more Tracers (over a 2% threshold) gives dimimmirrors are selected based on the distance map computed from
ishing return. Tracers placed by the Transit-AS heuristic, the probability that
5) Number of Tracer—Tracer VLs required for good perforat least 80% of all clients will be directed to the “correct” mirror
mance can be on the order Bfwith a small constant.  is 100% (recall our definition of correctness from the previous
6) Increasing the number of Tracers tracing to each AP ireection); however, the probability that up to 98% of all clients
proves IDMaps’ performance with diminishing return. will be directed to the correct mirror is only 85%. We start the
These results apply to both the 1000-node and 4200-node refXis of the figure at 40% to increase legibility. The line la-
works. We present simulation data substantiating each of #led %-HST"is the result when the-HST algorithm is used to
above results in the following subsections. Due to space cdtface Tracers. The-HST algorithm requires knowledge of the
straints, we are not able to include data confirming some of thd8@0logy (see Section l1I-B-1). The line labeled “Random Selec-
results on the Internet [29]. tion” is the result when mirrors are randomly selected without
1) Mirror Selection: Results presented in this subsection afé¢sing a distance map. As expected, given that there are three
obtained from simulations on 1000-node randomly generat@&”or& it performs well for less than 40% correctness and the
topologies. In all cases, three mirrors are manually placed on ffformance deteriorates beyond 60% correctness. Mirror se-
network, the number of Tracers deployed is ten (1% of nodel§ction using distance maps outperforms random selection re-
and the distance maps are built by computing full-meshes grdless of the Tracer placement algorithm.
tween the Tracers, with only a single Tracer tracing to each AP.We include only the best- and worst-performing Tracer place-
We compare the results of random selection against sel&ent algorithms in Fig. 10 for legibility of the graphs. The rel-
tion using the distance map generated by IDMaps. The metricatve performance of the various placement algorithms is pre-
comparison is?,,,. Each line in Fig. 10 shows the complemensented in Section IV-D-3. Fig. 11 shows results from simula-
tary distribution function of 100(P.,,,, values as explained in tions with 24 mirrors. Qualitatively, these results agree with our
the previous section. Each line is the average of 31 simulatiatenclusion that mirror selection using distance maps outper-
using different random topologies; the error bars show the 95#%ms random selection.
confidence interval. For example, the line labeled “Transit-AS” 2) Effect of Topology:Fig. 10(b) and (c) show the results of
in Fig. 10(a) shows that on an Inet-generated topology, whaimning the same set of simulations as in the previous section,
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Fig. 11. Twenty-four mirror selection on 1000-node network with ten Tracers.(a) Inet. (b) Waxman. (c) Tiers.

but on topologies generated using the Waxman and Tiexted from the Waxman model, where the distances fall between
models, respectively. Again, the error bars on each figure sh@8% and 70% of the network diameter. However, the distance
the 95% confidence intervals computed from 31 randomgistribution for the Tiers topology is much more dispersed, and
seeded topologies. While mirror selection using a distantiee range is between 10% and 70% of the diameter. It is much
map provides better performance than random selection in ladirder for two randomly picked distances to be within a factor
cases, performance on the Tiers-generated topology exhilitsThis is corroborated by the poor results returned by random
a qualitatively different behavior than those in the other twselection. We note again that despite the significant differences
topologies. Namely, the Transit-AS heuristic gives bettén the three models, IDMaps is able to provide noticeable im-
IDMaps performance than tHeHST algorithm on topologies provements to nearest mirror selection in all three cases.
generated from the Inet and Waxman models, but not so in the8) Performance of Placement Algorithm3o compare
topology generated from Tiers. the relative performance of the various Tracer placement
We offer a hypothesis for the relatively poor performance @flgorithms and heuristics, we repeat the same simulations

random mirror selection on Tiers topology. Our earlier works in the previous two subsections, once for each placement
in [27] shows that almost all the end-to-end distances in tladgorithm. Then using the complementary distribution function
Inet-generated network fall between 20% and 60% of the net-the P, values obtained from running the Mixed placement
work diameter. When we randomly pick two distances from thagorithm as the baseline, we compute the improvement of each
network, it is highly likely that they will fall within this range. placement algorithm relative to Mixed placement. The results
Consequently, one distance will be no more than three timae presented in Fig. 12(a)—(c) for networks generated using
longer than the other. Therefore, given our definition of the pethe Inet, Waxman, and Tiers models, respectively. There is no
formance metric, even random selection can give acceptablear winning placement algorithm across all topologies, but
performance. As can be seen by comparing Fig. 10(b) agaitte minimumK -center algorithm and Transit-AS placements
Fig. 10(a) and (c), this is more evident in the network geneconsistently perform well in all three topologies. In general,



FRANCISet al: IDMAPS: A GLOBAL INTERNET HOST DISTANCE ESTIMATION SERVICE 537

25 — T 50 —T T T T T
Transit AS —— Transit AS =—
20 Min-K exemress : Min-K
[ SWDAS === 40|  StubAS =mwem
k-HST =+eemie k-HST
- 15 p
g 3 30 |
< 1<
g st g or
k<] 0 k]
(0] [ 1 L
g g "
= c
o -5F [
o
2 g °
-10 F
-10 |
15 |
_20 1 1 1 1 1 _20 1 1 1 1 1
40 50 60 70 80 90 100 40 50 60 70 80 90 100
Percentage of Correct Answer Percentage of Correct Answer
() (b)
250 - T T T T
Transit AS -
Min-K sesasess .
Stub AS =i=i=i=: s
200 K-HST sreiwim ks
z ;
g i
g 150 | i -
> ¥
] i
£ ;
5 100 [ e
(]
o
jof
g 50 .
[)
a
0 -
50 1 1 1 \ 1
40 50 60 70 80 90 100
Percentage of Correct Answer
(©)
Fig. 12. Improvement of placement algorithms over the Mixed algorithm on 1000-node network with ten Tracers. (a) Inet. (b) Waxman. (c) Tiers.
1 T T " 1 T T ‘\
c c
Q
2 o8| g o8 8
g c
i c
8 S
3 081 3 08} 4
% %
[a} [=}
el
S 04 E 0.4 E
5 5
5 §
2 2
£ o2t 10 Tracers % 02|  10Tracers 4
3 20 Tracers =====ee 8 7 35 Tracers
40 Tracers -- 70 Tracers -
80 Tracers 140 Tracers "
100 Tracers ======= 350 Tracers ssssaes
0 1 1 1 1 1 0 1 1 1
40 50 60 70 80 90 100 80 85 90 95 100
Percentage of Correct Answers Percentage of Correct Answers

(a) (b)

Fig. 13. Mirror selection using IDMaps with varying number of Tracers. (a) 1000-note Tiers network. (b) 4200-node Inet network.

the simple heuristics can often perform as well as the graph4) Having More Tracers:In this subsection, we study the
theoretic placement algorithms. In [29], we also present resudtfect of increasing the number of Tracers on IDMaps’ perfor-
of applying the graph theoretic placement algorithms amance. Fig. 13(a) shows the results of running the Transit-AS
distance maps computed from the Transit-AS heuristics.  placement algorithm on a 1000-node network generated using
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the Tiers model. Increasing the number of Tracers from
to 20 improves performance perceptibly, with diminishin
improvements for further increases. Comparing Fig. 13(
against Fig. 10(c) from Section IV-D-2, we see that increasir . . .
the number of Tracers from 10 to 20 makes the performance 080 85 90 95 100
IDMaps using the Transit-AS placement algorithm comparak Percentage of Correct Answers
to that of using th&:-HST algorithm with ten Tracers.

Fig. 13(b) shows the results of running the Transit-AS maciig. 15. Mirror selection on 1000-node Waxman network with two and three

—
o
T

(3]
T

/ ; /AP.
ment algorithm on a 4200-node network generated using t 1°ere

Inet model. Again, we see a perceptible improvementin IDMaps ... . . o
performance when the number of Tracers increases from te ﬁltlpher. In contrast, the number of VLs required to maintain

35, with diminishing improvements for further increases. Alsaé ull-mesh for3 = 100 is 4950 edges. (The theoretical upper

irh- i (1+1/t)
of significance is that having only 0.2% of all nodes serving SognclivloTt_tr}e r11_umber of edg;sl i a”panner IS QIJBt ))%
Tracers already provides a correct answer 90% of the time with )h uitiple ra%e;i pter | |na (lnurTS|mu atlons SO a;], AP
very high probability. To the extent that larger networks meal © have assume at only a singie lracer traces eac '

denser network®,a Tracer can serve more nodesinalargern e showed in Section llIl-C-2 (Fig. B) that in some cases

work than it does in smaller networks. Thus to achieve the Sa?p]%vmg more than one Tracer tracing an AP may result in

IDMaps performance, the number of Tracers needed to ser\}éeéter distance estimates. We now present some performance

larger network does not necessarily increase as fast as ther?ﬁs-uilrfs fror?] chrg:i% (')r(‘) Vr;’hgh r:hfv:/e rire \EVWO (I)r thrle(;eo'l_'rrflcerf
crease in network size. Overall, we do not need a Iarge—scg%C g eac ; -Node networks, we place acers
ing the Transit—AS algorithm, and compute a full-mesh for

IDMaps deployment to realize an improvement in the metric ;
interer)tP pioy P #facer—Tracer VLs. Using the performance of IDMaps where
L app-

5) Distance Map Reductionin all the simulations reported only one Tracer traces each AP as the baseline, we compute the

so far, the distance maps are built by computing fuII_me%ercentage improvement of increasing the number of Tracers

Tracer—Tracer VLs. Fig. 14 shows the results of running thE" AP.

Transit—AS algorithm to place 100 Tracers on a 1000-no eF'\?\} 15 shows (tjh?t ona 100;)-tnoge networ:( generTated using
network generated using the Inet model, with Tracer—Trac £ Yvaxman model, compared o having only oné fracer per

o ! 0 .
VLs computed as a full-mesh and aspanners. Fot = 2, , the probability of having at least a 98% correct answer is

there is no perceptible difference in performance;tfet 10, ?ncreased by 17% when each AP is traced by two Tracers, and

; 0 .
the performance is worse. Qualitatively similar results a@mcreased by 25% when each AP is traced by three Tracers.

observed for topologies generated using the Waxman and Ti 3 only consider up to three Tracers per AP since currently 85%
models, with worse performance foe= 10 in the Tiers case of ASs in the Internet have degree of connectivity of at most 3

Using at-spanner in place of a full-mesh can significantly[?’o]'
reduce the number of Tracer—Tracer VLs that must be traced,
advertised, and stored. Table 11l shows that for all the topologies
used in our experiments, the number of VLs used by both 2-It has become increasingly evident that some kind of distance
and 10-spanners are on the orderf®fwith a small constant map service is necessary for distributed applications in the In-

_ ternet. However, the question of how to build such a distance
10The number of hosts and ASs on the Internet has been growing very fast over

the past decade, but the diameter of the Internet, i.e., the longest path betv/2 remains largely uneXplor_ed- In this paper, we propose a
two points on the Internet, has stayed roughly the same. global distance measurement infrastructure called IDMaps and

V. CONCLUSION
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tackle the question of how it can be placed on the Internet tq.7]
collect distance information.

In the context of nearest mirror selection for clients, weg
showed that significantimprovement over random selection can
be achieved using placement heuristics that do not require a fuft®]
knowledge of the underlying topology. In addition, we showed[ZO]
that IDMaps overhead can be minimized by grouping Internet
addresses into APs to reduce the number of measurementll
the number of Tracers required to provide useful distance
estimations is rather small, and applyirigspanner to the [22]
Tracer—Tracer VLs can result in linear measurement overhead
with respect to the number of Tracers in the common casgyg
Overall, this study has provided positive results to demonstrate
that a useful Internet distance map service can indeed be bui4l
scalably. [25]
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