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Optimal Routing in Gossip Networks
Yuval Shavitt and Amir Shay

Abstract— In this paper we introduce theGossip Network
model where travelers can obtain information about the
state of dynamic networks by gossiping with peer travelers
using ad-hoc communication. Travelers then use the gossip
information to recourse their path and find the shortest
path to destination. We study optimal routing in stochastic,
time independent gossip networks, and demonstrate that
an optimal routing policy may direct travelers to make
detours to gather information. A dynamic programming
equation that produces the optimal policy for routing
in gossip networks is presented. In general the dynamic
programming algorithm is intractable; however for two
special cases a polynomial optimal solution is presented.

We show that ordinarily gossiping helps travelers de-
crease their expected path cost. However, in some sce-
narios, depending on the network parameters, gossiping
could increase the expected path cost. The parameters
that determine the effect of gossiping on the path costs are
identified and their influence is analyzed. This dependency
is fairly complex and was confirmed numerically on grid
networks.

I. I NTRODUCTION

Optimal routing in both deterministic and stochastic
networks has been extensively studied in the past. While
the solutions for the deterministic problem are well
known [1] and based on the dynamic programming
(Bellman-Ford) or label correcting (Dijkstra) algorithms,
the solution to the stochastic problem depends pro-
foundly on the problem modelling. One of the main
characteristic of the stochastic problem model is how
the information about the stochastic states of the network
is obtained. The introduction of ad-hoc communication
presents an opportunity for a new kind of network model
– the Gossip Networks. In this paper we formulate,
for the first time, the gossip networks model in which
mobile agents obtain information about the state of
a stochastic network by exchanging information with
neighboring agents using peer to peer (P2P), ad-hoc
communication. Mobile agents then use the exchanged
information to reveal information about the network state
and consequently optimize their routing.

There are varieties of real life problems that can ben-
efit from an optimal solution to the problem of routing
in gossip networks. For example, airplanes or vessels

that optimize their route by exchanging information with
their peers. This paper will focus on another exam-
ple from the field of transportation. Road congestion
is a known and acute urban menace with no signs
of disappearing. There are apparently many suggested
approaches to tackle this problem; one of them is to
supply vehicles and drivers with up-to-date information
about road conditions.

There are two kinds of approaches to supply drivers
with information that can aid them avoid congestion.
One approach is based on fixed-structure communication
networks, for example cellular networks or FM/AM
radio [2]–[4], the other approach is based on ad-hoc
communication networks. Several innovative projects
propose using ad-hoc networks as the communication
infrastructure, for example FleetNet [5], and CarNet [6].

The advance in technology in recent years helps to
bring into vehicle’s sophisticated onboard navigation
systems at a reasonable price. Such a system contains
a computing device with a detailed road map, GPS for
locating the vehicle on the map, and communication
means. One can use ad-hoc communication networks
(such as Wi-Fi) to exchange information between neigh-
boring vehicles. When two vehicles are at communica-
tion range they can exchange their information regarding
road condition. The road condition information is thus
propagated in the network without any need for external
or central infrastructure. Each time new information is
obtained by a vehicle, the onboard navigation systems
recalculate the optimal route from its current location
to the destination. For example, if the navigation system
receives information that one of the streets in its planned
path is blocked it will plan a new path that avoids the
blocked road; the new path will be the shortest path from
the vehicle’s current position to the destination taking
into account the blockage.

Our gossip network model was built based on re-
search done in “ad-hoc networks” and “stochastic short-
est path routing”. In this paper, mobile agents acquire
and disseminate information about road conditions using
wireless communication (ad-hoc networks) and use the
information to minimize their traveling time (shortest
path problem). There are two networks in our model, the
“road network” on which the mobile agents roam and the
“communication network” on which information flow.
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While there is an extensive literature about routing in
each of the networks, to the best of our knowledge, this
is the first attempt to formulate and solve the combined
problem: shortest path routing of mobile agents in the
context of gossip ad-hoc networks (see also section II-
C). 1

There are currently several ongoing projects focusing
on the idea of mobile agents (for example vehicles)
exchanging information and forming communication
networks without or with a little help from external
infrastructure. Mobile Ad-hoc Networks (MANET) [7] is
an IETF working group set to standardize these efforts.
The FleetNet project [5] aims at the development and
demonstration of a wireless ad-hoc network for inter-
vehicle communications. FleetNet is a consortium of
six companies and three universities looking into mostly
the practical issues of providing drivers and passengers
some services over ad-hoc communication. Some of
the proposed FleetNet services are: notifications about
traffic jams and accident, and providing information
about nearby available point of interest. Another project,
CarNet [6] demonstrates the use of ad-hoc scalable
routing protocol (Grid) to support IP connectivity as well
as providing services similar to FleetNet. For a compre-
hensive overview of Inter-Vehicle ad-hoc communication
see [8].

FleetNet, CarNet, and similar projects aim at build-
ing communication infrastructure using ad-hoc com-
munication and are examining suitable routing proto-
cols; medium access methods, radio modulation, etc.
In this paper we assume the existence of such an ad-
hoc network that enables mobile agents to exchange
information. However, we don’t implicitly include here
specification of the ad-hoc network such as routing
or multi-access communication protocols, instead we
abstract them into thegossip probability, the probability
that a mobile agent will receive information about the
status of some roads in the network from another mobile
agents. The gossip probability is defined formally in
Section II.

The problem ofShortest Path Routingwas investigated
extensively in the literature, for a comprehensive sum-
mary of the various efforts in the field of transportation
see [9]. In this paper we assume time independence,
i.e., the network doesn’t change during the course of
the travel. Some of the road conditions are known to be
alternating, however, a traveler may not know in advance
the current condition of all these roads, termed stochastic

1This paper focuses on the routing of mobile agents on the
“roads networks” and not on the routing of data packets on the
“communication networks”.

roads. We assume that no parking at roads or junctions
is allowed to optimize the journey, and once a junction
is reached the weights of all the roads that emerge
from that junction become known. We investigate two
different models of weight correlation. The first is the
Independent Weight Correlationmodel (G-IWC) where
there is no correlation between the states of different
edges. The second is theDependent Weight Correlation
model (G-DWC) where the network can be in several
different states, each state determines the weights of all
stochastic edges [10]. Note that the G-IWC model is a
generalization of the G-DWC model with substantially
more states. The rational behind the G-DWC model
is that in “real-life” transportation systems there is a
correlation between roads weights, usually a traffic jam
in one road effects the roads in its vicinity.

When the shortest path model is stochastic, like in
this paper, the information about the actual state of
the stochastic edges plays a crucial role in finding
the optimal routing solution. Further more, due to the
dynamic nature of the problem the solution is not a path
but rather a policy that direct the traveler according to
the information he obtains. In the literature there are
several papers that discuss optimal routing policies in
stochastic networks where the traveler can recourse his
path according to information obtained during travel.
However, the basic difference between these models
and ours is that in gossip networks the information is
obtained by gossiping with neighboring travelers thus
a traveler can obtain data about the state of remote
stochastic roads. In all the other models we survey the
only way to obtain information about the state of a road
is to visit the junction it emanates from. Andreatta and
Romeo [11] assume that once a blockage is encountered
a recourse path that consists of only deterministic roads
is used. Orda, Rom, and Sidi [12] investigated a model
where link delay changes according to Markov chains,
they model several problems and showed that in gen-
eral, the problems are intractable. Polychronopoulos and
Tsitsiklis [10] investigated a network where there is a
correlation between the roads weights. In their model
a traveler can deduce the stochastic state by visiting
enough roads. Waller and Ziliaskopoulos [13] solved a
model with dependency between successor roads and a
model with time dependency for the same road.

The primary contribution of this paper is in the
introduction and analysis of the gossip model and the
new directions it opens for building P2P mobile systems.
We choose to introduce the subject using simplified
model that allowed us in depth analysis. The analysis
presented in this paper produced some interesting results
which gives us insight into the characteristics of traveling
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in gossip networks. The introduction of information
exchange leads to unique optimal routing policies. In this
paper we will show that sometimes it is worth taking a
detour to obtain more information about the state of the
stochastic edges. The extra cost of the short detour can be
compensated by the additional information gained, infor-
mation that can improve the selection of the continuing
path. Further more, we were able to quantify an optimal
policy that balance between information gathering costs
and path costs. Other main contribution is the regime
state diagram we produced. Using the diagram one can
determines the influence of gossiping on the traveling
costs in different network characteristics.

The rest of the paper in organized as follows. In the
next section, the formal model of the gossip networks
is introduced and an example that demonstrates the
characteristics of the model is presented. An algorithm
for optimal routing in gossip networks that is based on
dynamic programming is developed in Section III. In
Section IV we discuss the implications of traveling in
gossip networks. Then, in Section V, we use numerical
analysis to demonstrate the influence of the various
model parameters on the network behaviors. Finally
in Section VI we summarize and highlight our main
findings while providing directions for future work.

II. M ODEL AND DEFINITIONS

A. The formal model

The above discussion leads to the following formal
model. The network2 is represented by a directed graph
G = (V, E), whereV is the set of vertices, andE is the
set of edges,|V | = n and |E| = m. An edgee ∈ E is
associated with a discrete random weight variable,we.
Edges with degenerated weight function that has only
one value are termed deterministic, and we denote the
set of these edges byD ⊆ E. The number of edges
in the network with stochastic weights (namely, non
deterministic) is denoted byδ = |E \ D|. We assume
that under all weight distributions there are no negative
cost cycles in the network and there is always a path
between source and destination.

In the G-IWC model the weights,we, of thestochastic
edgesare random variables with discrete probability
distribution that hasβe states. The expected cost of an
edge isw̄e =

∑βe

s=1 ws
eq

s
e, whereqs

e is the probability

2As mentioned above, there are two networks in our model, the
“road network” and the “communication network”. In this paper,
when we say “network” we refer to the “road network”. We assume
the existence of communication network that enables mobile agent
to exchange information but in this paper we don’t include it in
the formal model implicitly, it is included in the gossip probability
presented below.

of an edgee to have the weightws
e. We denote byŵe

the actual weight of the edgee. In the G-DWC model
the network can be in onlyR realizations, eachr ∈ R
realization determines the states of the network and thus
the weightswr

e of all the stochastic edges.
Traveling agents(TAs) are roaming the network. Each

TA stores internally the weights of the stochastic edges
in an Information Vector, I{·}. For example, an infor-
mation vector of a traveler could look like this:I =
{ŵ1, X, ŵ3, X, . . . , X, X, ŵδ}. For known edges, those
that the traveler visited or received information about,
the weights are written down explicitly,ŵ1, ŵ3, ŵδ.
Unknown edge weights are denoted byX. The number
of possible states of the information vector in the G-IWC
model, lI is given by

lI =
∏

e∈E\D
(βe + 1) (1)

and in the G-DWC model, the number of different
information vector states is given by

lD =
R∑

i=1

(
R

i

)
= 2R − 1 (2)

When two or more TAs are within communication
range they can exchange their information vectors in
order to gain missing data. Thegossip probabilityis
the probability that when a TA traverses an edge it will
update his information vector.

P (s, s′, T (i, j)) = P{I(j) = s′|I(i) = s, T (i, j)} (3)

where s, s′ ∈ I are the information vector before and
after the edge(i, j) traversal, respectively,I(i) is the
information vector at vertexi ∈ V , and T (i, j) is
the topology probability. The topology probability is
the probability that a TA will receive information from
other TAs during the traversal on an edge. The topology
probability is determined by aspects like the number
of TAs around the traveler, the other TAs previous
paths, physical obstacles that interfere with the wire-
less communication, etc. It is a characteristic of the
network structure and the flows of TAs in the network.
Assuming that there are ”enough“ mobile agents in the
networkT (i, j) is a vector of probabilities, where each
element corresponds to some stochastic network edge.
For example,T (i, j) = {1, 0.5, . . . 0} means that on
average when the TA slates edge(i, j) it will learn about
stochastic edges 1,2, andδ with probability 1, 0.5, and
zero, respectively. The gossip probability depends on
the topology probability and on the information vector
before and after the edge traversal. For example, the
probability to change an information vector element from
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{· · · , ŵ, · · · } to {· · · , X, · · · } is zero. Regardless of the
topology probability, a known weight can not be changed
into unknown.

In this paper we are looking for the optimal routing
policy of a TA that start at the source vertexs with
information vector I(s) and travels to a destination
vertex t. We assume that the TA knows a priori the
network structure, weights distribution, and the topology
probability. We are looking for an optimal routing policy,
π∗ with minimal expected cost,C∗(s, t, I(s)), of all
possible routing policiesπk ∈ π.

∀ πk ∈ π C∗(s, t, I(s)) ≤ Ck(s, t, I(s))

B. Assumptions and Reality

The formal model of this paper has several assump-
tions. In this section we summarize these assumptions
and relate them to real life scenarios in transportation
networks. The first assumption is that the network is time
independent. In many situations, a driver can assume
that during his commute (30 to 60 minutes) the traffic
patterns in his area doesn’t change significantly. Thus,
in many cases, an optimal routing policy calculated at
the beginning of the journey will yield satisfying results
throughout the journey.

Another assumption is that the agent knows a priori
the network structure, edges weight distribution and
topology probability. While network structure can be
obtained from any GIS, the edges weight and topology
probability are calculated from historical information
gathered over time. Currently there are several com-
mercial and academic projects that use historical data
to predict future traffic patterns, for example the MIT’s
DynaMIT project [14]. While the edges weight distribu-
tion can be computed directly from the historical traffic
data, in order to compute the topology probability one
needs information about the agents movement in the
network. Given that information, we can calculate and
record fairly easily the edges weight distribution and
topological probability for a given time. For example, we
will have one distribution for morning commute, second
for evening commute, third for holidays etc. Then, each
time the agent will compute his optimal routing policy
using the gossip network time independent algorithm he
will use the appropriate distributions.

Any probability distribution is meaningful only when
there are enough events. Thus, in order to calculate the
edges weight distribution one needs ”enough“ historical
information both over time and network edges. The cal-
culation of the topology probability requires information
from ”enough“ agents in the network. In a study done by
Kraus, Parshani, and Shavitt [15] it was shown that when

the portion of cars with gossiping capability is anywhere
between 1% to 60% there is an reduction in the average
delay of the gossiping cars, and in most of the region
also in the average delay of the total car population.
Researchers at DLR were able to deduct meaningful
information about real time traffic using several hundred
taxis in Berlin, Nuremberg, and Vienna [16].

C. Comparison with other Ad-Hoc Models

There is a fairly large body of work that deals with
gossiping in ad-hoc networks, however the model and
thus techniques used in these works is different from our
work. In general the goal in most of the ad-hoc network
literature is to seek efficient protocols for information
exchange minimizing communication overhead, power
consumption etc, while ensuring message delivery. The
main focus of our paper is to propose an optimal routing
algorithm that minimize travel costs.

In this paper gossiping is used to exchange informa-
tion about the weights of the stochastic edges between
agents. Hass, Halpern, and Li [17] build ad-hoc routing
protocols where gossiping is used to reduce the protocols
overhead. Kulik, Rabiner, and Balakrishnan [18] pro-
posed the SPIN family of protocols that use gossiping to
overcome problems such as implosion, overlap, and re-
source blindness common to ad-hoc networks. Braginsky
and Estrin [19] introduced a scheme that allow queries
to be delivered while providing tradeoff between setup
overhead and delivery reliability. While it is possible to
combine our modelling and results for these works it
is certainly not straight forward due to the differences
between the underlaying assumptions.

First, in our model, the network topology is assumed
to be known to a large extent and mostly the weights are
unknown. In ad-hoc networks, the network is assumed
to change so frequently that the overhead to learn its
topology is too large to become realistic. Thus, in our
case we collect knowledge about the state of edges,
while in ad-hoc networks the effort is to learn a route
(sometimes with the ability to improve it based on cost)
but there is no attempt to learn the network state and
optimize based on this.

Another major difference, is that in our case we
assume the existence of a priory knowledge about the
statistics of the network, such as, the weight distribution
of the links, the probability to learn about the state of a
certain link by traveling on another, etc. In most other ad-
hoc network models, such knowledge is never assumed.

In other ad-hoc networks, one has a full control on the
ability to distribute information about the networks by
changing the control algorithm. In our case, information
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Fig. 1. An example of the influence of gossiping on routing. We
are looking for the optimal routing policy between the verticess and
t where the edge(j, j′) is stochastic and on edge(i, s) the traveler
can obtain information about the stochastic edge. The path{s,i,s} is
called an ‘information gathering loop’ (IGL)

is flooded by cars whose drivers selected to mount spe-
cial gossip equipment, but the drivers are going on their
own private business. Thus we do not control the rate and
direction of the information dissemination. This lack of
control disqualify many of the solutions suggested in the
context of ad-hoc networks in our model.

D. An Example

In the example network presented in Fig. 1, a traveler
is located at vertexs and is looking for the optimal
routing policy to vertext. In this network there is one
(δ = 1) stochastic edge,(j, j′), that has two possible
states. With probabilityqu

jj′ = ξU the edge is in the
“UP” state wherewu

(j,j′) = 1, and with probability
qd
jj′ = (1− ξU ) the edge is in the “DOWN” state where

wd
(j,j′) = 10000. The traveler can obtain information

about the state of the edge(j, j′) only when traversing
the edge(i, s), with a topology probability ofT (i, s) =
ξT . The gossip probability of this network is:

P ({X}, {X}, T (i, s)) = 1− ξT

P ({X}, {1}, T (i, s)) = ξT

P ({X}, {10000}, T (i, s)) = ξT

P ({1}, {1}, T (i, s)) = 1

P ({10000}, {10000}, T (i, s)) = 1

Else∀ u, v ∈ V P (I(u), I(v), T (u, v)) = 0

The traveler has to choose between different travel
options: a) The “safe” path through vertexk which
guarantee a cost of1001 or; b) The “risky”3 path through
vertex j with cost that depends on the state of edge
(j, j′), either 10002 or 3 or;c) Travel to vertexi, obtain
information about the status of edge(j, j′) and then,

3The risky policy is taken by a traveler that must reach the
destination at some specific time (for example to catch a plane that
leaves in 10 time units). If not there by that time the traveler care
less about the path cost (anyway he needs to reschedule).

according to the obtained information, choose whether
to go through vertexk, j or return to vertexi.

Next we will calculate the expected cost of the differ-
ent routing policies. The cost of the path through vertex
k is deterministic and does not depend on the a priori
knowledge of the state of the edge(j, j′)

C(s, t, {·})k = 1001 (4)

The cost of the path through vertexj without any a
priori knowledge about the state of the edge(j, j′)

C(s, t, {X})j = 10002(1− ξU ) + 3ξU (5)

If the traveler needs to choose between traveling
throughk or j (without first traveling to vertexi) then
his optimal routing policy depends on the value of his
information vector:

C∗(s, t, {X})kj = min(1001, (1− ξU )10002 + 3ξU )

C∗(s, t, {1})kj = 3

C∗(s, t, {10000})kj = 1001

If the traveler knows that the stochastic edge is in the
“DOWN” state he will travel to vertexk; in the case he
knows that the edge is in the “UP” state he will travel to
vertex j; and in the case the traveler doesn’t know the
state of the stochastic edge he will decide according to
the value ofξU .

When the traveler moves to vertexi without any a
priori knowledge about the state of the edge(j, j′) the
expected cost of his routing policy assuming one trial to
obtain information is:

C(s, t, {X})(1)
i = 2 + ξT [ξUC∗(s, t, {1})kj ] + (6)

(1− ξU )C∗(s, t, {10000})kj ] +

(1− ξT )C∗(s, t, {X})kj

= 2 + ξT [3ξU + 1001(1− ξU )] +

(1− ξT )C∗(s, t, {X})kj

When the traveler routing policy is to cycle between
verticess andi until he obtains information, the expected
number of cycles he will need is1/ξT . Therefore

C(s, t, {X})i = 2(1/ξT ) + 3ξU + 1001(1− ξU )

For the above example there is a threshold topological
probability, ξ0, such that forξT ≥ ξ0

C∗(s, t, {X})i < C∗(s, t, {X})kj (7)

Meaning that for ξT ≥ ξ0 the traveler’s optimal
routing policy when there is no information is to make a
detour through nodei until it obtains information about
the state of the stochastic edge. In this paper we call
the path{s, i, s} an Information Gathering Loop(IGL).
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Fig. 2. The relation between the “UP” and gossip probabili-
ties for different w(i,s) values. The area above the line is where
C∗(s, t, {X})i < C∗(s, t, {X})kj and the traveler will cycle for
information

Topological Probability(ξT ) I(s) next hop

≥ ξ0 {X} i
≥ ξ0 {1} j
≥ ξ0 {10000} k
< ξ0 {X} α
< ξ0 {1} j
< ξ0 {10000} k

TABLE I

ROUTING TABLE OF THE SOURCE VERTEXs. THE VALUE OF α IS k

OR j ACCORDING TO THE VALUE OFξU .

Fig. 2 illustrates this by plotting the equilibrium line of
Eq. (7) for different values of ˆw(i,s). The area above
the line is where the inequality holds and the traveler is
making a detour to gather information. The minimum of
the plots in Fig. 2 is when Eq. 5 and Eq. 4 are equal,
for ˆw(i,s) at ξU = 0.90028 in this example.

The optimal routing policy for a traveler that starts on
vertex s is outlined in the EXAMPLEPOLICY below.
And the corresponding routing table for source vertexs
is outlined in Table I.

EXAMPLE POLICY

IF ξT ≥ ξ0

WHILE I = {X} cycle in the path{s, i, s}
IF I = {1}

Then take the path{s, j, j′, t}
ELSE IF I = {10000}

Then take the path{s, k, t}
ELSE IF I = {X}

Then take the pathmin({s, j, j′, t}, {s, k, t})

END

III. T HE ROUTING ALGORITHM

A. Solution approach

The problem of finding the optimal routing in gos-
sip networks belongs to the class of online decisions
problems. In these problems an agent is faced with
the opportunity of influencing the behaviors of a prob-
abilistic system as it evolve. At each step the agent
receives information about the system state and per-
forms an action accordingly. His goal is to choose a
sequence of actions which causes the system to perform
optimally with respect to some predetermine criteria.
Due to the stochastic nature of the system decisions
must anticipate the costs associated with future system
states. In the literature such problems can be found
under the topics ofMarkov Decision Processes[20],
stochastic programming [21] and optimal control [22].
Similar to other online decisions problems, we solve the
problem of optimal routing in gossip networks using
dynamic programming and in general share the same
”curse of dimensionality“ [23], which lead to intractable
solution. What is unique about our model is the way
the agents learn about the state of the network. An
optimal policy in gossip networks needs to seek the
optimized balance between the path cost and the cost of
gathering information. For example, the optimal policy
might direct the agent to a path with higher cost but
with higher probability to gather important information.
This policy will reduce the agent’s total expected cost.
Unlike most of the online decisions problems, in gossip
networks decisions must anticipate both the edge costs
and the information gathering opportunities associated
with future system states. It is well known throughout
the online decision problem literature that information
pays off, in our algorithm we were able to quantify the
importance of information.

The optimal routing policy in gossip networks is the
one with the minimum expected cost from source to
destination for a given information vector. Next we will
show how one can calculate the expected cost of a
routing policy in the network, in the next subsection we
will introduce an algorithm that uses these calculations
to find the optimal routing policy to a destination.

A traveler starts his journey from vertexs with infor-
mation vectorI(s) and wishes to reach vertext. During
his journey, there is a probability that he will learn,
through gossiping, about the states of the stochastic
edges and accordingly update his information vectorI(·).
At every vertexr ∈ V he reaches, the traveler makes
a routing decision, based on his updated information
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vector. The expected cost of a routing policy between
a source vertex,s, and a destination vertex,t, through a
neighbor vertex,r, is:

C(s, t, I(s))r = ŵ(s,r)+ (8)∑
I(r)∈B(I(s),(s,r)) P (I(s), I(r), T (s, r)) ·Q(I(r))

· C(r, t, I(r))

The weight of edge(s, r) is known and its value is
ŵ(s,r). B(I(s), (s, r)) is the set of all the possible infor-
mation vectorsI(r) of the traveler when reaching vertex
r, assuming that at vertexs it has the information vector
I(s). P (I(s), I(r), T (r, s)) is the gossip probability that
the information vector will change fromI(s) into I(r)
on the edge(s, r). Q(I(r)) is the a priori probability
that the networkG is in a state corresponding to the
information inI(r).

B. Dynamic Programming Algorithm

In this section we present the GOSSIPDP algorithm
that builds the optimal routing tables for gossip network,
the algorithm is outlined in Fig. 3. A formal proof of the
algorithm correctness is provided below in section III-D.

The optimal routing policy from vertexs to vertex
t in the gossip networks,C∗(s, t, I(s)), is the one that
minimizes the expression in Eq. 8. Namely, the one that
selects the policy with the smallest expected cost. Thus,
we can write the following dynamic program:

C∗(s, t, I(s)) = min
r∈Ns

{wI(s)
(s,r) + (9)

∑

I(r)∈B(I(s),(s,r))

P (I(s), I(r), T (s, r))

·Q(I(r)) · C∗(r, t, I(r))}
whereNi is the group of neighbors of vertexi and
w

I(s)
(s,r) is the weight of the edge(s, r) assuming that the

information state before isI(s). When the information
vector contains information about the state of vertex
(s, r) the weight is knownŵ, in all other cases we take
the weight to be the expected weightw̄(s,r) over all the
states according to the value ofI(s).

In Bellman-Ford’s dynamic programming algorithm
for deterministic shortest path [1] one finds for each ver-
tex the shortest path to a destination. In gossip networks,
using the algorithm GOSSIPDP in Fig. 3, we find for
each vertex the shortest path for each possible state of
the vertex’s information vectorI(·).

Specifically, for each vertexu ∈ V we keep a table,
TBL[u], (see Fig. 4) that hasl rows (l is defined in
Eq. 1 or Eq. 2 according of the model in use). Each row
holds the information vector state (sk ∈ I) the distance
to destination, (DD) and a pointer to next vertex (PN ).

Algorithm GOSSIP DP (G,w, T, s, t)
¿ Initialize the routing tablesÀ
1. for k = 1 to l
2. DD[t, sk] ← 0;PN [t, sk] ← t
3. Cont ← true
4. for each u ∈ V \ t
5. for k = 1 to l
6. DD[u, sk] ←∞; PN [u, sk] ← NIL
¿ Main LoopÀ
7. while Cont =true
8. Cont ←false
9. for each e ∈ E
10. if G RELAX(e) then Cont ←true
11. end
¿ Relax the entry for the edgeÀ
12. function G RELAX( e)
13. u ← Source(e); v ← Destination(e)
14. Relax ←false
15. for k = 1 To l
16. tempDD ← wsk

e +∑l
m=1 T PRB(sk, sm) ·DD[v, sm]

17. if DD[u, sk]− tempDD > ε then
18. DD[u, sk] ← tempDD
19. PN [u, sk] ← v
20. Relax ←true
21. next k
22. return (Relax)
23. end function
¿ The transition probabilitysk → sm À
24. function T PRB(sk, sm)
25. P ← prob. to move fromsk to sm on e
26. Q ← prob. of the network to be insm

27. return (P ·Q)
28. end function

Fig. 3. The GOSSIPDP algorithm.

 e 

PN DD IV 

l 

PN DD IV 
i j 

TBL(i) TBL(j) 

Fig. 4. The relaxation process for one state of one edge.
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The first steps of the GOSSIPDP, lines 1 to 6, initialize
this data structure.

In the main loop of the algorithm, lines 7 to 11, we
iterate over all the edges of the network and relax each
edge. This loop continues while at least one of the edges
was relaxed.

In the function GRELAX we relax for a specific
edge all the possible information vectors. The relaxation
processes for each edge(u, v) and for each information
vector statesk, lines 16 to 20 is:

DD[u, sk] = wsk

(u,v) + (10)

l∑

m=1

P (sk, sm, T (u, v))Q(sm)DD[v, sm]

For each source vertex state,sk, we check what
is the probability that during the travel on the edge
(u, v) the statesk will change intosm, (m = 1 . . . l).
Each gossip probabilityP (sk, sm, T (u, v)) is multiplied
by the destination vertex distanceDD[v, sm] and the
probability Q(sm) that the network will be in statesm.

The iterations stop when for all edges and information
vectors the difference between iterations weights is less
than ε, as shown in line 17. In the classical algorithm
ε = 0, in our caseε is a small positive constant. This
condition comes to overcome a situation that our network
contains an information gathering loops as we saw in the
example section II-D above and illustrates in section III-
C below. The parameterε is chosen so thatε ¿ wsk

(u,v)

for all edges ,(u, v) ∈ E, and information states,sk ∈
I(s), so that it will come into play only when there are
information gathering loops. For a complete discussion
of the stoping conditions see the proof of the algorithm
correctness in section III-D.

The algorithm GOSSIPDP is used to produce the
optimal routing policy in gossip networks by the fol-
lowing steps: Before the traveler starts his journey he
builds his optimal routing policy by calculatingTBL[·]
for all the vertices of the network using the algorithm
GOSSIPDP. During his journey the traveler updates
his information vector and navigates on the network
using the information inTBL[·]. Every time the traveler
reaches a new vertexu ∈ V with information vector state
sk = I(u) he looks for the next vertex inPN [u, sk].
Later in Section V, we use the GOSSIPDP to derive
our numerical analysis.

C. GOSSIPDP Execution Example

Next we will explore the behavior of the algorithm
GOSSIPDP on a network with an information gathering
loop, like the one presented in Fig. 1. In the following

discussion the information gathering loop has two edges,
the first with the cost ofL1, the second with the cost of
L2, the total costs of the loop isL = L1 +L2. When we
travel on the second edge of the loop the probability to
gather information isξT = P ({X}, {0/1}, T (i, s)). The
optimal cost from sources to destinationt when the
traveler has information (I(s) 6= {X}) is Z and without
information (I(s) = {X}) is Y . Following the dynamic
programming iterations, when vertexs is k hops from
the destination the optimal cost is

DDk[s, {X}] = Y

DDk[i, {X}] = ∞

The optimal cost from vertexi to destination is infinity
due to the fact that fork hops there is no path fromi to
destination. Moving to the next iteration of the dynamic
programming and adding one hop we get for the optimal
cost withk + 1 hops

DDk+1[s, {X}] = Y

DDk+1[i, {X}] = L2 + ξT · Z + (1− ξT )DDk[s, {X}]
= L2 + ξT · Z + (1− ξT )Y

The costs ofDDk+1[i, {X}] was calculated using Eq.
10. After adding another hop to the optimal cost

DDk+2[s, {X}] = L1 + DDk+1[i, {X}]
= L + ξT · Z + (1− ξT )Y

DDk+2[i, {X}] = L2 + ξT · Z + (1− ξT )Y

In the (k + 2) iteration the dynamic programming
choose to cycle in the loop instead of traveling directly
to destination. For that to happened the expected cost
of the path with a loop should be smaller than the path
without a loop, and mathematically

DDk+2[s, {X}] < Y

L + ξT · Z + (1− ξT )Y < Y

L < ξT (Y − Z) (11)

The weight of the loop (L) should be smaller than the
costs of expected gain from the information in the loop
(ξT (Y − Z)). After adding another hop we receive

DDk+3[s, {X}] = L1 + DDk+2[i, {X}]
= L + ξT · Z + (1− ξT )Y

DDk+3[i, {X}] = L2 + ξT · Z + (1− ξT )DDk+2[s, {X}]
= L2 + ξT · Z
+ (1− ξT )(L + ξT · Z + (1− ξT )Y )
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In the general case, for a path withk + 2n + 1 hops
we receive

DDk+2n[s, {X}] = L1 + DDk+2n[i, {X}]
= L + ξT · Z
+ (1− ξT )[L + ξT · Z
+ (1− ξT )2(L + ξT · Z)

+ · · ·+ (1− ξT )n−1(L + ξT · Z)

+ (1− ξT )nY ]

= (L + ξT · Z)
n−1∑

j=0

(1− ξT )j

+ (1− ξT )nY

= (L + ξT · Z)((1− (1− ξT )n−1)/ξT

+ (1− ξT )nY

For each two hops we add in the dynamic program-
ming the optimal path adds another cycle. The endless
cycling is due to the fact that each cycle reduce the
optimal cost. However, the costs of the optimal policy
with endless cycling converge,

lim
n→∞DDk+2n[s, {X}] = L/ξT + Z (12)

One should notice that although the optimal policy in
this case instruct the traveler to cycle endlessly when
he has no information about the network state, with
probability one the traveler will not cycle endlessly.
When the traveler follows this policy he will eventually
gather information and then uses suitable policy to the
destination.

In summary, when the optimal policy has cycles,
following the condition in Eq. 11, consecutive iterations
of the dynamic programming continues to instruct the
optimal path to cycle, where each iteration decreases the
optimal policy costs, this value converge toL/ξT + Z
in our example.

If we choose someε and stop the dynamic program-
ming when the cost improvement between consecutive
iterations is smaller thanε, in our example when

0 ≤ DDk+j [s, {X}]−DDk+j+2[s, {X}] < ε

then we are certain that the dynamic programming
algorithm stops after a finite number of steps with a
policy which is optimal or at mostε away from optimal.
A formal proof is given in the next section.

D. GOSSIPDP Correctness

The proof that the algorithm GOSSIPDP in Fig. 3
provides the optimal solution for routing in gossip net-
works is a direct extension of a deterministic Bellman-
Ford proof [1]. There are two main differences between

our algorithm and the classical one. The first difference
lays in the fact that in GOSSIPDP there are several
of possible information states for each vertex compared
to one deterministic state in the classical Bellman-Ford
algorithm. Another major difference lays in the fact that
in GOSSIPDP network loops can turn to be beneficial
as illustrated in section III-C.

Consider the GOSSIPDP algorithm in Fig. 3 and
assume the following:
(i) There is at least one path from each vertexv ∈ V
and statesk ∈ I(·) to destinationt.
(ii) There are no negative weight cycles in the graphG.

Denote byTBLi[v, sk] the routing tables of vertexv
with information vectorsk when the length of the path
from the source vertexv to the destination vertext has
at mosti hops. The relaxation presented in Eq. 10 can
be written as

DDi+1[v, sk] = min
u

[wsk

(v,u) + D̄D
i,sk

(vu)]

Where we used the initialization∀ i , ∀ sk ∈
I(·) DDi[t, sk] = 0 andD̄D

i,sk

(vu) is the expected weight
over all the possible information vector states

D̄D
i,sk

(vu) ≡
l∑

sj=1

P (sk, sj , T (v, u))Q(sj)DDi[u, sj ] (13)

In the following we define aniteration as preforming
the relaxation process for all the possible edgese ∈ E
and for each edge for all its possible information states,
sk ∈ I(·).

We begin our algorithm correctness proof with three
lemmas. The first, Lemma 3.1, proves that in each iter-
ation the algorithm’s routing tables contain the optimal
policy. The second, Lemma 3.2, and the third, Lemma
3.3, prove that the algorithm terminates with the optimal
polices. The second lemma (3.2) in for the case of a
network without information gathering loops and the
third lemma (3.3) with them.

Lemma 3.1 (GOSSIPDP Optimal Policy): The val-
ues of the routing tablesTBLi[v, sk] generated by
the GOSSIPDP algorithm contain the optimal policy
information forv, sk and i.

Proof:
We prove by induction on the maximum number of

hops in a policy path.
For the induction base, we observe that the routing

tables for paths with a length of one edge is

DD1[v, sk] = wsk

(v,t) ∀ v ∈ V, sk ∈ I

For all vertexu ∈ V that are not neighbors of the
destinationt we denote,wsk

(u,t) = ∞. So DD1[v, sk] is
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indeed equal to the optimal policy fromv to t for paths
with length≤ 1.

Suppose thatTBLi[v, sk] contain the optimal policy
with paths that contain at mosti hops from allv ∈ V and
for all sk ∈ I. We will now show thatTBLi+1[v, sk],
we construct in the GOSSIPDP algorithm, contain the
optimal policy for paths that contain at mosti + 1 hops
from all v ∈ V and for all sk ∈ I. Indeed, an optimal
policy from v to t either consists of less thani+1 hops,
in this caseTBLi[v, sk] contains the optimal policy, or
else it consists ofi+1 hops with the first being(v, u) for
someu, followed by ani-edge policy fromu to t. The
latter policy must be the optimal policy to reacht from
u with a length shorter thani + 1 hops (otherwise we
could use the optimal policy with at mosti and obtain
a better policy for at mosti + 1). Denoting the cost of
the optimal policy that contains at mosti + 1 hops by
OP i+1

OP i+1 = min{DDi[v, sk], min
u

(wsk

(v,u) + D̄D
i,sk

(vu))} (14)

Using the induction hypopiesis, we have
DDm[v, sk] ≤ DDm−1[v, sk] for all m ≤ i. The
set of policies that has at maximumm hops contains
the corresponding set of polices that has at maximum
m− 1 hops. Therefore

DDi+1[v, sk] = min
u

[wsk

(v,u) + D̄D
i,sk

(vu)] (15)

≤ min
u

[wsk

(v,u) + D̄D
i−1,sk

(vu) ]

= DDi[v, sk]

Furthermore, we have for allv ∈ V andsk ∈ I

DDi[v, sk] ≤ DD1[v, sk] = wsk

(v,t) = wsk

(v,u)+DDi[t, sk]

Thus from Eq. 14 we obtain

OP i+1[v, sk] = min{DDi[v, sk], min
u

(wsk

(v,u) + D̄D
i,sk

(vu))}
= min{DDi[v, sk], DDi+1[v, sk]}

In view of Eq. 15,DDi+1[v, sk] ≤ DDi[v, sk], this
yields

OP i+1[v, sk] = DDi+1[v, sk]

Completing the induction proof.
Lemma 3.2 (GOSSIPDP Termination Without IGL):

The algorithm GOSSIPDP terminates afterj < |V |
iterations, when there areno information gathering loops
in the network. At terminationPN j [v, sk] contains the
optimal policies.

Proof:
In Lemma 3.1 we proved that at any iteration the rout-

ing tables contain the optimal policy for that iteration.
Here we need to prove that the algorithm terminates, and

that it doesn’t terminate too soon - running the algorithm
further will not reduce the optimal cost.

For a given information state adding hops to the
optimal policy could reduces its cost, until the optimal
policy contains at most all the edges of the network.
Adding more hops in this situation can only increases
the policy costs under the assumption that there are no
negative weight loops in the network. Thus at some
point the termination condition, line 17 of the algorithm
GOSSIPDP, will come into effect and terminates the al-
gorithm. In the iterations notation this condition becomes

∀ v ∈ V, sk ∈ I(·)
0 ≤ DDh−1[v, sk]−DDh[v, sk] < ε (16)

The algorithm terminates with the optimal policies and
not before due to the fact that the stoping condition in
Eq. 16 does not come into effect until the optimal path
contains the optimal number of hops.

The value ofε is chosen such that

∀ (u, v) ∈ E, sk ∈ I(·) ε ¿ wsk

(u,v)

In each iteration until all optimal paths are found, at
least one vertex decreases its current cost in the order of
an edge weight.

Thus when there are no IGL in the network the algo-
rithm GOSSIPDP terminates after at most|V | iterations
and when it terminates the routing tables contain the
optimal polices.

Lemma 3.3 (GOSSIPDP Termination With IGL):
The algorithm GOSSIPDP terminates after at most
j = f(ε) iterations, when thereare information
gathering loops in the network. At termination
PN j [v, sk] contains the optimal policies up to a factor
of ε.

Proof:
Following Lemma 3.2 here we need to demonstrate

the effect of adding IGLs to the network. We illustrated
in section III-C that when adding an IGL to a network
at some point the optimal policy directs the traveller to
cycle. Each cycle reduces the policy costs further due
to the increase in the probability to gather information.
Thus if the optimal policy starts to cycle, it will cycle
forever. The stoping condition, Eq. 16, ensures that
the algorithm stops and doesn’t run forever. Because
the optimal policy is set to cycle forever, stoping the
cycling under the conditions in Eq. 16 doesn’t change
the optimal policy. However, we stop the cycling and do
not allow the optimal policy costs to converge to its final
value. Thus the loop can carry an error in the order of
ε. At most we can havem = |E| loops in the network
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thus the overall error isO(m · ε). If we defineε′ = ε ·m,
we can conclude that at terminationPN j [v, sk] contains
the optimal policies up to a factor ofε′.

Theorem 3.1 (GOSSIPDP Correctness):The
algorithm GOSSIPDP provides the optimal policy
for gossip networks when there are no information
gathering loops (IGLs). When there are IGLs the
algorithm provides an optimal+ε approximation.

Proof:
In order to show the GOSSIPDP algorithm correct-

ness we need to prove the following
(a) At each iteration the algorithm contains the optimal

policy for that iteration. This was proved in Lemma 3.1.
(b) When the networkdoesn’t contain information

gathering loop the algorithm terminates with the optimal
policy after j < |V | iterations. This was proved in
Lemma 3.2.

(c) When the networkcontain information gathering
loop the algorithm terminates with the optimal policy up
to a factor ofε afterj = f(ε) iterations. This was proved
in Lemma 3.3.

E. Complexity of G-IWC and G-DWC

Theorem 3.2:In the case there are no information
gathering loops in the network the complexity of the
GOSSIPDP algorithm under the G-IWC model is
O(nmδ(2β + 1)δ).

Proof: When there is no correlation between the
edges weights we must examine all the edges (O(|E|));
for each edge we must examine all the source vertex
stochastic states (O(lI)); and for each source vertex
stochastic state we examine all the destination vertex’s
stochastic state (O(lI)), here we assume that the number
of stochastic states is bounded byβ. Notice however
that not all state transfers are possible and actually the
number of possible state transfer we need to examine is
only (2β +1)δ. The firstβ +1 states are for the transfer
from state{X} to all the available states, the secondβ
states are for staying in the same state when the weight
of the stochastic edge is known. In each state transfer
we need to calculate the transfer probabilityP and the
a priori probabilityQ, for that we need to examine all
stochastic edgesO(δ). In the worst case a vertex has
O(|V |) neighbors and the algorithm terminates either
after repeating for each of the neighbors or when there
is no difference between successive iterations.

Theorem 3.3:The complexity of the GOSSIPDP al-
gorithm under the G-DWC model isO(nmδ22R).

Proof: The complexity of GOSSIPDP algorithm
under the G-DWC model is similar to the complexity

of the algorithm under the G-IWC model. The only
different is that we need to examineO(lD) transfer states
instead ofO(lI) states. According to Eq. 2,O(lI) = 2R.

Although the optimal solution to the gossip networks
problem is intractable in general, we presented above two
special cases where the optimal solution is polynomial in
respect to the network size. In the first case a polynomial
solution is obtained when the number of stochastic edges
δ is small. The second case is when the number of
realizations in the network is relatively small.

IV. D ISCUSSION

A. Gossiping and Learning

In this subsection we will illustrate the importance
of gossiping by comparing the learning rates of the
gossip and non-gossip travelers. We assume the G-
DWC model with R possible realizations. When the
traveler starts his journey he doesn’t know what is
the current network realizationr ∈ R. Each time he
gathers information about some edge weights he can
eliminate zero or more network realizations which are
inconsistent with the obtained weight. Depending on the
network weights distribution, the traveler will be able
to determine the current realization of the network after
obtaining information about the state of enough edges.
Since each time the traveler visits a vertex he gathers
information about the state of all the emerging roads
we define information vertices as the set of vertices
the traveler needs to visit in order to find the current
network realization, and denote it byk. In the following
subsection we assume that the traveler doesn’t visit a
vertex more than once and that the information vertices
are distributed uniformly at random in the network.

We first analyze the non-gossip traveler which we call
a Step-By-Step(SBS) traveler, he receives information
about a vertex only when he visits it. The probability
that afteri steps in the network (visitingi vertices) the
SBS traveler already visitedj out of thek information
vertices is given by the hypergeometric distribution.

Pr(n, k, i;x = j) =

(
k
j

)(
n−k
i−j

)
(
n
i

) where j ≤ k; j ≤ i ≤ n

The probability that after visitingi vertices the SBS
traveler already visited allk information vertices and
thus found the current network realization is

Pr(n, k, i; x = k) =

(
k
k

)(
n−k
i−k

)
(
n
i

) where k ≤ i ≤ n
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The expected number of steps the SBS traveler needs
to take to find allk information vertices is

n∑

i=k

iPr(n, k, i; x = k) =
n∑

i=k

i

(
n−k
i−k

)
(
n
i

)

Normalizing the above expression

∑n
i=k i

(n−k

i−k)
(n

i)
∑n

i=k
(n−k

i−k)
(n

i)

=

∑n
i=k i i!

(i−k)!∑n
i=k

i!
(i−k)!

=
(n + 1)k + n

2 + k
(17)

Eq. 17 indicates that the number of steps the SBS
traveler needs to take in order to find the current network
realization is proportional to the network size,n.

Unlike the SBS traveler that can only gather informa-
tion about one new vertex in each step, the gossip traveler
has additionally a probability to receive information
about all the network’s remaining unknown vertices. In
his first step the gossip traveler receives information
aboutξT n vertices and in theith step aboutξT (1−ξT )in
vertices. In each step the gossip traveler has information
about all the vertices he learned about in his previous
steps. Therefore, in theith step the gossip traveler has
information aboutg(i) vertices:

g(i) =
i−1∑

j=0

ξT (1− ξT )jn = (1− ξ̄T
i)n

where ξ̄T = 1− ξT .
Obviously, when the traveler gathers information

about alln network’s vertices he has information about
all k information vertices and knows the network cur-
rent realization. Thus, an upper bound on the expected
number of steps the gossip traveler needs to take is the
number of steps needed to gather information about all
the network vertices. Since the number of vertices is
discrete we are looking for the step number,r, such as

g(r + 1)− g(r) = n(ξ̄T
r − ξ̄T

r+1) < 1

Solving the above equation yield

r < − ln(nξT )
ln(1− ξT )

(18)

In practice in the gossip modelr could be even smaller
since the gossip traveler gather information by both
gossiping and visiting vertices, however in the above
analysis we took into account only gossiping. Thus,
Eq. 18, is an upper bound on the expected number of
steps the gossip traveler needs to take in order to find
the current network realization. Comparing Eq. 18, to
the expected number of steps the SBS traveler needs to
take, Eq. 17, we conclude that the outcome of gossiping
is higher learning rate. While the SBS traveler needs on

average to visit O(n) vertices of the network to learn its
state, the gossip traveler needs to visit onlyO(log(n))
of them. In most cases higher learning rate in stochastic
networks will result in shortest path to destination. Once
the traveler knows the network edge’s states he can
reduce his path cost, for example by avoiding blocked
roads.

B. Characteristics of traveling in Gossip Networks

In this section we will discuss the characteristics of
optimal routing in gossip networks under the proposed
GOSSIPDP algorithm. For the simplicity of the discus-
sion we use the following assumptions: The network
is in the G-IWC model with one stochastic edge. The
stochastic edge can be either in the “UP” or “DOWN”
states. In the “UP” state the stochastic edge weight is
similar to the weight of the deterministic edges, in the
“DOWN” state its weight is higher than the weights of
the deterministic edges. The traveler must traverse the
stochastic edge on his way from source to destination.
Once we analyze the parameters that influence routing
under these assumptions expanding the model to the case
of several stochastic edges with several stochastic states
is straightforward as we demonstrate in the numerical
analysis in the next section.

A traveler in the gossip networks that is navigating
using our optimal routing policy can be viewed as op-
erating in three different regimes: “WIN”, “LOSE”, and
“NEUTRAL”. In the “WIN” regime the traveler reduces
his travel cost by gossiping. In the“NEUTRAL” regime
obtaining information doesn’t increase or decrease the
gossip traveler’s path cost. In the“LOSE” regime ob-
taining information actually increases the traveler path
cost. The operating regime is a result of the following
parameters: the magnitude of the difference between
the values of the actual weight of the stochastic edges
(ŵe) and their expected weights (ωSE), the values of
the topology probability (ξT ), and the magnitude of the
difference between the values of the stochastic edges
actual state (ξA) and a priori probability to be in the
“UP” state (ξU ) (see Table II for notation summary).
Next we will explain the influence of each parameter.

The magnitude of the difference between the traveler’s
a priori knowledge (ωSE) and the actual weight of the
stochastic edges (̂we), denoted by∆ω = |ωSE − ŵe|,
determines the influence of obtaining information on the
traveler’s path cost. WhenωSE and ŵe are similar, a
gossip traveler will not have an advantage over a non-
gossip traveler, they both know a priori the “correct”
stochastic state. However, above some critical difference,
∆ω > ∆C obtaining information will decrease the
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Fig. 5. The different possible paths a traveler can have for different
topology probabilities. (a) No gossiping, (b) Maximal gossiping, and
(c) In between.

traveler’s path cost. For example, whenωSE “tells” the
travelers that a stochastic edges is in the “UP” state and
the actual state is “DOWN” a non-gossip traveler may
include this edge in its path while a gossip traveler will
reduce his path cost by bypassing it in advance. The
value of ∆C is determined by the difference that will
cause the non-gossip traveler to take the wrong path,
meaning that he will bypass the stochastic edge when
it’s “UP” or travels through it when it’s “DOWN”.

Fig. 5 illustrates the different possible types of paths
a traveler can have for different values of topology
probability (ξT ). When there is no gossiping (a) the
probability to receive information is zero thus the optimal
policy is determined a priori before the start of the
journey and has no recourse. In this case the optimal
policy is the one that minimize the expected weights.
When ξT is maximal (b) the traveler learns about the
state of all the stochastic edges on the traversal of the
first edge,(s, r), and then travels to the destinationt with
full knowledge aboutŵe and therefore without changing
his course. WhenξT is in between (c) the traveler’s path
is composed of three phases, the initial phase is until
the traveler obtains any information about the state of
the stochastic edges. Then, in the learning phase, the
traveler may recalculate and recourse his path according
to the updated information vector – his optimal policy is
a collection of different branches. When the traveler has
full information aboutŵe, at some vertexu, he travels to
the destination without changing his course. The higher
ξT the quicker the gossip traveler will learn about the
state of the network and therefore minimize the learning
phase in his travel which leads to decrease in the policy
cost.

According to the optimal policy, stated in Eq. 9, one
of the parameters that determines the relative weight of
each branch in the path is the a priori probability of the
network to be in certain stochastic state, denoted here
by ξU . The closerξU is to ξA (small ∆ξ = |ξU − ξA|)

 
Increase in ξ∆  Increase in ξ∆  

Increase in Tξ  Increase in Tξ  
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LOSE NEUTRAL 
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Fig. 6. The regime state diagram determines the influence of
gossiping on routing in different network characteristics

the more efficient the learning phase will be. Efficient
learning means that the traveler is directed toward the
“right” direction by giving higher relative weight to the
“right” branch. When there is a relatively large difference
betweenξU and ξA the branches in the learning phase
will direct the traveler to the “wrong” direction and as a
result the cost of his policy will increase. For example,
when the a priori probability of the stochastic edge to be
in the “UP” state is small (ξU ≈ 0) the optimal policy
will direct the gossip traveler to branches that detour the
stochastic edge. When the stochastic edge is actually in
the “DOWN” state this decision is beneficial, however
when the actual state of the stochastic edge is “UP” the
decision will maximize the gossip traveler learning phase
and his total traveling cost.

The operating regime that the traveler experiences is
determined by the combined values of the parameters,
∆ω, ξT , and∆ξ. Fig. 6 is a state diagram that illustrates
the influence of the parameters on the network regime.
When ∆ω is below some threshold,∆C , the a priori
knowledge of the network state is close enough to the
true value, and thus increasing the path length to obtain
information can not benefit the gossip traveler. As a
results, in this case, the network can be either in the
“NEUTRAL” or “LOSE” regimes. The “LOSE” regime
is obtained when the learning phase is relatively large
(increase in∆ξ), however a larger topology probability
shortens the learning phase and pushes the network into
the “NEUTRAL” regime. The ultimate network regime is
determined by the relation between these two parameters
ξT , and∆ξ. Similarly, when∆ω is above the threshold,
∆C , gossiping helps the gossip traveler to reduce his
policy costs. The network can be either in the “WIN” or
“NEUTRAL” regimes according to the relation between
ξT , and∆ξ. In the next section, we will demonstrate the
above discussion using simulation results.
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Notation Description

ωD : Weights of the deterministic edges
ωSE : Expected weights of the stochastic edges
ŵe : Actual weight of the stochastic edges
∆ω: |ωSE − ŵe|
∆C : Critical value of∆ω

ωSD : Weights of the stochastic edges in “DOWN”
state

ξA : Stochastic edges actual state
ξT : Topology probability
ξU : A priori probability of the stochastic edges to

be in the “UP” state
∆ξ : |ξU − ξA|
θE : Expected cost of the optimal policy
θR: Relative expected cost (θE) at some topology

probability; θE(ξT )/θE(0)
θA: The average of relative expected (θR) over the

whole range ofξT

Configuration: A set of values for the above parameters
Operation Regime: Determined by the network configuration.

Can be either “WIN”, “NEUTRAL” or
“LOSE”

TABLE II

NOTATION SUMMARY

V. NUMERICAL ANALYSIS

The main purpose of the simulations was to investigate
the influence of gossiping on the traveler’s optimal policy
cost under the different parameters used in the gossip
networks. The performance and behavior of the proposed
algorithm on the gossip networks are examined through
numerical experiments on various grid network configu-
rations with random generated weights under the G-IWC
model. In each network configuration the simulation
derived results comparing the traveler’s expected optimal
policy cost for different topology probabilities.

First, for each randomly generated network configura-
tion the optimal routing policy tables are calculated using
the GOSSIPDP algorithm. Then, using the calculated
routing tables the simulation computes the expected
optimal policy cost from each vertex to the destination.
For notation of the parameters we use see Table II.

A. Simulation design

The simulation was conducted on fully connected grid
networks representing, for example, the road structure
in many urban areas. Fig. 7 shows such a network for
a 4×4 grid. The weights of the different deterministic
edges were selected uniformly at random. Three specific
edges in the grid were chosen to be stochastic. The
stochastic edges could be in two states, with probability
ξU in the “UP” state, then the edge weights are randomly

 

t 

i j 

Fig. 7. A 4×4 grid network used in the simulations. The dashed
lines are stochastic edges with probabilityξU to be in the “UP” state.
Larger grids had the same structure.

selected exactly like the deterministic edges. When the
stochastic edges are in the “DOWN” state their weights
are set to different values as explain further below.
The stochastic edges were selected such that they will
have a significant influence on the optimal policy to the
destination vertext. For the same reason, the weight of
the deterministic edge that is adjacent tot was set to be
higher than the other deterministic edges.

The following list details the range of values we used
in the simulation:

Deterministic weight (ωD) : Uniformly at random in
[1,100].

Stochastic “DOWN” weight (ωSD) : In each configura-
tion all stochastic edges had the same weight which
was selected uniformly at random in [0,800].

Topology probability (ξT ) : In each configuration the
same value ofξT was set to all the edges in the
network. The range of tested values was in [0,1].

A priori probability (ξU ) : Different values in the range
[0,1] were used to test the influence ofξU . In each
configuration all stochastic edges were set to the
same value.

Stochastic actual state (ξA) : The actual state of all three
stochastic edges was set equally to either “UP” or
“DOWN”.

Network structure (Grid Size): Two different grid net-
works were used with sizes of 4× 4 and 8× 8.

Totally we tested21(ξT ) · 9(ωSD) · 11(ξU ) · 2(ξA) =
4158 different configuration for each grid size.

In order to remove the influence of specific random
network weights the same set of experiments were re-
peated with the same network configuration for ten dif-
ferent random seeds. The analyzed results are averaged
over the ten different runs.
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Fig. 8. The influence of topology probability (ξT ) on path costs
(θR) in different a priory probabilities (ξU ). Simulation was done
with grid size = 4× 4, ξA = “DOWN”, ωSD = 700, ξU = 0, 0.7,
and 0.9.

B. Performance Measurement

After the routing tables were built for a given network
configuration theExpected Cost(θE) from each vertex
to the destination was calculated.θE is calculated by
following all the possible paths from source to destina-
tion assuming that the traveler starts his travel with no
information I = {X,X, X}. The paths were weighted
according to their probability to occur. The results are
presented using the value ofRelative Expected Cost(θR),
where

θR(ξT ) =
θE(ξT )

θE(ξT = 0)

When θR = 1 gossiping doesn’t change the gossip
traveler’s θE and we are in the “NEUTRAL” regime.
For θR < 1 obtaining information leads to a decrease in
θE – the “WIN” regime. In the case ofθR > 1 obtaining
information leads to an increase inθE , contradicting
the desirable outcome – the “LOSE” regime. We are
interested in the value ofθR and less in the value of
θE since we are mainly interested in the influence of
obtaining information on the performance of a given
network configuration.

Some of our results are presented using the values
of θA which is theAverageof θR over all the differ-
ent measured gossip probabilities for a given network
configuration.

C. Results Discussion

The results presented in Fig. 8 demonstrates the role
of obtaining information in different network config-
urations. In this exampleξA =“DOWN”, thus when
ξU=0 obtaining information doesn’t change the traveler’s
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Fig. 9. The influence of a priory probability (ξU ) on path costs (θR)
in different gossip probabilities (ξT ). The different graphs are drawn
for ξT = 0, 0.2, 0.4, 0.6, 0.8, and 1. Simulation was done with grid
size = 4,ξA = “DOWN”, and ωSD = 600.

optimal policy cost. When∆ω = ∆ξ = 0 obtaining
information will not help the gossip traveler, both trav-
elers are directed in the “right” direction and the gossip
traveler has a minimal learning phase, as a result the
network operates in the “NEUTRAL” regime. When
ξU=0.7 obtaining information increases the traveler’s
optimal policy cost – the network is in the “LOSE”
regime. In this caseωSE is such that the non-gossip
traveler bypass the stochastic edges, which is justified
since ξA=“DOWN”. Therefore, the non-gossip traveler
knows the “right” direction. Obtaining information only
puzzles the gossip traveler due to∆ξ that implies that
the learning phase will be relatively large, as a result
the gossip traveler will increase his optimal policy cost.
Increase in theξT leads to shorter learning phase which
leads to smallerθR. WhenξU=0.9 the network is in the
“WIN” regime. In this case∆ω > ∆C , thus the non-
gossip traveler roam in the “wrong” direction. Increase
in ξT leads to reduce inθR since the gossip traveler
finishes his learning phase quicker. Fig. 8 also illustrates
that the magnitude of the “WIN” effect is substantial
larger than the “LOSE” effect.

Fig. 9 depicts the relation betweenξU and θR for
different ξT values. The curves move between three
regimes. WhenξU is below a threshold value, an in-
crease inξU doesn’t changeθR – the network is in the
“NEUTRAL” regime. Then, an increase inξU leads to
an increase ofθR and the network is in the “LOSE”
regime. Further increase ofξU moves the network into
the “WIN” regime. Comparing the graphs for different
ξT reveals that in the “NEUTRAL” regime the behavior
of all the graphs is almost identical. In the “LOSE”
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Fig. 10. θA for different values ofωSD (X axis) andξU (Y axis).
White cells represents the “WIN” regime, gray the “NEUTRAL”
regime and darker gray the “LOSE” regime. This simulation was
done with the following parameters: grid size = 4;ξA = “DOWN”;
θA was averaged overξT = 0 to 1.

regime, theθR peak is reached atξT = 0.2. In the “WIN”
regime increase inξT leads to a decrease inθR.

In this graph the network is in the “NEUTRAL”
regime whenωSE andŵe are similar and the difference
betweenξA andξU is small. In the “LOSE” regime the
increase in∆ξ leads to a longer learning phase and as
a result an increase inθR. In the “WIN” regime the
increase in∆ξ increases the learning phase while an in-
crease inξT decreases it, however the non-gossip traveler
moves towards the stochastic edge which increases his
θE significantly compare to theθE of the gossip traveler.
As a result, taking both parameters into account, the
relative optimal policy cost of the gossip traveler,θR,
is reduced.

Fig. 10 illustrates the relation betweenξU and ωSD

for averagedξT when the grid size is 4 X 4. Here are
several observations from the results:
1) When ξU is zero, ωSE is equal to ωSD, in this
case the traveler knows a priorîwe and there is no
benefit in obtaining information – the network is in the
“NEUTRAL” regime.
2) At lower ωSD (0 − 200) increase of ξU leads
the network into the “WIN” regime. In this case the
stochastic edges weights is similar to the weights of
the deterministic edges, therefore information helps the
gossip traveler to find the optimal path in the network
and decrease hisθA only moderately.
3) At higher ωSD (300−) an increase ofξU leads the
network from the “NEUTRAL” to the “LOSE” and then
to the “WIN” regime. In the “NEUTRAL” and “LOSE”
regimes the non-gossip traveler bypass the stochas-
tic edges, therefore in this case obtaining information
doesn’t help the gossip traveler. WhenξU > 0, obtaining
information actually increases the learning phase due to
relatively large∆ξ and thus there is an increase in the

θA. Then, with the increase inξU the non-gossip traveler
tries to travel through the stochastic edges which leads to
increase in his path cost and decrease inθA of the gossip
traveler that bypass the stochastic edge. The move from
the “LOSE” to “WIN” regime is not due to the fact that
the gossip traveler decreases his path cost, he actually
increases it. However the non-gossip traveler increases
his path cost even more due to the fact that now he
doesn’t bypass the stochastic edges.
4) At higher ωSD (300−), with the increase inωSD

there is an increase in the size of the “LOSE” regime.
The “LOSE” regime ends when the non-gossip traveler
decides to travel through the stochastic edges. This is
happening when hisωSE reaches≈ 200 which is the
cost of bypassing the stochastic edges in this example.
5) At higher ωSD (300−), in the “LOSE” regime, the
value ofθA increases with the increase inξU and doesn’t
change with the increase inωSD. This phenomenon is
due to the parameter∆ξ, at higherξU there is a higher
probability to paths that lead to the “wrong” direction.
6) In the “WIN” regime, an increase inωSD leads to a
decrease inθA. In higher ωSD the non-gossip traveler
travels through the stochastic edges that have increased
weights, therefore the gossip traveler can reduce his path
cost to a larger extent.
7) In the “WIN” regime, an increase inξU leads to
a decrease inθA. The change here is more moderate
and is the result of two parameters. On the one hand,
with the increase inξU the difference betweenωSE and
ŵe is increased which leads to an increase in the non-
gossip traveler path cost and a decrease inθA. On the
other hand, an increase ofξU leads to an increase in the
learning phase which leads to the opposite result of an
increase inθA. The outcome of the two parameters is a
total decrease inθA.

Fig. 10 illustrates that for this network configuration
gossiping helps in more than half of the cases. In
addition, the gain from gossiping is far greater, as much
as 50% reduction of the expected path cost, compare to
the possible loss which is only up to 7%. However, the
fact that one can lose from trying to obtain information
dictates the need to understand gossip networks behavior.

Fig. 11 illustrates that the “LOSE” regime is less
significant in larger grid sizes. The reason is that in a
small grid the number of steps to the destination is small
therefore even one wrong step can lead to a significant
increase in the path cost. In larger networks, where the
number of steps is relatively large, the influence of wrong
moves is smaller. In real life traffic applications the
smaller grid size behavior is more likely due to the small
number of options the traveler have especially when the
network is in the “DOWN” state, ie. during congestion.
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Fig. 11. θA for different values ofωSD (X axis) andξU (Y axis).
White cells represents the “WIN” regime, gray the “NEUTRAL”
regime and darker gray the “LOSE” regime. This simulation was
done with the following parameters: grid size = 8;ξA = “DOWN”;
θA was averaged overξT = 0 to 1.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents and studies a new model for
information gathering in stochastic networks, the gossip
networks. Gossiping could lead to some unusual phe-
nomena, where the optimal routing policy may direct
travelers to make a detour in order to gather information
and minimize their expected path cost. The optimal
traveling policy in gossip networks is expressed by a
dynamic programming equation. Although the algorithm
that solves the equations, GOSSIPDP, is intractable in
general, we present two special scenarios where the
optimal solution is polynomial in respect to the network
size. We analyze the relation between the parameters that
influence gossiping and produce a state diagram that pre-
dicts the network regime. Gossip networks can operate
in three regimes, in each regime gossiping has different
effect on the traveler optimal path cost, “WIN” (reduce),
“NEUTRAL” (doesn’t change) and “LOSE” (increase).
Numerical studies on gossip grid networks confirm the
regime analysis. The numerical studies illustrate that in
the grid networks we study, the ”WIN” regime is larger
that the ”LOSE” regime, both in size and in magnitude
and that the “LOSE” regime is more common in small
networks.

A. Future Work

This research can be continued in several directions.
First, one can study optimal ad-hoc communication
exchange protocols, best fitted to vehicles traveling at
medium or high speeds. A second direction is to examine
optimal routing in gossip networks, e.g., it is interesting
to look at the effect of gossiping in different network
model, such as, time dependent network or models
that take into account the interactions between agents
and the macroscopic properties of the system. Another

possible future direction involves developing general
approximation algorithms that overcome the “curse of
dimensionality” while using the gossip networks unique
properties.

One of the dominant parameters of the GOSSIPDP
algorithm is the topology probability. Future work is
needed to understand the influence of traffic and commu-
nication factors on its value, in particular, the influence
of parameters such as node density, node velocity, and
radio transmission range.
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