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Abstract One way to maximize the network flow is to formulate

Given a set of demands between pairs of nodes, {#§ Problem as a Maximum Multi-Commodity Flow
examine the traffic engineering problem of flow routingMCF) problem which can be solved using linear
and fair bandwidth allocation where flows can be split throgramming (LP). While the solution will maximize
multiple paths (e.g., MPLS tunnels). This paper preseﬁ'fbe flow, it will not always do it in a_lfalr manner. Flows
an algorithm for finding an optimal and global per-that traverse several congested links will be allocated

commodity max-min fair rate vector in a polynomiaY€"y little bandwidth or none at all, while flows that
number of steps. In addition, we present a fast arfigverse short hop distances will receive a large allonatio

novel distributed algorithm where each source routddf bandwidth. In an attempt to introduce fairness into

can find the routing and the fair rate allocation fort® maximum flow problem, the Maximum Concurrent

its commodities while keeping the locally optimal maulti-Commodity Flow MC.MCF) problem was sug-
min fair allocation criteria. The distributed algorithm 9€stéd [1]. In thisMC.MCF LP formulation, we are
is a fully polynomial epsilon-approximation (FPTASJIVen a setof demandsiem;, one per each commodity
algorithm and is based on a primal-dual alternatiorP@r (si; %) and are required to satisfy the maximum

technique. We implemented these algorithms to dem&fu@l fraction\ of all demands and to seek a routing that
strate its correctness, efficiency, and accuracy. maximizes network flow. However, the achieved solution

under-utilizes the network, sometimes saturating only a
small fraction of its links.
The max-min fair allocation strikes a balance between
Traffic engineering is a paradigm where network ofairness and the need to fully utilize the network. An
erators control the traffic and allocate resources in ordglfocation of bandwidth or rates to a set of connections
to achieve goals, such as, maximum flow or minimuiig said to be max-min fair if it is not possible to increase
delay. One challenge is to allow different flows to shan@e allotted rate of any connection while decreasing only
the network, so that the total flow will be maximizedhe rates of those connections which have larger rates. An
while preserving fairness. extended version of the max-min fair allocation problem
We consider as input a network topology and dis the variable-routing scenario, where the flow between
rectional link capacities, a list of ingress-egress paitgyo terminals (a commodity) may be split among several
and per-pair traffic demand. This list of demands mayaths and the set of the paths that achieve such maximum
represent aggregates of (e.g., TCP) connections, sucliais allocation is not part of the input. The variable-
client traffic (university campus, business client) and witouting version, studied in this paper, is more difficult
typically be expressed by average or maximum requirgitan the classical max-min fair allocation problem since
rates. Thus, traffic between an ingress-egress pair miagouples the bandwidth allocation and the flow routing
be split arbitrarily among different paths without caussroblem. There can be more than one weighted max-
ing packet reorder in the connections comprising eagfin fair rate vector in a variable-routing scenario, but
demand. Our goal is to fulfill clients’ demands whileonly one is the global maximum max-min rate vector.
sharing the network bandwidth fairly. This is facilitated’he globally weighted max-min fair rate vector is the
by laying the set of paths to be used between each plaiicographically largest feasible vector. This is diéfat
in the network, and by allocating them bandwidth usingom the case when the input paths are fixed and only a
the weighted max-min fairness criterion. single path exists between the source and the destination.
- ) i the School of Electrical Endineer In this case there is a unique max-min fair rate vector and
peprmn o et e e o ey S veclor is lexicographically he lagest rate vector
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session, where a session is defined by a pair of terminafgnner. In extensive simulations, our algorithm, which
A simple algorithm that finds the max-min fair allocatioravoids using an LP solver, is shown to reach a solutions
where the routes are given appears in Bertsekas [2]. up to ane from the optimal.

Many distributed algorithms were suggested for the Our off-line algorithm, calledOPT_WMMF (Opti-
dynamic adjustments of flow rates to maintain maxnal Weighted Max-Min Fair multi-Commodity) finds
min fairness when single routes are given [3], [4], [Sthe optimal per-commodity max-min fair rate vector.
[6]. The above algorithms differ by the assumptioni$ solves iteratively a re-formulateMC_MCF LP un-
on the allowed signaling, and available data. Baetl til network saturation is achieved. Each iteration may
al. [6] found the total maximum flow allocation in achange the routing selected in the previous iteration but
network for given routes using distributed computationsay not decrease the already allocated per-commodity
as the input to the glob&IMCF LP problem. Kellyet bandwidth. As a result, it is hard to distribute this
al. [7] proposed the proportional fairness concepts aadfyorithm. In addition, LP solvers have relatively long
a convergence algorithm. Mo and Warland [8] genergkhough still polynomial) running time, which may make
ized proportional fairness and suggested end-to-end flgvem impractical for large networks.
control for TCP streams by changing the transmissionThus, we developed a centralized algorithm,
window size, but again they deal with flow allocatiop WMMF, that converges to a maximal (but not
without routing. necessarily maximum) weighted max-min fair solution

The max-min variable-routing scenario was rarelind can be distributede (WMMFdis). This family
discussed. Chen and Nahrstedt [9] provided max-m#h algorithms relies on the idea of embedding the
fair allocation routing. They present an un-weighteiC_MCF solution into the process of finding the rate
heuristic algorithm that selects the best single path gector of the max-min fair flows and uses its plain
the fairness-throughput is maximized upon an additiggrmulation, and provide a per-commodity weighted
of a new flow. Their algorithm searched this route owhax-min fair rate vector, though we can not guarantee it
of the possible paths for each new flow. Kleinbexy will be the optimal vectore WMMF and e_ WMMFdist
al. [10] provided an interesting introduction regardingre centralized and distributed versions of an FPTAS
the relationship between the way in which one sele@gproximation to the OC_WMMF algorithm. They run
paths for routing and the amount of throughput ongn the dual problem to theIC_MCF and enable a more

obtains from the resulting max-min fair allocation orfficient centralized algorithm and consequently, the
these paths. Megido [11] addressed this problem forggstributed algorithrh

single commodity maximum flow. He showed that the paximum Concurrent Multi-Commodity Flow

fairest flow is the maximum flow, namely throughpuproblem Related Works. Most of the studies that
is not sacrificed by imposing fairness. Kleinbeed combined the LP formulation for the traffic engineering
al. [10] found approximated routing to provide a maxgesign chose a multi-commodity flow formulation that
min bandwidth allocation for single source unsplitablggnsiders the demands but they do not discuss the max-
flow routing. Goelet al. [12] developed an on-line min faimess in conjunction with maximum throughput as
algorithm that finds the max-min fair vector in aryyr LOC WMMF algorithm doed A few directions for
O(log? nlog'*< U/e)-competitive ratio, where routes argyilding approximation algorithms for théMCF prob-
given; Buchbinder and Naor [13] improved the bounds igm were suggested in the past. Young [17] described
[12]. In the wireless context, Hou et al. [14] present ag random algorithm that computes the flow by solving a
algorithm that finds the optimal weighted max-min faignhortest path problem (on the dual LP) and pushing one
rate vector in a variable routing formulation using an LBnit of flow over it, at each step. Garg and Kénemann
solver like we do, though with a different saturation tesf18] using detailed analysis extended Young’s algorithm
Our work focuses on the variable-routing weightegnq improved its time complexity by pushing enough

max-min fair allocation problem and finds an off-lingow so as to saturate the bottleneck link of the path.
algorithm for calculating the global weighted max-min

fair _r_ate vector in a polynomla_l number o_f steps. In LFor abbreviations see Table I.

addition, we present a fast distributed algorithm for theza, approximation scheme is an algorithm that computes & solu
locally optimal weighted max-min fair rate vector thation within a factor of1 — e of the optimal for any constant > 0.
extend and embed the variable-size increments tedhe approximation scheme is a fully polynomial time appmeadion

niques. These techniques were never used before @j&érsn)ir']fpl'}fs'{:gmng time is_polynomial in both /¢ and the

rOUting_ and_ b"_indWidth allocation USing the yve?ghted 3Relevant mathematical and algorithmic backgroundv@.MCF
max-min criteria, nor they were used in a distributeptoblem and its complexity can be found in [1], [15], [16]



MMCF Maximum Multi Commodity Flow problem . . . . .
MC_MCF Maximum Concurrent Mult)i/Comr:odity Flow problem vector in this case is (1/3’2/311/3’1/3) which achieves a
OPT.WMMF | oOptimal Weighted Max-Min Fair multi-Comm. Alg. flow of 5/3. The We|ghted max-min fair vector, treat-
LOC.WMMF | Locally-optimal Weighted Max-Min Fair multi-Commodity 4l . . . .

c WMME Approx. Weighted Max-Min Fair Alg. ing each flow in the example as a commaodity (since
e-WMMPFdist | Aapprox. Optimal Weighted Max-Min Fair Dist. Alg. the source-destination pairs are different), when all the

weights are equal, is the same rate vector. In case pair
1 is given a double weight than the rest of the nodes, it
will be allocated double the bandwidth in its bottleneck
link (link(2,3)) and the weighted max-min fair vector is
(1/2,1/2,1/4,1/4).

TABLE |
PROBLEM AND ALGORITHM NAME ABBREVIATION LIST

Fleischer [19] and Karakostas [20] improved t&MCF
approximation algorithm by partitioning their technique Nt /
into phases and by re-calculating a set of shortest paths
for all the commodities with the same source node, | “~/____
instead of per commodity as done before, and reduced / N TR TN
the dependence of the running time on the number of
the commodities/<, to a logarithmic factor. Fig. 1.
Oure_.WMMF algorithm uses and extends the variable-
size increments techniques (presented by Garg and’he max-min fair definition is traditionally stated for
Konemann [18] and Fleischer [19]) to achieve a nethe case where each flow takes a pre-assigned single path
solution to the max-min fair. These algorithms do ndR]. A variable-routing scenario is a more complicated
deal with explicit net flows per path, thus, to achievproblem that requires to find both the routing and the
network saturation using the dual problem, we extemdndwidth allocation such that fairness will be achieved,
their technique using deeper understanding of the tradgven only the network topology and link capacities.
off between the network saturation and link lengtifhe optimal solution in the variable routing scenario
assignments. The distributed algorithmWMMFdist is the set of paths that achieves the fairest bandwidth
provides a mechanism where each source node dlocation, and the per commodity allocation. Our frame-
maximally and efficiently allocate bandwidth to its owrwork considers a flow that may also be split among
clients, supply them a routing and still guarantee globséveral paths. More than that, this scheme is extended
fairness. to consider weights for the flows. We state it in the
The following section explains the max-min fairnesfllowing definitions.

criteria in our context; states definitions; and explaires th finition 1 The C ditv Rate i _
theoretical tools we use in the paper, namely, the primaf nton e Commodity Rate Vectgt, Is a vector

MC_MCF problem and its dual problem. Section jWhose elements are the rates which were assigned to the
presents the iterative algorithm that finds the globalfPMmmedities (source-destination pairs).

optimal max-min fair rate-vector. Section IV describes OM this definition we can writg_p,  p, f(Pij) = pi

our LOC.WMMF family of algorithms, including the where P; is the set of all the paths that are assigned

distributed algorithm. Finally we conclude the paper. ©© commodityi, and f(F;;) is the flow of commodity
1 along its j's path. We denote by* the optimal

weighted max-min fair commodity rate vector, py its
ith element, byf; the flow rate vector, and byem,; the
demand or the weight of commodity

To clarify the differences between fairness criteria argafinition 2 The vector is said to be(weighted) max-
algorithms, consider the example in Fig. 1, which depiCiSiy fair if it is feasible and if each of its elements

a line network with four nodes which are connected b/yi cannot be increased without decreasing any other

one unit capacity links. Four flows demands are depictg%mentpk for which (p;/dem; > py/demy) p; > pi
in the figure each with a unit demand. Note that in this ' ' f

example, there is only a single path between each pairTdfe two definitions above also hold when traffic may be
nodes, thus only single bandwidth allocation is considplit to several paths.

ered. TheMMCF problem results in an allocation vector

(0,1,1/2,1/2) starving flow 1 since it passes through twiefinition 3 Given network topology G and its link
congested links. The total flow this allocation achievespacities, a variable-routing max-min fair bandwidth
is the maximum possible, 2 units. The max-min fair [2}llocation problem achieves a max-min fair solution by

Example of flows assignment

II. DEFINITIONS, MODEL, AND TOOLS
A. Max-Min fairness



choosing the set of paths between source-destinatiorThe centralized weighted max-min fair algorithms
pairs (i.e., the paths are not part of the input). OPT.WMMF that uses an LP solver finds the op-
timal max-min fair rate vector in a variable-routing
A variable-routing scenario can find multiple weighted:enario. The centralized WMMFE and the distributed
max-min fair rate vector, since it can consider VariOUeS_WMMFdistalgorithms find the maximal max-min fair
paths in each selection such that the obtained rate allge vector in a variable-routing scenario. Due to the on-
cation is different. Only one rate vector is the optimajhe nature of these algorithm, the found routing could

or the global maximum max-min rate vector.

Scenario 1

Commodity 1 (A-B)
pathl (A-d-B)
path2 (A-e-d-B)

Commaodity 2 (A-C)
pathl (A-e-C)

Scenario 1

Comm 1 used path 2
comm 2 uses pathl
Max-min vector:
(1.9)

Scenario 2

Comm 1 used path 1
comm 2 uses pathl
Max-min vector:
(1,10)

not be guaranteed to be the global max-min fair vector.

B. Maximum Concurrent Multi-Commodity Flow Prob-
lem

The Maximum Concurrent Multi-Commaodity Flow
problem is stated as follows. Let G=(V,A) be a directed
graph with nonnegative capacitie@),Va € A. If a ¢ A
c(a) = 0. There areK commoditiesCt,...,Ck, each
is specified by the tripleC; = (s;,t;,dem;). The pair
(si,t;) are the source and the sink of commodity
respectively, andiem; is its rate demand. Each pair is
distinct, but vertices may participate in different pairs.
The objective is to maximize,, s.t., fori = 1,... K

Fairness is kept in both
scenarios

scenario 1: Comm1
steals bw from the
maximum excess.

A - dem; units of the respective commaodities can be
simultaneously routed, subject to flow conservation and
link capacity constraints. The objective is the equal
maximal fraction of all demands. The following linear
programMC_MCF primal is a path flow formulation that
Fig. 2. An example of two routing layouts, ea}ch assigns weigh assigns the maximum commodity flow tB;, the set
max-min fair rate vecto(1,9) and(1, 10) respectively. The globally
weighted max-min fair rate vector is provided by scenarioirtes of all pat_hs between; and¢; th"flt belong. to the_ same
(1,10) >1eai (1,9) commodity 7, such that the assignment is restricted by
the fairness criterionPR’s solution is composed of the
assigned net flowf(P;;) vPj; € F;, i =1,..., K, and
Definition 4 Given network topology G, its link capacthe maximal fair fraction.
ities, and, CR, the set of the rate vectors that are MC-MCF primal LP: Path Flow Formulation

weighted max-min fair for the list of commodities; The maximize A
globally weighted max-min fair rate vectog* is the subject to
lexicographically largest feasible vector amorgR’s K
vectors. Va€ A,ae P,y > f(P)<cla) (1)
i=1 PEP,
Fig. 2 presents an example for definition 4. Vi, S f(P) > A-dem; @)
PeP;

Definition 5 The Commodity Rate Vectop, is aC

coordinate-wise competitive fi the i'th, coordinate of
p is at leastl /aC times the value of théth coordinate
of CR*.

VP € P—1.xf(P)>0,A>0

This problem can be solved optimally in a polynomial
number of steps. The size of this linear problem grows
with the number of possible paths between any pair of
For examplg0.9918,0.9918,0.9918, 1.4853,1.4902) is nodes and can be exponentially large when the network
0.01-approx. to(1,1,1,1.5,1,5) is highly connected. It can be solved using the ellipsoid

algorithm or by using other LP solver that solves an

“For the lexicographical order between two vectorand v we arc flow formulation of this problem. Note that the
examine them ordered in increasing ordeand¢, respectively. We route assignment for some per-commodity bandwidth
say thaty > u if there is an indg)@, such that¢; > & and G = ‘allocation is not unique.

&1 =g < i1 Namely we find the longest equal prefixes o The following is a description of the LP dual to

the two ordered vectors and define the order according to the fi ! )
element which is not equal. MC_MCF problem. Thel(a) variable holds the link



length which is dual to each primal capacity constrainkince, at least, one new commodity becomes saturated
The z(i) variable holds the shortest path per each corat the end of each iteration the algorithm converges.
modity and is dual to the demand portion constraint. The following OPR LP is a reformulation of the
The minimization problem can be stated as finding thC_MCF problem (equations 1-2)

minimum cost of shippinglem;, units from s; to t maximize \

wherel(a) is the price of shipping one unit along link
a. Thus, the dual objective is to minimize the function

K
D(l) = Y 4eacla)l(a). Let a(l) = >, dem; - dist;(1) Vae A P pP) < 5
where dist;(l) is the shortest path length between the acdach), 3 JP)<da) O

subject to

i=1 PEP;
pair (s;, t;). Minimizing D(l) is equivalent to computing . 4
the lengthi(a) per each link which minimize®(1) /a(l) Vi € Tunsar, P%; FP) z A-dem; — (6)
such that the dual targét is equal tomin; D(1)/a(l). , ' sat
DUAL minimization LP Vi€ FsatvPXJ; f(P) 2 AG - dem; @)
L. cr;
minimize D(1) = > c(a)l(a) VP € Pt xf(P)>0,A>0
acA
subject to Eq. 6 restricts the unsaturated commodities\pyghe
Vi=1...K,YP € P, Z l(a) > 2(7) (3) equal share (weighted by the appropriate demand) that
acP all the commodities can use. The objective of D€ R
K . problem is to maximize this that appears only in Eq.
> demiz(i) > 1 (4) 6. The allocated bandwidth to the saturated commodi-
i=1

ties was already assigned in the previous iterations. A
saturated commodity that became saturated in iteration
¢; and was assigned a bandwidth)qjjt - dem;, where
. OPT.WMMF - OPTIMAL WEIGHTED MAX-MIN Aj;jt is the value of\ that was calculated in iteratiop.
FAIR ALGORITHM Eq. 7 preserves the already assigned bandwidth for the
OPT.WMMF is an off-line, centralized algorithm tha>2turated commodities. £q. 5 is the per-arc capacity con-
. . . traint. By solving the) PR problem during iteratiork,
calculates the global max-min fair vector using an LE’ , " . .
. ) we find the additional possible equal share of bandwidth
solver. The commodity rate vector that is calculated in . . :
per each unsaturated commodity and find routing for all

i(t)i\I/D(;I'_WMMF is optimal, i.e., 1-coordinate-wise compet o commodities, unsaturated and saturated.

The OPTWNIE gt (see Fig. ) recoes ag 106 0% LP perons (o sk maxring v
input the list of commoditied]’; the vector of demands, quat p y g

L] . assignment, such that previously allocated commodities
dem; and the graphd. It initializes 'y ys a7, the list of g P y

- " ¥xﬂ|l not steal bandwidth from the unsaturated com-
unsaturated commodities (the commodities that can stll_ . . . . .
modities by occupying their more preferential paths.

Increase their bandW|dth' assignment), to all the_c_:orwe will illustrate later the latter point. Th&PR's
modities; andl's 47, the list of saturated commodities

. ) . ) solution is composed of the maximal fair fraction,
to null. It proceeds in iterations. In each iteration th P

algorithm lays new routes per all the commodities a¥/er for the unsaturated commodmgs, the set of pafs.c
. . .1 =1,..., K, and the assigned net flow per each

and increases the allocated bandwidth of the unsaturaé%qh (P

- : : f(Py).

commodities by solving a number of LPs, each is aFig. 3 presents a pseudo-code of OETWMMF

reformulation of theMC-MCF prob_lem. . , allgorithm. The algorithm iterates (line 5) each time with
There are a few goals to each iteration. The first goa » .
reduced number of commodities (line 23). In each

IS to ma>§|.m|2(.e,>\, the_ equal share of all the unsaturat_eﬁ]eration it first solves th& PR LP (Egs. 5-7). Lines 11-
commodities in a fair manner and under the restricti

" . , . perform a two-phase test in order to identify which
of arc capacities. The second goal is to find a routing Edmmodities become saturated in this iteration. In the
G for all the bandwidth allocated, both in the previou )

first phase a simple connectivity test is performed where

iterations and the current one. At the end of the iteratio . .
. Re residual graph can be calculated using the net flows,
some of the commodities become saturated and are thys

T Which were allocated in line57
removed fromI'y ygar and added td g4r. This final
decision, whether an Unsa.-turat_ed 90mm0d|ty bec_omeﬁt is easier to calculate the residual graph when the arc flow
saturated at the end of an iteration, is the most difficufermulation is used

Va € Ajl(a) >0,Vi=1,...,K,2(i) >0



Scenario 1 uses only
connectivity test and can
achieves non-global rate vector.
Optimal throughput (4). But
violates fairess
First Iteration

=1
Comm 1 uses path 1 (1)
Comm 2 uses pathl (1)
Comm 3 uses path 1 (1)
Connectivity test returns:
Comm 1 and 2 saturated
Second Iteration

OPT.WMMHKT, dem, G)
1. /* Initialization stage */
2. I'ynsar =T
3. FSAT = null
4. ¢ =0 /* Iteration counter */

Comm 3 uses path 1 (1)
Max-min vector:
(112

5. while T"'ynsar # null) do FITER*/
6. o++

7. Perform LP OPR

8

9

Using G, FSAT7 TuNnsar, anddem

Returns: Ay, f(P),Vpep,
10.  /*Per Commodity Two-Phase Saturation Test *
11. for commodityk € I'ynysar do

Scenario 2 achieves the
global max-min rate
allocation vector.

First Iteration

Comm 1 uses path 2 (1)

12. /* Phase | - connectivity test */ o e b )

13. if G has no connectivity fok then Comm $ is saturated

14 ]-—‘tmpSAT = thpSAT U{k} C;mmluses pathl (%)

15. /* Phase Il - saturation test */ Gl oz )

16. for commodityj € Ty, psar do WAL

17. Perform LP OPR

18. using l'vnsar = J,V.k # 3 AG =X Fig. 4. A mistaken saturation example. Given three comresdit

19. Psar =T\ {j}. Commodity 1 (s1,t1) with the paths pathl (sl-el-tl) and path2

20. Returns: Aiemp, f(P),Vpep, (sl-e2-t1); Commodity 2 (s2,t2) with the paths pathl (s2%11-

21. if Memp = Ao then t2) path2 (s2-s1-e2-t1-t2); and commodRy(s3,t3) with the paths

22. Psar = Tsar U{j} pathl (s3-s1-el-t1-t3), path2 (s3-s1-e2-t1-t3), andPpB-t3). The

23 Tunsar = Tunsar \ {5} different routing in iteration 1 of the two scenarios ackid¢iie same

24, b = throughput. However, in scenarib (%Jpper part of the figure) the

o5 )\gat - routing of commodity3 during the1%! iteration leaves no room for
) b; — o adding flow to commodityl in the second iteration which makes

26. end of while*/ it look ‘saturated’, and, indeed, the allocation vector o&rario
27. Returns per commodity k: set of paths P, and| 2 is fairer. Phase 2 of the saturation test forces helps totifgte
f(P)Vpep, commodity2 as unsaturated, and the new LP finds an optimal routing
assignment as in scenario 2.

Fig. 3. OPTWMMF Optimal Weighted Max-Min Fair multi-

commodity Algorithm the newly calculated for j is the same as before, then

j is considered a saturated commodity (lines 22-25).
The OPT.WMMF algorithm provides us with a com-

ﬁ?odity rate vectop, a set of flow rate vectorf;,, and the

cheaply identify candidates for saturation, using tr}%tes of the path®! € Py, k — 1 K per commodity
criteria of the lack of connectivity in the residual graph, composing eatﬁn- ’ Y

and then perform the costlier saturation test of phase WOre following Lemmas and Theorem show that the
for these candidate commodities. Before explaining ﬂt\ﬁo phase saturation test is true under any routing

phase two saturation tests, we direct the reader to Fig élmbination and that the obtained rate vector is the

Xbally weighted max-min fair rate vector. The proofs of

- . . " ¥ Lemmas can be found in the technical report version
the cheaper connectivity test, which is the raison d el 1his paper
for the second phase. '

The secpnd phase of the sa_turation_test appears in lipgg, .\, 1 Commodityk that was identified asaturated
17-20 of Fig. 3. TheO PR LP (line 17) is performed for . 1o onq of iterations can not increase its bandwidth

each comm_oqllty that_ was suspe_cted to be Satur?lteda%cation under any routing combination of the other
the connectivity test in order to find out whether it caRommodities

increase its assignment considering a different routing.
For this purpose we change the LP definition as follows. Proof: Iteration ¢ starts withT'?!, the list of

sat

In Eq. 6 I'ynsqt holds only commodityj, whereas the the commodities that were identified asturatedin
other commodities are added Fq,; (Eq. 7), as if they any iteration’ such that¢/ < ¢, and I'2,} ., the

unsat?

are saturated anﬁjﬂt is set to their last calculatetl If commodities that can still grow. The LBPR (line 7)

The reason for the two-phase saturation test is



computes)y for any commodity inl“ﬁ;jat. looking for a new routing in each iteration. This re-
The first phase checks connectivity per each corassignment prevents us from using this algorithm in an
modity. The commodities which can still be assigneoh-line or distributed manner. However, due to practical
bandwidth between its source and destination can st#lasons, a distributed version that finds a max-min fair
grow and remains irl“insat. rate allocation vector is important. Thus, we relax the
Assuming, by contradiction, a commoditythat was requirement for a globally max-min fair vector and
assigned\...,, that is equal to\, by the solution of accept any max-min fair vector which is locally optimal.
OPR in line 17, and still can increase its bandwidth. This section presents an off-line centralized algorithm,
The first operation of LROPR (line 7) guarantees atLOC WMMF, that finds the maximal max-min fair rate
least A\, per each commodity irl“ﬁ;jat. By fixating vector using an LP solver. Then, we presetWWMMF
this bandwidth allocation, the second operatio®d?R, (In subsection IV-A), an FPTAS approximation for
maximizes\.,,, under any routing combination of theLOC_WMMF, and a distributed version of this algorithm,
other commodities. Any possible increase of commodityWMMFdist(In subsection IV-B). We show the practi-
[ is in contradiction to the optimality of the seco@d®R  cality and the efficiency o WMMF and e WMMFdist
in line 17 operation. B algorithms in subsection V.
LOC.WMMF is an iterative algorithm, that increases
Lemma 2 The commodity rate vectgrprovided by the in each iteration the allocated net flow per commod-
OPT.WMMF is weighted max-min fair. ity while keeping the weighted fairness criterion. It
Proof: We prove by induction on the iterationguaranFeeS. the max-min__fairness since_ it is based on
numbern. The induction base holds for the first iteratiorﬁﬁto&t;r:;iaggn?;%;g?lIa:‘kl)(;l\',\t/yp()rgmsmMﬁi('r;;rfgr?nc;niﬁg
since p-, the allocated rate vector in the first |terat|onMC_MCF LP (using Eqs. 1-2 and not the reformulated

equals to the solution ofPR. PR found \; to be . : .
the maximum portion can be assigned considering tﬁgua‘uons as |nOPT_WMMF)_ on the residual graph_
G, and preserve the routing that was calculated in

demands and the capacities. It holds per all commoditi®s ) . ) . . .
i and; thatp! /p} = dem; /dem;. Assume now, that the previous iterations. The algorithm iterates each time with
7 ] ' 1

induction hypothesis holds for iteration Thus, the rate :Il reduced numbe(;_tof_ comr_nodlglesountll th?btotal n;etl
vector solution is feasible and for each commaodity;’ OW per-a commodily 1S assigned. une must be caretu

cannot be increased without decreasing any opfiefor n SLl{[Ch algorlltrltms S'E?i t_he mabllflty totr:erOLlth Tnay
some commodity for which p"/p" > dem; /dems. result in a solution which is away from the global as

We prove now the induction” hypothesis holds folpustrated in Fig. 2 where two routing layouts, which can

iterationn + 1. According to lemma 1, the commoditie%e lfound by.th?‘OC‘WdMMF ilﬁ]orltrrg T\re pr(ra]?egted.
that are inl'y ysar can still grow and the others that are hly scenaro o produces he giobal weighted max-

in I's 47 can not increase their bandwidth. The operati in fair rat_e V(:.Ctor' IThth;‘WI\?xggr\lﬁlﬁ/I\l\lﬂvyMF?st
of OPR preserves the allocated bandwidth for all th € approximation aigorithms - , foute a

commodities inT's4p, such that the gained increas%:nag arlnounglof ﬂO.W (W'tT] r.?Sp?.Ct tol\;he “r:jk ;Nﬁ'ght)mt
for any commodityl € I} is calculated byOPR € dual problem) in each iteration. More details abou

unsat ;
while keeping fairness and throughput, and not on ttl\‘eOC‘WMMF appear in [21].

account of any commodity if”-"!. The saturation test

. st A. Weighted Max-Min Fair Centralized Approximation
guarantees the saturation Bf,,~. Algorithm

Theorem 1 The commodity rate vectgs provided by ~ The e WMMF algorithm (see Fig. 5) is are-

the OPTWMMF is optimal weighted max-min fair. ~ approximation of theLOC.WMMF algorithm. It uses
the variable-size increment technique (which is close in

Proof: Lemma 1 proves the correctness of thgpjrit to the primal-dual techniques) instead of the LP
saturation test, which implies its maximum value undeger used i OC. WMME. The routing is controlled by
any routing scenario at its saturation iteration. This {fe tight relationship between the length of the selected
true per each commodity B path and its load; a fact that spreads the routes and

increases network utilization (thus avoiding cases like
IV. LocALLY OPTIMAL WEIGHTED MAX-MIN FAIR i, Fig. 2 Scenario one).
ALGORITHMS An FPTAS approximation for th&/C_MCF problem
The OPTWMMF algorithm presented in the previoughat uses a variable-size increment technique is devel-
section finds the globally max-min fair rate vector bpped and presented in [18], [19], [20]. They treated the



Fig. 5.

e WMMFApproximation Optimal Weighted Max-Min Fair

multi-commodity Algorithm

the saturation of a path.

The algorithm receives as input the list of commodities
e WMMHKT', dem, G, €)
R . I', the vector of demandgem, the graphG and e,
1. /* Initialization stage */ . . )
2. Vae A la) = b/cla) the_ma_mmum allowed appro_X|mat|on error. It starts by
3. while (I # NULL) do /* STAGE*/ assigning the length of each liika) to bed/c(a), where
4. stageCnt + +, phaseCnt = 1 0 is a pre-computed value chosen to achieve the desired
5. lastDL = 0;newDL = D(I) approximation value. The algorithm alternates between
6. while (newDL — lastDL < 1) do /* PHASE */ primal flow variables and dual length variables to fulfill
7. for (i = 1to0|S]) do/ITER: S group of diff srcs*/|  the capacity-length constraint (primal Eq. 1 and dual Eq.
g- Let,lgi %m”p of Cor:nm"d'*“is St"irtcfro”ll sourée 3y |t proceeds in stages (see line 3 in Fig. 5). In each
- Build shortest path tred?” = {F¢|C € I';} stage the algorithm solves théC_MCFproblem (using
10. VC € Ty, tmpdem(C) = demc o .
11 while newDL-lastDL < 1 and an ap_proxmatlo_n algorithm taken from [18], [19], [20])
12. 3C € Ty, tmpdem(C) > 0 do FSTEP*/ and finds the primal-dual\(and D(1)) solution. Part of
13. for ), € T the commodities become saturated during each stage and
14. [* Connectivity and Saturation test */ should be omitted in the following stages. The saturation
15. If Ya € P, ,1(a) > 1/c(a),l then test is an important contribution of our algorithm that
16. Iy =T\ {Ck} promises the reduction in the number of the participating
17. [ =T\ {C} . commodities at each stage and thus the convergence of
ig else/7Ungate Curr Path*/ the algorithm.
o0, €= rinn“,epta C(;) The stage proceeds in phases (line 6). Each phase is
” ;?%:)min}{;f ;ch) composed of S| iterations, whereS is the group of all
' Cr/ = o\ Cr C the sources (some commaodities can have the same source
22. tmpdem(Cy) = tmpdem(Cy) — fe, O ) i ~
23 end for s;). Iteration i of phase;j considers the commodities
24, Va € P l(a) =l(a)(1+¢€- i fc_k) Cq,q = 1...r starting from the same sourcg; (see
k7 Ck:aGPCk c(a) . . .
25 newDL = D(1) line 7) and routeslem(C,;) units in a number of steps.
26. end while /* end of step */ Each step (see line 11) calculates the shortest path tree
27.  end for /* end of iteration */ starting from the source, using the last calculated length
28. phaseCnt + +; variablesi(a). It iterates over thg commodities and in
29. end while /* end of phase */ each step either saturates the current shortest path per
30. lastDL =newDL . commodity C,, or allocates the remainettm(C,). For
g; szdi"‘ih"elé ve;d OLStagli I HP) every ¢(a) units of flow sent over the link, its link
Vk=1... K, YP e P, f(P) = logy o 5 length variablel(a) is updated by a factor of at most
22' zkt: 1...K,vP € Pg;tflgfk) =2 f(P) 1+ Ke (line 24). The entire stage ends as sooids >
- RElUs per commodityr: 1 according to the dual constraint Eq. 4 and produces a
35.  set of pathd, and flowsf(Py) . )
vector of lengths]. The corresponding per commodity

net flow vectorf(Py),k = 1... K is infeasible for the
primal LP, and needs to be scaled down. For this purpose,
we note that as long a@3(!) < 1, the length of each link
can not exceed/c(a), which implies that the number
of times the flow is increased over this link (during a

MC_MCF- equations 1 and 2 - formulation as the primadtage period) iSiogHe(H(SKE) times its real flow. By

problem and equations 3and 4 as the dual problem. Guealing down this flow by a factor obog; .

1+ Ke
5 o+ a

algorithm extends their technique such that it iteratésasible flow will be achieved. The scaling is done after
on the dual variables until all the shortest paths atiee termination of all the phases (line 31). Since the
saturated. While the referred works did not deal witbcaling factor is known in advance, the scaling can be
the saturation issue, we suggest a saturation test (whane at any point within the step and thus the feasible
also serves as a connectivity test) that enables us to stajue of the flow can be followed.

in the dual problem. Another advantage of sticking with Iterating over|S| is more efficient than iterating over
the dual problem is the reflection of the fairness amortige commaodities since the entire shortest path tree is
the commaodities, which is our primal objective, using thealculated at once instead of one shortest path calculation
dual objectives and variables. In addition to the fairnesst a time. We will use this improvement [20] in the dis-
we show that these variables can be used to determiributed implementation. The connectivity test per each



commodity is also done at this point by checking thg, dem(q)-dist,(l;) wheredist,(l;) is the shortest path
unsaturated shortest path per the participating commolgingth between the pafs,,, t,) for the length assignment
ties. Only the commodities that pass the connectivity tdstat phase. The D(1) function is increased at each phase
participate in this stage. Note that this check is dorzes follows:

while building the shortest path tree and thus no extra D(l;) < D(l;_1) + ea(l;) (8)
running time is needed for this test. S )

The primal-dual solutions are found when the function COnsidering the dual resul;, = ‘min; D(l)/e(ls)
D(1) is larger tharl. Since, each stage is an activation diuring stagek, § = >, ), and substituting these values
the primal-dual alternation, during stageve achieve a N Ed- 8, the following holds
primal-dual solutions; andz; which are found when the D) < D(li—1) ©)
function D(l) is larger than 1. In order to saturate the YT 1—¢/p

network, we continue to increase the length variable§ :

’ o iy ince D(I;,) > 1 holds for any stage, wherg is the
Ha), .bUI the termlnano_n conditioni(l) > 1) should total number of phases per this stage, we can assume
consider only the additional length for the last Stagﬁ‘iatD(lt) > K, wheret is the total number of phases

Thus, thei(a) variables hold the accumulative Iengﬂbver all the stages anll is the number of commodities.
values and are used for the shortest path calculationsUsing D) = ms, B > 1 and D(l) > K, the
- 9 - t - ]

However, for the stage termination condition we consid%I

only the incremental values, namehtwDL — last DL lowing ho}?sﬁ D(ly) < mo_ s (10)
(lines 6 and 11), wheréastDL is the D(l) value at L—e

the beginning of the stage anccw DL is the current and a simple Algebraic manipulation yields

value of D(l) (line 25). At each stage, at least one e(t — 1)

commodity is saturated and removed from the list B < (11)

_ K-(1—e¢)
since, at least, one link value is increased by a factor (1—¢ln =5

of (1+¢)/c(a). This ensures the algorithm convergencélsing the claim from [20] for each of the stages,
Algorithm correctness and complexity Past analysis summing up, and substituting in Eq. 11 we get

[18], [19], [20] showed the correctness of tNeEC_MCF . Iy LtKe
approximation algorithm and proved the dual-primal (/2 < o m 1 i K(f_e) (12)
solution ratio,3/\, to be less than + ¢ for any £ > 0. (1-¢)In{d+e): In =25
For the MC_MCF problem they proved the following By settings to be
theorem. g 1=e

5= ! : (K(l — 6)) BN CE)
Theorem 2 (Lemma3.2 and Theorem.1 in [20]) There (1+ Ke)mq% m

is an algorithm that computes(@ — ¢) ~3-approximation
to the MCMCEF in time O(¢~2m?2log m) wherem is
the number of edges.

The /X ratio, which is the primal dual ratio cal-
culated by thee_ WMMFalgorithm, becomes less than
(1 —¢)~% and anye can be selected.

The solution of e WMMF algorithm is an approx- It now remains to show that the resulted rate vector
imation to some weighted max-min rate vector, na¢ indeed max-min fair. This can be done by notic-
necessarily the global one. Next, we will prove the feang the analogy between the operationlddC_ WMMF
sibility, convergence, and the runtime of this algorithmand ¢ WMMF, and the proof of the correctness of
Theorem 3 proves the approximation bound and th€© C WMMF in [21]. The proof can be found in the
runtime complexity ofe_- WMMF. full version of this paper [22]. |

Theorem 3 The e WMMF algorithm computes &l — g \ygighted Max-Min Fair Distributed Approximation
¢)~3-approximation to some weighted max-min fair ﬂo‘ﬂlgorithm

in time O(e"2Km?log m), wherem is the number of

edges. We assume that each source router is familiar with

the network topology, link capacities, the commodities

Proof: The analysis and proof in [18], [19], [20]emanating from it, and the ids of all other sources. In
hold for one stage of the WMMF algorithm. The addition, the sources are required to synchronize at the
analysis follows the ones in the above mentioned rednd of each phase as explained later. During a phase each
erences, but here we examine the number of phasesdurce independently performs its procedure, iterating

all the stages. LeD(l;) = > l(a) - ¢(a) and «(l;) = over the steps. The distributed implementation of our
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forwards it towards the source. The source receives the

e_WMMFd|§tsource¢“i, dem., G, ) message (line 19) and updates per-arc length information
1. /* Initialization stage */ . .
2. Va € A,i(a) = §/c(a) and per-path bandwidth allocation am(_)unt. E_ach source
3. while (T; # NULL) do /* STAGE*/ node, at the end of a phase, synchronizes with the other
4. stageCnt + +, phaseCnt = 1 sources by exchanging the length information (lines 24
5. lastDL = 0;newDL = D(I) and 25). By having all source nodes registered to a
6. while (newDL — lastDL < 1) do /* PHASE */ multicast group, one can simplify the synchronization
7. LetI'; group of commodities start from sourée process. This distributed algorithm proceeds until the
8. Build shortest path tree?” = {P2[C € I';} network is saturated and each commaodity obtain its fair
9. VC € Ty, tmpdem(C) = deme share.
10. while newDL-lastDL< 1 and oo :
11 3C € Ty, tmpdem(C) > 0 do FSTEPY In case a commaodity is dr_opped from the demand list
12. parallel for Cy, € I'; we r_uaed not run the algorithm from_scratch. _A com-
13. /* Connectivity and Saturation test */ modity can be dropped once the algorithm terminated or
14. If Ya € P, .1(a) > 1/c(a),l then even at any intermediate synchronization state. This in-
15. ;=T\ {Ck} cremental change requires adding another message type
16. =T\ {Cx} that will be sent from the source node to the destination
17. else/*Update Curr Path*/ along the dropped commodity paths. Each intermediate
18. SndSRCAle(tmpdem(Cy), e, ) link can reduce its length and divide it by a factor of
19. WaitDestMsg(Pxcy, f(Pc,)1) 1+ ef for this specific flow. Since the algorithm is
20. tmpdem(Cy) = tmpdem(Cr) = f(FE,) | performed over the dual variables, this will be enough
21. newDL(l) = )" ,c 4 c(a)l(a) . . ;
22 end parallel for to_adju_st the state of network bandwidth allocation. After
23. end while /* end of step */ this adjustment, the network becomes unsaturated for at
24. SndAI2AISRC M sq(i, 1, phaseCnt, stageCnt) least some of the sources and the algorithm continues
25.  GtAISRCSY N Msg(l, phaseCnt, stageCnt) until saturation is achieved. The incremental algorithm
26.  newDL(l) = . 4 cla)l(a) for the case of adding a commodity is left for future
27. phaseCnt + +; research.
28. end while /* end of phase */
29. last DL = newDL;
30. end while /* end of stage */ V. ALGORITHM IMPLEMENTATION AND
3. Vk=1...K,YP € Py, f(P) = 1og1f(P@ PERFORMANCERESULTS
32.Vk=1...K,YP € Py, f(P) = > f(P) We implemented th©PT.WMMF and e WMMF al-
33. Returns per commodityk: gorithms using MATLAB in order to study their ac-
34.  set of pathd’, and flowsf(Py) curacy and performance. Specifically we show that the

e WMMF algorithm solution is close to the one achieved

by the OPT_WMMF optimal algorithm, while its running

Fig. 6. ¢ WMMFdisDistributed Approximation Optimal Weighted time is significantly shorter.

Max-Min Fair multi-commodity Algorithm for source node

A. Algorithm Implementation

algorithm is shown in Fig. 6 for the source node; the In this section we present the simple example of Fig. 7
code for an intermediate node or a destination nodetgillustrate the way the algorithm iterates. The capacity
omitted due to space limitations, but explained belowf each link is 1. There are four commodities, each
In each step, the source sends an "Allocation Requestith 1 unit of demand. All the links and paths are uni-
message (line 18) over the pre-calculated shortest pdttectional. Commodities 2 and 4 have one path and its
tree (line 8). This message traverses all intermedigiath ID is 1. Commodity 1 and 3 have 2 paths with IDs
nodes towards the destinations and collects the informfaand 2.

tion about the bottleneck link along each shortest path.Table Il presents the two stages of the algorithm
The destination node, upon source message arrival, seogsration fore = 0.2. We can see that in the first stage
a "Destination Acknowledge” message with the capacigll the commodities receive an equal portion of their
of bottleneck link. Each intermediate router receives tlitemands. Link 2 is the bottleneck link of their paths and
"Destination Acknowledge” message, updates the lendth length after this stage becomes$451 > 1/¢(2) = 1.
and the flow over its outgoing arc variables (using thé means that this link is saturated. We can verify it by
same formulae as in lines 21 and 24 in Fig. 5), arabserving its flow which i$).3258 4+ 0.3438 + 0.3258 =
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Run 1

source-dest | 2-5 13-12 | 5-12 1-4 11-1

OPTWMMF | 0.5 0.5 1 2 2

e WMMF 0.4959 | 0.4959| 0.9918 | 1.9059| 1.9059
Run 2

source-dest | 1-2 3-2 1-10 2-8 6-13

OPTWMMF | 1 1 1 1.5 1.5

e WMMF 0.9918 | 0.9918| 0.9918 | 1.4853| 1.4902
Run 3

source-dest | 6-5 9-5 11-7 2-9 11-1

Fig. 7. Algorithm Iteration Example OPTWMMF | 0.5 0.5 1 2 2
e WMMF 0.4959 | 0.4959| 0.9918| 1.8816| 1.9837

comm. | path | infeasible | feasible| per comm.| path
ID ID flow flow flow length TABLE Il

stage 1
1 1 5 00365 T 03438 COMPARISON EXAMPLES OFOPTWMMF AND ¢ WMMF RATE
1 2 17 0.3077 0.0019 ALLOCATIONS FOR THE TOPOLOGY INFIG. 8.
2 1 18 0.3258 | 0.3258 0.6627
3 1 19 0.3438 | 0.3438 0.9562
3 2 0 0.0 0.9562
4 1 18 0.3258 | 0.3258 0.7963 : ok i :

US, which publish its network structure. This topolo

I'={0.552 1.145 0.001 0.266 0.2B6) = 0.326, lastDL = 1.15]] S, b . pology

Soge 2 has many paths between most of it source-destination
1 1 35 05791 | 1.4297 0.4602 pairs. Such a topology is prone to problematic routing
1 2 47 0.8506 % as we describe in Figures 4 and 2. We randomly selected
2 1 |18 0.3258 | 0.3258 00 a number of source-destination commodities for this
g % ég 8'3438 0.3438 z topology, and for each random selection we compared
4 1 18 0.3258 | 0.3258 00 the optimal rate vector which was found &P T WMMF
I'= {1.145 1.145 0.001 0.552 0.552\ = 0.326, lastDL = 2.231| algorithm with the rate vector which was found by the

e WMMF algorithm. In the tens of comparisons we have
TABLE Il made, each commodity in theWMMF algorithm was
- WMMF EXECUTION USINGFIG. 7 AND € = 0.2 allocated a rate which was, at mostbelow the optimal
rate. Table Il shows a few examples.

0.9954. The calculated\ for this stage is0.3258 and
the stage terminates whef(/) = 1.1510. Path 2 of
commodity 3 does not get any flow due to the saturatiq
of link 2. The other path of commodity 3 gets its fai
share. At the second stage the algorithm discovers t
commodities 2, 3, and 4 are saturated and delete th
from I'. In the following stage, the algorithm iteratesg
for commodity 1 between its two shortest paths unt
the saturation of both. The final max-min vector rate fg
e = 0.2 and commodities 1 (path 1 and 2), 2, 3 (path
and 2) and 4 is{1.6469, 0.3258, 0.3438, 0.32h8The
final max-min rate vector foe = 0.1 for commodity Fig. 8. Topology map of Broadwing IP Routers connections
1 (path 1 and 2) commodities 2, 3 (path 1 and 2) and

4 is {1.6585, 0.3317, 0.3317, 0.331LMNote that when

the ¢ decreases the values are approaching the optimal VI. CONCLUDING REMARKS

weighted max-min vector (5/3,1/3,1/3,1/3).

We presented, for the first time, an off-line centralized
algorithm that finds the global max-min fair rate vector
B. Algorithm Result Comparisons by using an LP formulation and solver. In addition

In order to demonstrate the practicality of thave found a distributed, efficient and fast approximation
e WMMF algorithm, we performed extensive simulafor a traffic engineering algorithm for routing demands
tions. Fig. 8 describes the topology of the Broadwini;g a network in a way that maximizes the flows and
network, an ISP with a nation-wide presence in thmaintains fairness. Our algorithm, which employs the
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weighted max-min fairness criterion strikes the right7] N. Young, “Randomized rounding without solving the dar
balance between network utilization and fairness and Pprogram,” inProceedings of the sixth annual ACM-SIAM sym-
thus serves the current needs for quality of service. [18]
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