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Abstract— In this paper we introduce the Gossip Network that optimize their route by exchanging information with
model where travelers can obtain information about the their peers. This paper will focus on another exam-
state of dynamic networks by gossiping with peer travelers ple from the field of transportation. Road congestion
using ad-hoc communication. Travelers then use the gossipis 5 known and acute urban menace with no signs
information to recourse their path and find the shortest of disappearing. There are apparently many suggested

path to destination. We study optimal routing in stochastic, hes to tackle thi blem: f th is t
time independent gossip networks, and demonstrate that approaches 1o tackie this problem, onée o em 1S 1o

an optimal routing policy may direct travelers to make supply vehicles qud drivers with up-to-date information

detours to gather information. A dynamic programming @bout road conditions.

equation that produces the optimal policy for routing There are two kinds of approaches to supply drivers

in gossip networks is presented. In general the dynamic with information that can aid them avoid congestion.

programming algorithm is intractable; however for two  One approach is based on fixed-structure communication

special cases a polynomial optimal solution is presented. networks, for example cellular networks or FM/AM
We show that ordinarily gossiping helps travelers de- radio [2]-[4], the other approach is based on ad-hoc

crease their expected path cost. HOwever, in Some SCe . nication networks. Several innovative projects
narios, depending on the network parameters, gossiping

could increase the expected path cost. The parameters_pmpOSe using ad-hoc networks as the communication
that determine the effect of gossiping on the path costs are INfrastructure, for example FleetNet [5], and CarNet [6].
identified and their influence is analyzed. This dependency ~ The advance in technology in recent years helps to
is fairly complex and was confirmed numerically on grid bring into vehicle’s sophisticated onboard navigation
networks. systems at a reasonable price. Such a system contains
a computing device with a detailed road map, GPS for
locating the vehicle on the map, and communication
means. One can use ad-hoc communication networks
(such as Wi-Fi) to exchange information between neigh-
Optimal routing in both deterministic and stochastiboring vehicles. When two vehicles are at communica-
networks has been extensively studied in the past. Whilen range they can exchange their information regarding
the solutions for the deterministic problem are wetbad condition. The road condition information is thus
known [1] and based on the dynamic programmingropagated in the network without any need for external
(Bellman-Ford) or label correcting (Dijkstra) algorithmsor central infrastructure. Each time new information is
the solution to the stochastic problem depends probtained by a vehicle, the onboard navigation systems
foundly on the problem modelling. One of the maimecalculate the optimal route from its current location
characteristic of the stochastic problem model is how the destination. For example, if the navigation system
the information about the stochastic states of the netwadceives information that one of the streets in its planned
is obtained. The introduction of ad-hoc communicatiopath is blocked it will plan a new path that avoids the
presents an opportunity for a new kind of network modélocked road; the new path will be the shortest path from
— the Gossip NetworksIn this paper we formulate, the vehicle’s current position to the destination taking
for the first time, the gossip networks model in whicinto account the blockage.
mobile agents obtain information about the state of Our gossip network model was built based on re-
a stochastic network by exchanging information witkearch done in “ad-hoc networks” and “stochastic short-
neighboring agents using peer to peer (P2P), ad-hest path routing”. In this paper, mobile agents acquire
communication. Mobile agents then use the exchangaad disseminate information about road conditions using
information to reveal information about the network statgireless communication (ad-hoc networks) and use the
and consequently optimize their routing. information to minimize their traveling time (shortest
There are varieties of real life problems that can bepath problem). There are two networks in our model, the
efit from an optimal solution to the problem of routingroad network” on which the mobile agents roam and the
in gossip networks. For example, airplanes or vessét®mmunication network” on which information flow.

. INTRODUCTION



While there is an extensive literature about routing imads. We assume that no parking at roads or junctions
each of the networks, to the best of our knowledge, thiss allowed to optimize the journey, and once a junction
is the first attempt to formulate and solve the combinésl reached the weights of all the roads that emerge
problem: shortest path routing of mobile agents in tHeom that junction become known. We investigate two
context of gossip ad-hoc networks (see also section different models of weight correlation. The first is the
C).1 Independent Weight Correlatiomodel (G-IWC) where
There are currently several ongoing projects focusiitigere is no correlation between the states of different
on the idea of mobile agents (for example vehiclesfges. The second is tiEependent Weight Correlation
exchanging information and forming communicatiomodel (G-DWC) where the network can be in several
networks without or with a little help from externaldifferent states, each state determines the weights of all
infrastructure. Mobile Ad-hoc Networks (MANET) [7] is stochastic edges [10]. Note that the G-IWC model is a
an IETF working group set to standardize these efforgeneralization of the G-DWC model with substantially
The FleetNet project [5] aims at the development arfdore states. The rational behind the G-DWC model
demonstration of a wireless ad-hoc network for inteis that in “real-life” transportation systems there is a
vehicle communications. FleetNet is a consortium @prrelation between roads weights, usually a traffic jam
six companies and three universities looking into mosti one road effects the roads in its vicinity.
the practical issues of providing drivers and passengerdVhen the shortest path model is stochastic, like in
some services over ad-hoc communication. Some tbis paper, the information about the actual state of
the proposed FleetNet services are: notifications abde stochastic edges plays a crucial role in finding
traffic jams and accident, and providing informatioithe optimal routing solution. Further more, due to the
about nearby available point of interest. Another projegtynamic nature of the problem the solution is not a path
CarNet [6] demonstrates the use of ad-hoc scalalflet rather a policy that direct the traveler according to
routing protocol (Grid) to support IP connectivity as wellhe information he obtains. In the literature there are
as providing services similar to FleetNet. For a compré&everal papers that discuss optimal routing policies in
hensive overview of Inter-Vehicle ad-hoc communicatiogtochastic networks where the traveler can recourse his
see [8]. path according to information obtained during travel.
FleetNet, CarNet, and similar projects aim at builddowever, the basic difference between these models

ing communication infrastructure using ad-hoc con@nd ours is that in gossip networks the information is
munication and are examining suitable routing prot@btained by gossiping with neighboring travelers thus
CO|S; medium access methods’ radio modu|ation1 eﬁ:_traVEIGr can obtain data about the state of remote
In this paper we assume the existence of such an §§pChaStiC roads. In all the other models we survey the
hoc network that enables mobile agents to exchan@ely way to obtain information about the state of a road
information. However, we don’t |mp||c|t|y include hereiS to visit the junCtion it emanates from. Andreatta and
specification of the ad-hoc network such as routifgomeo [11] assume that once a blockage is encountered
or multi-access communication protoco|s7 instead wwerecourse path that consists of Only deterministic roads
abstract them into thgossip probabilitythe probability is used. Orda, Rom, and Sidi [12] investigated a model
that a mobile agent will receive information about thwhere link delay changes according to Markov chains,
status of some roads in the network from another mobffeey model several problems and showed that in gen-
agents. The gossip probability is defined formally igral, the problems are intractable. Polychronopoulos and
Section II. Tsitsiklis [10] investigated a network where there is a
The problem oShortest Path Routingas investigated cOrrelation between the roads weights. In their model
extensively in the literature, for a comprehensive surfi- traveler can deduce the stochastic state by visiting
mary of the various efforts in the field of transportatioRNough roads. Waller and Ziliaskopoulos [13] solved a
see [9]. In this paper we assume time independenf&2del with dependency between successor roads and a
i.e., the network doesn't change during the course Gfodel with time dependency for the same road.
the travel. Some of the road conditions are known to be The primary contribution of this paper is in the
alternating, however, a traveler may not know in advané¥roduction and analysis of the gossip model and the

the current condition of all these roads, termed stochagigW directions it opens for building P2P mobile systems.
We choose to introduce the subject using simplified

This paper focuses on the routing of mobile agents on tthOdel that allowed us in depth analysis. The analysis

“roads networks” and not on the routing of data packets on t@?sent?d in th?s paper produced Some_inFereSting re.SUItS
“communication networks”. which gives us insight into the characteristics of traveling



in gossip networks. The introduction of informatiorof an edgee to have the weightv;. We denote by,
exchange leads to unique optimal routing policies. In thike actual weight of the edge In the G-DWC model
paper we will show that sometimes it is worth taking ghe network can be in only realizations, each € R
detour to obtain more information about the state of thealization determines the states of the network and thus
stochastic edges. The extra cost of the short detour carthe weightsw, of all the stochastic edges.
compensated by the additional information gained, infor- Traveling agent¢TAs) are roaming the network. Each
mation that can improve the selection of the continuinBA stores internally the weights of the stochastic edges
path. Further more, we were able to quantify an optimal an Information Vectoy /{-}. For example, an infor-
policy that balance between information gathering costsation vector of a traveler could look like thig: =
and path costs. Other main contribution is the regimes;, X, ws, X, ..., X, X,ws}. For known edges, those
state diagram we produced. Using the diagram one dhat the traveler visited or received information about,
determines the influence of gossiping on the travelinlge weights are written down explicitly,iy, ws, ws.
costs in different network characteristics. Unknown edge weights are denoted Ky The number
The rest of the paper in organized as follows. In thef possible states of the information vector in the G-IWC
next section, the formal model of the gossip networkaodel,; is given by
is introduced and an example that demonstrates the

characteristics of the model is presented. An algorithm lr = H (Be+1) (1)
for optimal routing in gossip networks that is based on e€E\D
dynamic programming is developed in Section Ill. Ignd in the G-DWC model, the number of different

Section IV we discuss the implications of traveling iﬁhformation vector states is given by

gossip networks. Then, in Section V, we use numerical "

analysis to demonstrate the influence of the various In— Z <R> _9R _ 2
model parameters on the network behaviors. Finally b= i)

in Section VI we summarize and highlight our main o o
findings while providing directions for future work. When two or more TAs are within communication

range they can exchange their information vectors in
II. MODEL AND DEFINITIONS order to gain missing data. Thgossip probabilityis
the probability that when a TA traverses an edge it will

A. The formal model update his information vector.
The above discussion leads to the following formal

model. The networkis represented by a directed graph P(s,8',T(i,5)) = P{I(j) = s'[[(i) = 5,T(3,5)} (3)
G = (V, E), whereV is the set of vertices, an#l is the
set of edges|V| = n and |E| = m. An edgee € FE is
associated with a discrete random weight variahlg,
Edges with degenerated weight function that has o

one value are termed deterministic, and we denote probability that a TA will receive information from

set of these edges bfp C E. The number of edges .
) : . : her TA h I . Th I
in the network with stochastic weights (namely, no%t er TAs during the traversal on an edge. The topology

L N probability is determined by aspects like the number

?hetfrmglstlcl)l 'S qehrj[o;?(: 'tt))yt'_ ’Eﬂs D|. We assumet_ of TAs around the traveler, the other TAs previous

at under afl weig IStributions there are no nega “f)%ths, physical obstacles that interfere with the wire-
cost cycles in the network and there is always a pg

bet d destinai S communication, etc. It is a characteristic of the
etween source and destina !on. . network structure and the flows of TAs in the network.
In the G-IWC model the weights,., of thestochastic

) . . - Assuming that there are "enough” mobile agents in the
edgesare random variables with discrete prObab'“t%et\NorkT(i j) is a vector of probabilities, where each

dlstnbgu?n that Beasﬂesszates. Thes expected cost of af e mang corresponds to some stochastic network edge.
edge iswe = 3,2, wigs, whereg? is the probability .. example,T'(i,j) = {1,0.5,...0} means that on

’As mentioned above, there are two networks in our model, tl‘?é’erage_When the TA Slates_edQEJ) it V_V!” learn about
“road network” and the “communication network”. In this paperstochastic edges 1,2, andwith probability 1, 0.5, and
when we say “network” we refer to the “road network”. We assumgero, respectively. The gossip probability depends on
the existence of communication network that enables mobile ag¢fk topology probability and on the information vector
to exchange information but in this paper we don't include it in
the formal model implicitly, it is included in the gossip probability0€fore and after the edge traversal. For example, the

presented below. probability to change an information vector element from

i=1

where s, s’ € I are the information vector before and
after the edge(i, j) traversal, respectively(i) is the
iB(formation vector at vertex < V, and T'(i,j) is

e topology probability The topology probability is



{--,w,---}to{ -, X, -} is zero. Regardless of thethe portion of cars with gossiping capability is anywhere
topology probability, a known weight can not be changdaetween 1% to 60% there is an reduction in the average
into unknown. delay of the gossiping cars, and in most of the region
In this paper we are looking for the optimal routinglso in the average delay of the total car population.
policy of a TA that start at the source vertexwith Researchers at DLR were able to deduct meaningful
information vectorI(s) and travels to a destinationinformation about real time traffic using several hundred
vertex t. We assume that the TA knows a priori théaxis in Berlin, Nuremberg, and Vienna [16].
network structure, weights distribution, and the topology
probability. We are looking for an optimal routing policy.
7* with minimal expected costC*(s,t,1(s)), of all
possible routing policiegk c . There is a fairly large body of work that deals with
gossiping in ad-hoc networks, however the model and
thus techniques used in these works is different from our
work. In general the goal in most of the ad-hoc network
B. Assumptions and Reality literature is to seek efficient protocols for information

The formal model of this paper has several assum@<change minimizing communication overhead, power
tions. In this section we summarize these assumptiodgnsumption etc, while ensuring message delivery. The
and relate them to real life scenarios in transportatidhain focus of our paper is to propose an optimal routing
networks. The first assumption is that the network is tinfdgorithm that minimize travel costs.
independent. In many situations, a driver can assumdn this paper gossiping is used to exchange informa-
that during his commute (30 to 60 minutes) the traffidon about the weights of the stochastic edges between
patterns in his area doesn’t change significantly. Thuggents. Hass, Halpern, and Li [17] build ad-hoc routing
in many cases, an optimal routing policy calculated gtotocols where gossiping is used to reduce the protocols
the beginning of the journey will yield satisfying result®©verhead. Kulik, Rabiner, and Balakrishnan [18] pro-
throughout the journey. posed the SPIN family of protocols that use gossiping to

Another assumption is that the agent knows a prig®vercome problems such as implosion, overlap, and re-
the network structure, edges weight distribution argburce blindness common to ad-hoc networks. Braginsky
topology probability. While network structure can bé@nd Estrin [19] introduced a scheme that allow queries
obtained from any GIS, the edges weight and topologg be delivered while providing tradeoff between setup
probability are calculated from historical informatiorpverhead and delivery reliability. While it is possible to
gathered over time. Currently there are several coeembine our modelling and results for these works it
mercial and academic projects that use historical dasacertainly not straight forward due to the differences
to predict future traffic patterns, for example the MIT'®etween the underlaying assumptions.

DynaMIT project [14]. While the edges weight distribu- First, in our model, the network topology is assumed
tion can be computed directly from the historical traffito be known to a large extent and mostly the weights are
data, in order to compute the topology probability onenknown. In ad-hoc networks, the network is assumed
needs information about the agents movement in tt@ change so frequently that the overhead to learn its
network. Given that information, we can calculate an@pology is too large to become realistic. Thus, in our
record fairly easily the edges weight distribution andase we collect knowledge about the state of edges,
topological probability for a given time. For example, wavhile in ad-hoc networks the effort is to learn a route
will have one distribution for morning commute, secon(sometimes with the ability to improve it based on cost)
for evening commute, third for holidays etc. Then, eaddut there is no attempt to learn the network state and
time the agent will compute his optimal routing policyptimize based on this.

using the gossip network time independent algorithm heAnother major difference, is that in our case we
will use the appropriate distributions. assume the existence of a priory knowledge about the

Any probability distribution is meaningful only whenstatistics of the network, such as, the weight distribution
there are enough events. Thus, in order to calculate thfethe links, the probability to learn about the state of a
edges weight distribution one needs "enough” historicaértain link by traveling on another, etc. In most other ad-
information both over time and network edges. The cdtoc network models, such knowledge is never assumed.
culation of the topology probability requires information In other ad-hoc networks, one has a full control on the
from "enough® agents in the network. In a study done kgbility to distribute information about the networks by
Kraus, Parshani, and Shavitt [15] it was shown that whehanging the control algorithm. In our case, information

'C. Comparison with other Ad-Hoc Models

Vake m C*(s,t,1(s) < C¥(s,t,I(s))



according to the obtained information, choose whether
100¢ . .
to go through vertex, j or return to vertex.
@ Next we will calculate the expected cost of the differ-

ent routing policies. The cost of the path through vertex

1 k is deterministic and does not depend on the a priori
@ knowledge of the state of the edgg ;')

1 or 10,000
Fig. 1. An example of the influence of gossiping on routing. We
are looking for the optimal routing policy between the vertigesnd The cost of the path through vertgxwithout any a

t where the edgéj, ;') is stochastic and on eddg, s) the traveler priori knowledge about the state of the edge;’)
can obtain information about the stochastic edge. The psils} is

called an ‘information gathering loop’ (IGL) C(s,t, {X})j =10002(1 — &y) + 3&y (5)

If the traveler needs to choose between traveling

is flooded by cars whose drivers selected to mount sp@roughk or j (without first traveling to vertex) then
cial gossip equipment, but the drivers are going on théiis optimal routing policy depends on the value of his
own private business. Thus we do not control the rate alfidiormation vector:
direction of the information dissemination. This lack of X

. . : ; C*(5,t, {X})rj
control disqualify many of the solutions suggested in the

context of ad-hoc networks in our model. C*(s,t,{1})k; = 3
C*(s,t,{10000})s; = 1001

= min(1001, (1 — £)10002 + 3&y)

D. An Example If the traveler knows that the stochastic edge is in the
In the example network presented in Fig. 1, a traveld? OWN" state he will travel to vertex; in the case he

is located at vertexs and is looking for the optimal knows that the edge is in the “UP” state he will travel to

routing policy to vertext. In this network there is one VerexJ; and in the case the traveler doesn't know the

(6 = 1) stochastic edge(j, j'), that has two possible State Of the stochastic edge he will decide according to

states. With probability;;, = & the edge is in the the value ofg. _
“UP” state wherew, "= 1, and with probability When the traveler moves to vertéxwithout any a
353! ’

priori knowledge about the state of the edge;’) the

¢, = (1—¢&y) the edée is in the “DOWN” state where : : : . )
73 o . __expected cost of his routing policy assuming one trial to
w? ., = 10000. The traveler can obtain information T S
(4.3") . . obtain information is:
about the state of the edde, ;') only when traversing
the edge(s, s), with a topology probability off'(i,s) =  C(s,t, {X})El) = 2+ &[&uCF (st {1})ki] + (6)
&r. The gossip probability of this network is: (1 — &)C* (s, t, {10000})1;] +
P({X}’{X}aT(l’s)) =1 *fT (1 _gT)C*(37t7 {X})kj
P({X}7{1}7T<i73)) = §T = 2+£T[3§U+1001(1 *éU)] +
P({X}, {10000}, T(i,s)) = & (1 =&r)C (5,6, { X}
P{1}, {1}, T(,s) = 1 When the traveler routing policy is to cycle between
P({10000}, {10000}, T(i,s)) = 1 verticess and: until he obtains information, the expected
ElseV w0 € V. P(I(u),I(v),T(u,v)) = 0 number of cycles he will need is/ér. Therefore

The traveler has to choose between different travel C(s,t,{X})i =2(1/&r) + 3&y + 1001(1 — &y)
options: @) The “safe” path through verteXx which For the above example there is a threshold topological
guarantee a cost ab01 or; b) The “risky™ path through probability, &, such that forg; > &
vertex j with cost that depends on the state of edge . .

(4,7"), either 10002 or 3 org) Travel to vertex;, obtain C (s, 6, AX i < C7 (5,8, {X })ij (7)
information about the status of eddg, ;') and then, Meaning that for¢r > & the traveler's optimal
routing policy when there is no information is to make a

“The risky policy is taken by a traveler that must reach thgetqr through node until it obtains information about
destination at some specific time (for example to catch a plane th ?

leaves in 10 time units). If not there by that time the traveler caltﬁe state of the StOChaStiC_ edge. In .thiS paper we call
less about the path cost (anyway he needs to reschedule). the path{s, i, s} anInformation Gathering LoogIGL).



END

IIl. THE ROUTING ALGORITHM

A. Solution approach

=4
>

The problem of finding the optimal routing in gos-
sip networks belongs to the class of online decisions
problems. In these problems an agent is faced with
the opportunity of influencing the behaviors of a prob-
abilistic system as it evolve. At each step the agent
- receives information about the system state and per-
ppmaniy T 0% d forms an action accordingly. His goal is to choose a
_ _ _ _sequence of actions which causes the system to perform
Fig. 2. The relation between the "UP" and gossip probabilly yiima 1y with respect to some predetermine criteria.
ties for differentw; ) values. The area above the line is where ) .
C*(s,t,{X}); < C*(s.t,{X})x; and the traveler will cycle for DU€ t0 the stochastic nature of the system decisions
information must anticipate the costs associated with future system
states. In the literature such problems can be found
under the topics ofMarkov Decision Processel0],
stochastic programming [21] and optimal control [22].

Similar to other online decisions problems, we solve the

Topology Probability
o
3 o

w(i,s)=100

0.

Topological Probability{r) I(s) next hop

> &o {X} i
> &o {1} j problem of optimal routing in gossip networks using
2 &o {10000} k dynamic programming and in general share the same
zgg {{)1? 3‘ "curse of dimensionality” [23], which lead to intractable
< & {10000} L solution. What is unique about our model is the way
the agents learn about the state of the network. An
TABLE | optimal policy in gossip networks needs to seek the
ROUTING TABLE OF THE SOURCE VERTEXs. THE VALUE OF o ISk Optimized balance between the path cost and the cost of
OR j ACCORDING TO THE VALUE OF&y. gathering information. For example, the optimal policy

might direct the agent to a path with higher cost but

with higher probability to gather important information.

This policy will reduce the agent’s total expected cost.
Fig. 2 illustrates this by plotting the equilibrium line ofYnlike most of the online decisions problems, in gossip
Eq. (7) for different values ofu ). The area above networks decisions must anticipate both the edge costs
the line is where the inequality holds and the traveler @d the information gathering opportunities associated
making a detour to gather information. The minimum d¥ith future system states. It is well known throughout

the plots in Fig. 2 is when Eq. 5 and Eq. 4 are equéhe online decision problem literature that information
for w(; ;) at & = 0.90028 in this example. pays off, in our algorithm we were able to quantify the

The optimal routing policy for a traveler that starts offPortance of information. _ _
vertex s is outlined in the EXAMPLEPOLICY below. The optimal routing policy in gossip networks is the

And the corresponding routing table for source verex©"€ With the minimum expected cost from source to
is outlined in Table 1. destination for a given information vector. Next we will

show how one can calculate the expected cost of a

EXAMPLE _POLICY routing policy in the network, in the next subsection we
will introduce an algorithm that uses these calculations
IF &r > & to find the optimal routing policy to a destination.
WHILE I = {X} cycle in the path{s, i, s} A traveler starts his journey from vertexwith infor-
IFI={1} mation vector/(s) and wishes to reach vertexDuring
Then take the paths, j, 7, t} his journey, there is a probability that he will learn,
ELSE IF I = {10000} through gossiping, about the states of the stochastic
Then take the paths, k,t} edges and accordingly update his information ve£tey.
ELSE IFI = {X} At every vertexr € V he reaches, the traveler makes

Then take the patmin({s, j,j’,t}, {s, k,t}) a routing decision, based on his updated information



vector. The expected cost of a routing policy between

a source vertex;, and a destination vertex, through a [ Algorithm GOSSIP_DP(G,w, T, s,t)

neighbor vertexr, is: < Initialize the routing tabless-
C(s,1,1(5))r = b (s )+ @ | el t
Do 1meB((s) (s PUI(8), (1), T(s,7)) - QUI(r)) 3 Cont ([_’fr]ﬂeH PN s] =
- C(r,t,I(r)) 4. for eachu € V \ ¢

The weight of edges,r) is known and its value is | ° for k=1t01
Wspy- B(I(s),(s,7)) is the set of all the possible infor- | 6. DD[u, s3] < 00; PN[u, ] < NIL
mation vectord/ (r) of the traveler when reaching vertex | << Main Loop>>
r, assuming that at vertexit has the information vector | 7- While Cont =true
I(s). P(I(s),I(r),T(r,s)) is the gossip probability that | 8. Cont —false
the information vector will change froni(s) into I(r) 9. foreachec F¥
on the edge(s,r). Q(I(r)) is the a priori probability | 10.  if G.RELAX(e) then Cont —true

that the networkG is in a state corresponding to the 11. end
information inI(r). < Relax the entry for the edge-

12. function G_RELAX( e)

B. Dynamic Programming Algorithm 13 u « Source(e);v — Destination(e)
14.  Relazr false

In this section we present the GOSSIIP algorithm 15. for k=1Tol

that builds the optimal routing tables for gossip network, 16 tempDD «— w4
: e

the algorithm is outlined in Fig. 3. A formal proof of the Zz _ T_PRB(sp, $m) - DD, 8]

algorithm correctness is provided below in section IlI-D.| 14 if IS”BI[M si] — tempDD > ¢ then
The optimal routing policy from vertex to vertex 18. DDlu, sy] — tempDD

t in the gossip networks;*(s,t, I(s)), is the one that 19. PN[u:sk] —w

minimizes the expression in Eq. 8. Namely, the one that 4 Relax «—true

selects the policy with the smallest expected cost. Thus, 51  ext &

we can write the following dynamic program: 22 return (Rela)

C*(s,t,1(s)) = m}?{w(f g}) + (9) 23. end function
reNs )

< The transition probabilitys, — s, >

> P(I(s),I(r), T(s,r)) 24. function T_PRB(s, Sm)
I(r)eB((s),(s,r)) 25. P < prob. to move froms; to s,, one
CQUI(r)) - C*(r,t, I(r))} 26. () < prob. of the network to be im,,
27. return(P - Q)

where \; is the group of neighbors of vertek and 28. end function

wgsg) is the weight of the edgés, ) assuming that the

information state before i$(s). When the information
vector contains information about the state of vertésig. 3. The GOSSIEDP algorithm.
(s,r) the weight is knownp, in all other cases we take
the weight to be the expected weight, ,, over all the
states according to the value bfs).

TBL() TBL()

In Bellman-Ford’s dynamic programming algorithm v oo | en w| oo | en
for deterministic shortest path [1] one finds for each ver-

tex the shortest path to a destination. In gossip networks,

using the algorithm GOSSIPP in Fig. 3, we find for |

each vertex the shortest path for each possible state of

the vertex’s information vectof(-).

Specifically, for each vertex. € V' we keep a table,
TBL[ul], (see Fig. 4) that has rows ( is defined in @ © @
Eq. 1 or Eg. 2 according of the model in use). Each row
holds t_he '_nformatlon VeCtor_State’f(E I) the distance Fig. 4. The relaxation process for one state of one edge.
to destination, DD) and a pointer to next vertexP(V).




The first steps of the GOSSIPP, lines 1 to 6, initialize discussion the information gathering loop has two edges,
this data structure. the first with the cost of.;, the second with the cost of

In the main loop of the algorithm, lines 7 to 11, we.», the total costs of the loop i = L; + Ly. When we
iterate over all the edges of the network and relax eathvel on the second edge of the loop the probability to
edge. This loop continues while at least one of the edggather information i = P({X},{0/1},7(i,s)). The
was relaxed. optimal cost from source to destinationt when the

In the function GRELAX we relax for a specific traveler has information/(s) # {X}) is Z and without
edge all the possible information vectors. The relaxatianformation ((s) = {X}) is Y. Following the dynamic
processes for each ed@e, v) and for each information programming iterations, when vertexis £ hops from

vector statesy, lines 16 to 20 is: the destination the optimal cost is
DD[u,sg] = wpp,\+ (10) DD*[s,{X}] = Y
DD"i, {X}] = oo

!
> P(sk, $m, T(1,0))Q(8m) DD[v, 5]
m=1 The optimal cost from vertekto destination is infinity
For each source vertex state,, we check what due to the fact that fok hops there is no path fromto
is the probability that during the travel on the edgdestination. Moving to the next iteration of the dynamic
(u,v) the states; will change intos,,, (m = 1...1). programming and adding one hop we get for the optimal
Each gossip probability’(s, sm, T'(u,v)) is multiplied cost withk + 1 hops
by the destination vertex distand@Djv, s,,,] and the
probability Q(s,) that the network will be in state,,. DD '[s,{X}] = Y
The iterations stop when for all edges and informatioW D*1[i, {X}] = Lo+&r-Z + (1 —&p)DDF[s, {X}]
vectors the difference between iterations weights is less = Lotér-Z+(1-&)Y
than e, as shown in line 17. In the classical algorithm
¢ = 0, in our caser is a small positive constant. This The costs ofo D*+1[i, { X }] was calculated using Eq.
condition comes to overcome a situation that our netwofly  After adding another hop to the optimal cost
contains an information gathering loops as we saw in the

example section II-D above and illustrates in section lll-  ppk+2 [s,{X}] = Li+ DDk'H[i, {X}]
C below. The parameteris chosen so that < wf;m) = Liér - Z+(1—¢Ep)Y

for all edges ,(u,v) € F, and information statesy, €
I(s), so that it will come into play only when there are

information gathering loops. For a complete discussionIn the (k 4 9) iteration the dvnamic proarammin
of the stoping conditions see the proof of the algorithn}] e (k+ ). eration the dynamic programming
choose to cycle in the loop instead of traveling directly

correctness in section IlI-D. -
The algorithm GOSSIPP is used to produce theto destlnatlon_. For that to happened the expected cost
. . A . of the path with a loop should be smaller than the path
optimal routing policy in gossip networks by the fol-". .
lowing steps: Before the traveler starts his journey k\{gthout a loop, and mathematically
builds his optimal routing policy by ca'lculatir{ﬁBL['_] DD*2[s,{X}] < Y
for all the vertices of the network using the algorithm
GOSSIPDP. During his journey the traveler updates Ltér-Z+(1-&)Y < Y
his information vector and navigates on the network L < &Y -2) (11)
using the information if"BL[-|. Every time the traveler
reaches a new vertexc V with information vector state ~ The weight of the loopX) should be smaller than the
sk = I(u) he looks for the next vertex itPN[u,s;]. Ccosts of expected gain from the information in the loop
Later in Section V, we use the GOSSIFP to derive ({r(Y — Z)). After adding another hop we receive

our numerical analysis.

DD*2[i {X}] = Lo+&r-Z4+(1—&0)Y

DD*3[s,{X}] = L+ DD*?2[i {X}]
C. GOSSIPDP Execution Example = L+&r- 2+ (=&)Y
DD*3[i {X}] = Lo+¢&p-Z+ (1—&p)DDM2 s {X)]

Next we will explore the behavior of the algorithm
GOSSIPDP on a network with an information gathering = Lotér-Z
loop, like the one presented in Fig. 1. In the following + 1—=¢&r)(L+&r-Z+(1=&p)Y)



In the general case, for a path with+ 2n + 1 hops our algorithm and the classical one. The first difference
we receive lays in the fact that in GOSSIPP there are several

k+-2n kt2n - of possible information states for each vertex compared

bb [, {X3] L+ DD [ {X3] to one deterministic state in the classical Bellman-Ford

L+&r-Z algorithm. Another major difference lays in the fact that

+ (1-¢&p)[L+&r-2 in GOSSIPDP network loops can turn to be beneficial

+ =&)L+ &r-2) as illustrated in section I1I-C. . o

4 g (l—fT)"_l(L+§T~Z) Consider the GOSSIPP algorithm in Fig. 3 and

assume the following:

+ (1-&n)"Y] () There is at least one path from each veriex V
nl . and states;, € I(-) to destinatiory.

= (L+ér-2)) (=& (i) There are no negative weight cycles in the graph
=0

+ (=&)Y Denote byT'BL'[v, s;] the routing tables of vertex

= (L+&r-2)((1—(1—&)" 1) /&with information vectors;, when the length of the path

+ (=&)Y from the source vertex to the destination vertek has

) ) at mosti hops. The relaxation presented in Eq. 10 can
For each two hops we add in the dynamic prografia \yritten as

ming the optimal path adds another cycle. The endless - L
cycling is due to the fact that each cycle reduce the DD"u, si] = Inuin[wf{j,u) +DD(’M’Z)}
optimal cost. However, the costs of the optimal policy

with endless cycling converge, Where we used the initializatio’v i , V s, €

I(-) DD'[t,s;] = 0 and DD, is the expected weight
lim DD*[s {X}|=L/ér + Z (12) over all the possible information vector states

n—oo

One should notice that although the optimal policy in _ , ! ,
this case instruct the traveler to cycle endlessly whel D) = Z P(sg, 55, T(v,u))Q(s;)DD'[u, s;] (13)
he has no information about the network state, with si=1
probability one the traveler will not cycle endlessly. In the following we define aiteration as preforming
When the traveler follows this policy he will eventuallythe relaxation process for all the possible edges £
gather information and then uses suitable policy to tlad for each edge for all its possible information states,
destination. sp € I(-).

In summary, when the optimal policy has cycles, We begin our algorithm correctness proof with three
following the condition in Eq. 11, consecutive iterationkemmas. The first, Lemma 3.1, proves that in each iter-
of the dynamic programming continues to instruct thation the algorithm’s routing tables contain the optimal
optimal path to cycle, where each iteration decreases fi@icy. The second, Lemma 3.2, and the third, Lemma
optimal policy costs, this value converge I9¢{r + Z 3.3, prove that the algorithm terminates with the optimal
in our example. polices. The second lemma (3.2) in for the case of a

If we choose some and stop the dynamic program-network without information gathering loops and the
ming when the cost improvement between consecutitrérd lemma (3.3) with them.
iterations is smaller than, in our example when Lemma 3.1 (GOSSIPP Optimal Policy): The val-

ket k+it2 ues of the routing table§d'BL'[v,s;] generated by
0= DD™H[s, {X}] = DD s {X}] <€ the GOSSIPDP algorithm conta[in th]e optimal policy
then we are certain that the dynamic programmingformation forv, s, andi.
algorithm stops after a finite number of steps with a  Proof:
policy which is optimal or at most away from optimal. ~ We prove by induction on the maximum number of

A formal proof is given in the next section. hops in a policy path.
For the induction base, we observe that the routing
D. GOSSIPDP Correctness tables for paths with a length of one edge is
The proof that the algorithm GOSSIPP in Fig. 3 DD, 5] = wfk : V veV.s,el
9 o vt 9

provides the optimal solution for routing in gossip net- '
works is a direct extension of a deterministic Bellman- For all vertexu < V' that are not neighbors of the
Ford proof [1]. There are two main differences betweefestinationt we denotew;’ ;) = co. S0 DD'[v, s4] is
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indeed equal to the optimal policy fromto ¢ for paths that it doesn’t terminate too soon - running the algorithm
with length < 1. further will not reduce the optimal cost.

Suppose thal'BL'[v, s;] contain the optimal policy ~For a given information state adding hops to the
with paths that contain at moshops from allv € V. and optimal policy could reduces its cost, until the optimal
for all s, € I. We will now show thatl' BL**![v, s;], policy contains at most all the edges of the network.
we construct in the GOSSIBP algorithm, contain the Adding more hops in this situation can only increases
optimal policy for paths that contain at mast 1 hops the policy costs under the assumption that there are no
from all v € V and for all s, € I. Indeed, an optimal negative weight loops in the network. Thus at some
policy from v to ¢ either consists of less thanr+ 1 hops, point the termination condition, line 17 of the algorithm
in this casel' BL'[v, s;] contains the optimal policy, or GOSSIPDP, will come into effect and terminates the al-
else it consists of+1 hops with the first beingv, «) for gorithm. In the iterations notation this condition becomes
someu, followed by ani-edge policy fromu to ¢t. The
latter policy must be the optimal policy to reatHirom VoeVs,ell()

u with a length shorter than+ 1 hops (otherwise we 0 < DD" v, sg] — DD"[v, s3] < € (16)
could use the optimal policy with at mostand obtain

a better policy for at most+ 1). Denoting the cost of The algorithm terminates with the optimal policies and

. . . ) t before due to the fact that the stoping condition in

the optimal policy that contains at most- 1 hops by "° ) . :

OP”? policy * PS by Eq. 16 does not come into effect until the optimal path
' ' o contains the optimal number of hops.

OP"™' = min{DD"[v, s3], m&n(wf{j’u) +DDy,n)}(14)  The value ofe is chosen such that

Using the induction hypopiesis, we have V (u,v) € E;sp € I(r) ek w(sgm
DD™[v,s;] < DD™ v, s;] for all m < i. The ) ) ) )
set of policies that has at maximum hops contains In each iteration until all pptlmal paths are found, at
the corresponding set of polices that has at maximdﬁf"St one vertex decreases its current cost in the order of

m — 1 hops. Therefore an edge weight. _
Thus when there are no IGL in the network the algo-

DD 1w, 5] = Inuin[wfg,u)JerDl(fj)] (15) rithm GOSSIPDP terminates after at moft | iterations
and when it terminates the routing tables contain the

. Sk S~t—1,8k
= mum[w + DDy } optimal polices.

(v,u)

= DD'[v, s u
Lemma 3.3 (GOSSIPP Termination With IGL):
Furthermore, we have for ali € V" ands;, € I The algorithm GOSSIPP terminates after at most
DD%[v, s3] < DDY[v, 5] = wfﬁ y= wf’“ u)+DDi[t,sk] j = f(e) iterations, when thereare information
h gathering loops in the network. At termination
Thus from Eq. 14 we obtain PNi|v, s;,] contains the optimal policies up to a factor
OP v, 8] = min{DDi[v,sk],min(wfk )—i-D_Déf;)ﬂf €
‘ u W Proof:
= min{DD'[v, s}, DD [v, 5]} Following Lemma 3.2 here we need to demonstrate

the effect of adding IGLs to the network. We illustrated
in section IlI-C that when adding an IGL to a network
at some point the optimal policy directs the traveller to
cycle. Each cycle reduces the policy costs further due
Completing the induction proof. B to the increase in the probability to gather information.
Lemma 3.2 (GOSSIPP Termination Without IGL): Thus if the optimal policy starts to cycle, it will cycle
The algorithm GOSSIB®P terminates aftej < |V| forever. The stoping condition, Eq. 16, ensures that
iterations, when there are information gathering loops the algorithm stops and doesn’t run forever. Because
in the network. At termination® N/[v, s;] contains the the optimal policy is set to cycle forever, stoping the
optimal policies. cycling under the conditions in Eq. 16 doesn’t change
Proof: the optimal policy. However, we stop the cycling and do
In Lemma 3.1 we proved that at any iteration the routot allow the optimal policy costs to converge to its final
ing tables contain the optimal policy for that iterationvalue. Thus the loop can carry an error in the order of
Here we need to prove that the algorithm terminates, andAt most we can havern = |E| loops in the network

In view of Eq. 15,DD"*![v, s;] < DD%[v, s3], this
yields 4 '
OP" v, s;] = DD v, s3]
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thus the overall error i®(m -¢). If we definee’ = ¢-m, of the algorithm under the G-IWC model. The only
we can conclude that at terminatiéhV/ [v, s;,] contains different is that we need to examii¥1p) transfer states
the optimal policies up to a factor ef. m instead ofO(l;) states. According to Eq. Z)(I;) = 2%.
Theorem 3.1 (GOSSIBPP Correctness):.The ]
algorithm GOSSIEDP provides the optimal policy Although the optimal solution to the gossip networks
for gossip networks when there are no informatioproblem is intractable in general, we presented above two
gathering loops (IGLs). When there are IGLs thepecial cases where the optimal solution is polynomial in

algorithm provides an optimale approximation. respect to the network size. In the first case a polynomial

Proof: solution is obtained when the number of stochastic edges

In order to show the GOSSIBP algorithm correct- § is small. The second case is when the number of
ness we need to prove the following realizations in the network is relatively small.

(a) At each iteration the algorithm contains the optimal
policy for that iteration. This was proved in Lemma 3.1.
(b) When the networkdoesn’t contain information IV. Discussion
gathering Ioo.p the algc_)rithm termingtes with the optimg!_ Gossiping and Learning
policy after j < |V/| iterations. This was proved in
Lemma 3.2. In this subsection we will illustrate the importance
(c) When the networlcontain information gathering Of gossiping by comparing the learning rates of the
loop the algorithm terminates with the optimal policy ugossip and non-gossip travelers. We assume the G-
to a factor ofe afterj = f(¢) iterations. This was proved DWC model with 2 possible realizations. When the
in Lemma 3.3. traveler starts his journey he doesn't know what is
m the current network realization € R. Each time he
gathers information about some edge weights he can
_ eliminate zero or more network realizations which are
E. Complexity of G-IWC and G-DWC inconsistent with the obtained weight. Depending on the
Theorem 3.2:In the case there are no informatiometwork weights distribution, the traveler will be able
gathering loops in the network the complexity of théo determine the current realization of the network after
GOSSIPDP algorithm under the G-IWC model isobtaining information about the state of enough edges.
O(nmé (28 +1)°). Since each time the traveler visits a vertex he gathers
Proof: When there is no correlation between thanformation about the state of all the emerging roads
edges weights we must examine all the edge§ £|)); we define information vertices as the set of vertices
for each edge we must examine all the source vertdwe traveler needs to visit in order to find the current
stochastic states((({;)); and for each source vertexnetwork realization, and denote it lay In the following
stochastic state we examine all the destination vertes@sbsection we assume that the traveler doesn't visit a
stochastic state{(I7)), here we assume that the numberertex more than once and that the information vertices
of stochastic states is bounded By Notice however are distributed uniformly at random in the network.
that not all state transfers are possible and actually thene first analyze the non-gossip traveler which we call
number of possible state transfer we need to examin&istep-By-StefSBS) traveler, he receives information
only (23+1)°. The first3+ 1 states are for the transferabout a vertex only when he visits it. The probability
from state{X} to all the available states, the secofid that afteri steps in the network (visiting vertices) the
states are for staying in the same state when the wei@BS traveler already visitegl out of thek information
of the stochastic edge is known. In each state trans{gstices is given by the hypergeometric distribution.
we need to calculate the transfer probabililyand the
a priori probability @, for that we need to examine all ‘ TG ‘ o
stochastic edge® (). In the worst case a vertex had 7.k, ;2 = j) = O where j<k;j<isn
O(|V|) neighbors and the algorithm terminates either !
after repeating for each of the neighbors or when thereThe probability that after visiting vertices the SBS
is no difference between successive iterations. B traveler already visited alk information vertices and
Theorem 3.3:The complexity of the GOSSIPP al- thus found the current network realization is
gorithm under the G-DWC model i9(nmd22%). .
Proof: The complexity of GOSSIPP algorithm (k) (7—k)
(%)

under the G-DWC model is similar to the complexity r(n, ki@ )

where k<i<n
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The expected number of steps the SBS traveler needgrage to visit Qf) vertices of the network to learn its

to take to find allk information vertices is state, the gossip traveler needs to visit o6ljlog(n))

n n(nh of them. In most cases higher learning rate in stochastic
Z iPr(n,k,i;z =k) = Zz z;k networks will result in shortest path to destination. Once
i=k i=k (z) the traveler knows the network edge’s states he can

Normalizing the above expression reduce his path cost, for example by avoiding blocked
() roads.

n s \i—k .l
Dk o Dk 1@ _(n+Dk+n (17)
s G2 X, e 2+k B. Characteristics of traveling in Gossip Networks

= Q) In this section we will discuss the characteristics of

Eq. 17 indicates that the number of steps the SRptimal routing in gossip networks under the proposed
traveler needs to take in order to find the current netwogkhssippp algorithm. For the simplicity of the discus-
realization is proportional to the network size, sion we use the following assumptions: The network

Unlike the SBS traveler that can only gather informas iy the G-IWC model with one stochastic edge. The
tion about one new vertex in each step, the gossip travelgscnastic edge can be either in the “UP” or “DOWN”"
has additionally a probability to receive informationiates. In the “UP” state the stochastic edge weight is
about all the network’s remaining unknown vertices. 18milar to the weight of the deterministic edges, in the
his first step the gossip traveler receives informatioBOWNn state its weight is higher than the weights of
about¢rn vertices and in théth step aboufr(1—¢7)'n  the deterministic edges. The traveler must traverse the
vertices. In each step the gossip traveler has informatigghastic edge on his way from source to destination.
about all the vertices he learned about in his previog§,ce we analyze the parameters that influence routing
steps. Therefore, in théh step the gossip traveler hagnder these assumptions expanding the model to the case

information about (i) vertices: of several stochastic edges with several stochastic states
i—1 ' , is straightforward as we demonstrate in the numerical
g(i) = &r(1—=&rYn=(1-&")n analysis in the next section.
Jj=0 A traveler in the gossip networks that is navigating

where&r =1 — &7 using our optimal routing policy can be viewed as op-

Obviously, when the traveler gathers informatiofrating in three different regimes: *WIN", “LOSE’, and
about alln, network’s vertices he has information aboutNEUTRAL". In the "WIN" regime the traveler reduces
all k information vertices and knows the network cufiS travel cost by gossiping. In tHJEUTRAL” regime
rent realization. Thus, an upper bound on the expect%*ata'_n'ng information doesn’t increase or dgcrease the
number of steps the gossip traveler needs to take is BRSSP raveler's path cost. In tHeOSE” regime ob-
number of steps needed to gather information about t3jning information actually increases the traveler path

the network vertices. Since the number of vertices §9St: The operating regime is a result of the following
discrete we are looking for the step numbersuch as parameters: the magnitude of the difference between
the values of the actual weight of the stochastic edges

g(r+1) —g(r) =n&" — &) <1 (w.) and their expected weightss{z), the values of
Solving the above equation yield the topology probability {r), and the magnitude _of the
difference between the values of the stochastic edges
_M (18) actual state §4) and a priori probability to be in the
In(1 —&r) “UP” state ¢y) (see Table Il for notation summary).
In practice in the gossip modelcould be even smaller Next we will explain the influence of each parameter.
since the gossip traveler gather information by both The magnitude of the difference between the traveler’s
gossiping and visiting vertices, however in the abowe priori knowledge sg) and the actual weight of the
analysis we took into account only gossiping. Thustochastic edgesut), denoted byA, = |wsg — Wel,
Eqg. 18, is an upper bound on the expected number ddtermines the influence of obtaining information on the
steps the gossip traveler needs to take in order to fitrdveler’s path cost. Whewgg and w. are similar, a
the current network realization. Comparing Eqg. 18, tgossip traveler will not have an advantage over a non-
the expected number of steps the SBS traveler needgitssip traveler, they both know a priori the “correct”
take, Eqg. 17, we conclude that the outcome of gossipistpchastic state. However, above some critical difference,
is higher learning rate. While the SBS traveler needs dn, > A obtaining information will decrease the
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Start Learn Fully Known

Fig. 5. The different possible paths a traveler can have for differeity. 6. The regime state diagram determines the influence of
topology probabilities. (a) No gossiping, (b) Maximal gossiping, angossiping on routing in different network characteristics
(c) In between.

traveler's path cost. For example, whegg “tells” the

travelers that a stochastic edges is in the “UP” state ajp more efficient the learning phase will be. Efficient
the actual state is “DOWN” a non-gossip traveler Magaming means that the traveler is directed toward the
include this edge in its path while a gossip traveler W”‘lright” direction by giving higher relative weight to the
reduce his path cost by bypassing it in advance. Thgyht" pranch. When there is a relatively large difference
value of A¢x is determined by the difference that Wi”betweengU and ¢4 the branches in the learning phase
cause the non-gossip traveler to take the wrong pajf direct the traveler to the “wrong” direction and as a
meaning that he will bypass the stochastic edge Whegyit the cost of his policy will increase. For example,
it's “UP” or travels through it when it's “DOWN". when the a priori probability of the stochastic edge to be
Fig. 5 illustrates the different possible types of pathg the “UP” state is smallg ~ 0) the optimal policy

a traveler can have for different values of topology direct the gossip traveler to branches that detour the
probability €r). When there is no gossiping (&) th&igchastic edge. When the stochastic edge is actually in
probability to receive information is zero thus the optimahe “DOWN” state this decision is beneficial, however
policy is determined a priori before the start of th§nen the actual state of the stochastic edge is “UP” the

journey and has no recourse. In this case the optimglcision will maximize the gossip traveler learning phase
policy is the one that minimize the expected weightgng his total traveling cost.

When &7 is maximal (b) the traveler learns about the
state of all the stochastic edges on the traversal of theThe operating regime that the traveler experiences is
first edge(s, ), and then travels to the destinatiowith determined by the combined values of the parameters,
full knowledge abouti. and therefore without changingA,,, {7, andA¢. Fig. 6 is a state diagram that illustrates
his course. Whegr is in between (c) the traveler’s paththe influence of the parameters on the network regime.
is composed of three phases, the initial phase is unvhen A, is below some threshold)c, the a priori
the traveler obtains any information about the state kfiowledge of the network state is close enough to the
the stochastic edges. Then, in the learning phase, thee value, and thus increasing the path length to obtain
traveler may recalculate and recourse his path accordinfprmation can not benefit the gossip traveler. As a
to the updated information vector — his optimal policy isesults, in this case, the network can be either in the
a collection of different branches. When the traveler hASEUTRAL” or “LOSE” regimes. The “LOSE” regime
full information abouts,, at some vertex, he travels to is obtained when the learning phase is relatively large
the destination without changing his course. The high@ncrease inA,), however a larger topology probability
&r the quicker the gossip traveler will learn about thshortens the learning phase and pushes the network into
state of the network and therefore minimize the learninige “NEUTRAL” regime. The ultimate network regime is
phase in his travel which leads to decrease in the polidgtermined by the relation between these two parameters
cost. &, and Ag. Similarly, whenA,, is above the threshold,
According to the optimal policy, stated in Eq. 9, oné\x, gossiping helps the gossip traveler to reduce his
of the parameters that determines the relative weight mdlicy costs. The network can be either in the “WIN” or
each branch in the path is the a priori probability of thttNEUTRAL" regimes according to the relation between
network to be in certain stochastic state, denoted here andA. In the next section, we will demonstrate the
by . The closeréy is to {4 (small A¢ = [§y — £4]) above discussion using simulation results.
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Notation Description
| " G D

wp : Weights of the deterministic edges
WSE: Expected weights of the stochastic edges
We Actual weight of the stochastic edges
Awi ‘aJSE — we|
Ac: Critical value of A,
wsp - Weights of the stochastic edges in “DOWN”

state
éa: Stochastic edges actual state
ér Topology probability @
&u A priori probability of the stochastic edges to

be in the “UP” state ) ) ) ) )
Ag [N Fig. 7. A 4x4 grid network used in the simulations. The dashed
O Expected cost of the optimal policy lines are stochastic edges with probabifjty to be in the “UP” state.
Or: Relative expected cost) at some topology Larger grids had the same structure.

probability; 0z (¢7)/0£(0)
0a: The average of relative expectetk( over the

whole range ofr
Configuration: A set of values for the above parameters

Operation Regime: Determined by the network configuration. SeIeCted_ exactly like t_he de‘f‘ermmlsgc edges. _Whe_n the
Can be either “WIN", “NEUTRAL" or Stochastic edges are in the “DOWN?” state their weights

“LOSE” are set to different values as explain further below.
The stochastic edges were selected such that they will

TABLE Il have a significant influence on the optimal policy to the

NOTATION SUMMARY destination vertex. For the same reason, the weight of

the deterministic edge that is adjacent twas set to be
higher than the other deterministic edges.

V. NUMERICAL ANALYSIS The following list details the range of values we used

The main purpose of the simulations was to investiga'pe the simulation:

the influence of gossiping on the traveler’s optimal policaterministic weight{p) : Uniformly at random in
cost under the different parameters used in the gossip [1,100].

netwgrks. The performance and behavior of f[he propos€gchastic “DOWN” weight§sp) : In each configura-
algorithm on the gossip networks are examined through 41 all stochastic edges had the same weight which

numerical experiments on various grid network configu- \\a< selected uniformly at random in [0,800].

rations with random generated yveights under t_he G"_W%pology probability £7) : In each configuration the
model. In each network configuration the simulation = ¢5me value of was set to all the edges in the

derived results comparing the traveler’s expected optimal  anwvork. The range of tested values was in [0,1].
policy cost for different topology probabilities. A priori probability ;) : Different values in the range
First, for each randomly generated network configura- [0,1] were used to test the influence &f. In each

tion the optimal routing policy tables are calculated using configuration all stochastic edges were set to the
the GOSSIPDP algorithm. Then, using the calculated  g5me value.

routing tables the simulation computes the expectedchastic actual staté/) : The actual state of all three
optimal policy cost from each vertex to the destination.  ¢ychastic edges was set equally to either “UP” or
For notation of the parameters we use see Table II. “DOWN?.

Network structure (Grid Size) Two different grid net-
A. Simulation design works were used with sizes of 4 4 and 8x 8.

The simulation was conducted on fully connected grid
networks representing, for example, the road structurelOtally we tested1(¢r) - 9(wsp) - 11(§v) - 2(€a) =

in many urban areas. Fig. 7 shows such a network fot98 different configuration for each grid size.

a 4x4 grid. The weights of the different deterministic In order to remove the influence of specific random
edges were selected uniformly at random. Three speciiietwork weights the same set of experiments were re-
edges in the grid were chosen to be stochastic. Tpeated with the same network configuration for ten dif-
stochastic edges could be in two states, with probabilitgrent random seeds. The analyzed results are averaged
&y inthe “UP” state, then the edge weights are randombyer the ten different runs.
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Fig. 8. The influence of topology probabilit¥£) on path costs Fig. 9. The influence of a priory probability) on path costsir)
(6r) in different a priory probabilities ). Simulation was done in different gossip probabilitiest¢). The different graphs are drawn
with grid size = 4x 4, £4 = “DOWN", wsp = 700,&y =0, 0.7, for & = 0,0.2,0.4,0.6,0.8,and 1. Simulation was done with grid
and 0.9. size = 4,64 = "“DOWN?", and wsp = 600.

B. Performance Measurement i ) -
optimal policy cost. Whem\,, = A = 0 obtaining

All:ter th(_a rou;[]lgé; tablesdwce:re %U”t ]for a glverr: NEWOrkstormation will not help the gossip traveler, both trav-
configuration theExpected Cos(fg) from each vertex elers are directed in the “right” direction and the gossip

to the destination was calculated is calculated by traveler has a minimal learning phase, as a result the

following all the possible paths from source to destinf?fetwOrk operates in the “NEUTRAL" regime. When

_tion assgming that the traveler starts his travel _with %%:0_7 obtaining information increases the travelers
information I = {X, X, X}. The paths were We'ghtedoptimal policy cost — the network is in the “LOSE”

according to their probability to occur. The results ar gime. In this casessp is such that the non-gossip
presented using the valueRelative Expected Coflz),  yqyeler bypass the stochastic edges, which is justified

where 05 (T) since £4="DOWN?". Therefore, the non-gossip traveler
Or(ér) = m knows the “right” direction. Obtaining information only

o BT , puzzles the gossip traveler due fq that implies that

When §r = 1 gossiping doesn’t change the gossifhe |earning phase will be relatively large, as a result
travelers 0z and we are in the "NEUTRAL" regime. i g4ssip traveler will increase his optimal policy cost.
Forfr < 1 obtaining information leads to a decrease ifcrease in the; leads to shorter learning phase which
O — the “WIN” regime. In the case dfz > 1 obtaining o545 to smallef;. When¢;;=0.9 the network is in the
mformat_lon leads to an increase i, coqtradlctlng “WIN" regime. In this caseA, > Ac, thus the non-
the desirable outcome — the "LOSE” regime. We aig,sin traveler roam in the “wrong” direction. Increase
interested in the value ofz and less in the value ofj, ¢ "jeads to reduce iy since the gossip traveler
O since we are mainly interested in the influence @fyishes his learning phase quicker. Fig. 8 also illustrates
obtaining information on the performance of a givefhat the magnitude of the “WIN” effect is substantial
network configuration. larger than the “LOSE” effect.

Some of our results are presented using the valueﬁzig 9 depicts the relation betweegy and 65 for
. R

of 684 which is theAverageof 0r over all the differ- .

) . ql(fferent &r o values. The curves move between three
ent measured gossip probabilities for a given network . : )
configuration regimes. Wher¢y is below a threshold value, an in-

' crease in¢y doesn’t changdyr — the network is in the

“NEUTRAL” regime. Then, an increase ify; leads to
an increase oflp and the network is in the “LOSE”
The results presented in Fig. 8 demonstrates the roégime. Further increase g@f; moves the network into
of obtaining information in different network config-the “WIN” regime. Comparing the graphs for different
urations. In this exampl€, ="DOWN?”, thus when &7 reveals that in the “NEUTRAL” regime the behavior
£u=0 obtaining information doesn’t change the travelersf all the graphs is almost identical. In the “LOSE”

C. Results Discussion
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Averaged Path Costs at Different Network

Configurations for 4 x 4 Grid 0 4. Then, with the increase ifi; the non-gossip traveler
116573 6575 085l 072 0830 0585 0515 0476 _tr|es to trgvel_through the stochastic edges which Iegds to
0.9 0973 0.973 0.897 0.790 0.728 0.678 0.709 0.653 increase in h|S path cost and decreaséA”Of the gOSS|p
0.8] 0973 0972 0914 0.847 0814 0.739 0.774 0.868 .
07| 0973 0976 0927 0883 0816 o0sss oovofmmord traveler that bypass the stochastic edge. The move from
0.6] 0973 0.994 0975 0.863 0964 0958/ 1.049 1.044 “ ” [0 ” H H
. 0.988 0985 0972 0.935 0.966/ 1.030 1.029 1.029 the LOSE to WIN reglme 1S nOt due to the faCt that
04| 0988 0993 0966 0.980fOI2 1012 1012 12012 the gossip traveler decreases his path cost, he actually

ool 10007000 ool 100: 1001 100t 1oos 1o increases it. However the non-gossip traveler increases
0.1 1.000 1.000  1.000{71.0011.001°1,000 51,000 51001 his path cost even more due to the fact that now he
0f 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .
0 100 200 300 400 500 600 700 doesn’t bypass the stochastic edges.
"DOWN" Weight 4) At higher wgp (300—), with the increase invgsp
10, 0s for dif | o @ and ~ there is an increase in the size of the “LOSE” regime.
\lj\ll?‘l.ité .ceIIsA r:pr)rels:rrl(tesmtk\ll: lﬂa?lﬁ” fé)gi%(e?x;?a? nthgeU“l(\lYE?J)'(llsléz)AL”The. “LOSE” regime ends when the non-gossm travgler
regime and darker gray the “LOSE” regime. This simulation wagec'deS to travel through the stochastic edges. This is
done with the following parameters: grid size =&; = “DOWN”; happening when hisgp reaches~ 200 which is the
04 was averaged ovefr = 0 to 1. cost of bypassing the stochastic edges in this example.
5) At higher wsp (300—), in the “LOSE” regime, the
value offl 4 increases with the increasedn and doesn’t
regime, thedr peak is reached gt = 0.2. In the “WIN" change with the increase insp. This phenomenon is
regime increase igr leads to a decrease #y. due to the parametek,, at higher¢; there is a higher
In this graph the network is in the “NEUTRAL’ probability to paths that lead to the “wrong” direction.
regime whenuvsg andw, are similar and the difference6) In the “WIN” regime, an increase iwgp leads to a
betweené, and&y is small. In the “LOSE” regime the decrease irf4. In higherwsp the non-gossip traveler
increase inA; leads to a longer learning phase and agavels through the stochastic edges that have increased
a result an increase ifiz. In the “WIN” regime the weights, therefore the gossip traveler can reduce his path
increase inA, increases the learning phase while an irgost to a larger extent.
crease irgr decreases it, however the non-gossip travel@y In the “WIN” regime, an increase igy leads to
moves towards the stochastic edge which increases &iglecrease 4. The change here is more moderate
6k significantly compare to thé of the gossip traveler. and is the result of two parameters. On the one hand,
As a result, taking both parameters into account, thgth the increase iy the difference betweensyz and
relative optimal policy cost of the gossip travelér, . is increased which leads to an increase in the non-
is reduced. gossip traveler path cost and a decreasé4nOn the
Fig. 10 illustrates the relation betwedp andwsp other hand, an increase &f leads to an increase in the
for averagedsr when the grid size is 4 X 4. Here ardearning phase which leads to the opposite result of an
several observations from the results: increase Y. The outcome of the two parameters is a
1) When &y is zero, wsg is equal towgsp, in this total decrease il 4.
case the traveler knows a prioti, and there is no Fig. 10 illustrates that for this network configuration
benefit in obtaining information — the network is in thgossiping helps in more than half of the cases. In
“NEUTRAL” regime. addition, the gain from gossiping is far greater, as much
2) At lower wgp (0 — 200) increase of{y leads as 50% reduction of the expected path cost, compare to
the network into the “WIN” regime. In this case thehe possible loss which is only up to 7%. However, the
stochastic edges weights is similar to the weights &dct that one can lose from trying to obtain information
the deterministic edges, therefore information helps thiéctates the need to understand gossip networks behavior.
gossip traveler to find the optimal path in the network Fig. 11 illustrates that the “LOSE” regime is less
and decrease hi$4 only moderately. significant in larger grid sizes. The reason is that in a
3) At higher wgp (300—) an increase ofy leads the small grid the number of steps to the destination is small
network from the “NEUTRAL” to the “LOSE” and then therefore even one wrong step can lead to a significant
to the “WIN” regime. In the “NEUTRAL” and “LOSE” increase in the path cost. In larger networks, where the
regimes the non-gossip traveler bypass the stochasmber of steps is relatively large, the influence of wrong
tic edges, therefore in this case obtaining informatianoves is smaller. In real life traffic applications the
doesn't help the gossip traveler. Wh&n > 0, obtaining smaller grid size behavior is more likely due to the small
information actually increases the learning phase duertomber of options the traveler have especially when the
relatively largeA, and thus there is an increase in thaetwork is in the “DOWN?” state, ie. during congestion.

A-priory "UP"
o
3]
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1] 0.953 0994 0939 0.839 0.739 0.663 0.603 0.555

09] 0972 0994 0938 0.838 0.756 0.678 0.659 0.607

0.8] 0972 0994 0.936 0.852 0.794 0.754 0.736 0.743

o 0.7] 0972 0994 0.947 0.891 0.849 0.824 0.807 0.892
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possible future direction involves developing general
approximation algorithms that overcome the “curse of
dimensionality” while using the gossip networks unique
properties.

One of the dominant parameters of the GOSBP
algorithm is the topology probability. Future work is
needed to understand the influence of traffic and commu-
nication factors on its value, in particular, the influence
of parameters such as node density, hode velocity, and

radio transmission range.

Fig. 11. 64 for different values ofvsp (X axis) andéy (Y axis).
White cells represents the “WIN” regime, gray the “NEUTRAL”’
regime and darker gray the “LOSE” regime. This simulation was
done with the following parameters: grid size =§; = “DOWN?”;

04 was averaged ovedr = 0 to 1.
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VI. CONCLUSIONS ANDFUTURE WORK

This paper presents and studies a new model f%[]
information gathering in stochastic networks, the gossi
networks. Gossiping could lead to some unusual phgz]
nomena, where the optimal routing policy may direct
travelers to make a detour in order to gather informatio
and minimize their expected path cost. The optima
traveling policy in gossip networks is expressed by 5]
dynamic programming equation. Although the algorithm
that solves the equations, GOS3IP, is intractable in
general, we present two special scenarios where thg
optimal solution is polynomial in respect to the network
size. We analyze the relation between the parameters that
influence gossiping and produce a state diagram that pre-
dicts the network regime. Gossip networks can operaig)
in three regimes, in each regime gossiping has different
effect on the traveler optimal path cost, “WIN” (reduce),!®]
“NEUTRAL” (doesn't change) and “LOSE” (increase).
Numerical studies on gossip grid networks confirm the
regime analysis. The numerical studies illustrate that itf!
the grid networks we study, the "WIN” regime is larger
that the "LOSE” regime, both in size and in magnitude
and that the “LOSE”" regime is more common in smallo]
networks.

[11]

A. Future Work [12]

This research can be continued in several directions.
First, one can study optimal ad-hoc communicatida3]
exchange protocols, best fitted to vehicles traveling at

. . Venieies i
medium or high speeds. A second direction is to examine
optimal routing in gossip networks, e.g., it is interesting
to look at the effect of gossiping in different network
model, such as, time dependent network or modﬂ%
that take into account the interactions between agent
and the macroscopic properties of the system. Another

REFERENCES

D. Bertsekas and R. Gallag®ata networks2nd ed. Prentice-
Hall, 1992.

“Traffic information by monitoring cellular
http://www.appliedgenerics.com.

“Traffic information via FM radio,” http://www.tmcforum.com.
“Traffic information to telematic systems,”
http://www.trafficmaster.net.

A. Ebner and H. Rohling, “A self-organized radio network for
automotive applications,” i€onference Proceedings ITS 2001,
8th World Congress on Intelligent Transportation Systems
Sydney, Australia, October 2001.

R. Morris, J. Jannotti, F. Kaashoek, J. Li, and D. S. J. De Couto,
“CarNet: A scalable ad hoc wireless network system,thie

9th ACM SIGOPS European workshop: Beyond the PC: New
Challenges for the Operating Systekolding, Denmark, Sept.
2000.

“Official charter of Mobile Ad-hoc Networks maintained by the
IETF,” http://www.ietf.org/html.charters/manet-charter.html.

L. Briesemeister, “Group membership and communication in
highly mobile ad hoc networks,” Ph.D. dissertation, School
of Electrical Engineering and Computer Science, Technical
University of Berlin, Germany, Nov. 2001.

S. Pallottino and M. G. Scutél] “Shortest path algorithms
in transportation models: classical and innovative aspects,” in
Equilibrium and Advanced Transportation Modelling. Mar-
cotte and S. Nguyen, Eds. Kluwer, 1998, pp. 245-281.

G. Polychronopoulos and J. Tsitsiklis, “Stochastic shortest path
problems with recourseNetworks vol. 27, pp. 133-143, 1996.
G. Andreatta and L. Romeo, “Stochastic shortest paths with
recourse,”Networks vol. 18, pp. 193-204, 1988.

A. Orda, R. Rom, and M. Sidi, “Minimum delay routing in
stochastic networks [EEE/ACM Transactions on Networking
vol. 1, no. 2, pp. 187-198, 1993.

S. Waller and A. Ziliaskopoulos, “On the online shortest path
problem,” Networks vol. 40, no. 4, pp. 216-227, 2002.

M. E. Ben-Akiva, H. N. Koutsopoulos, R. G. Mishalani, and
Q. Yang, “Simulation laboratory for evaluating dynamic traffic
management systemsJournal of Transportation Engineering
vol. 123, no. 4, pp. 283-289, 1997. [Online]. Available:
http://link.aip.org/link/?QTE/123/283/1

R. Parshani, “Routing in gossip networks,” Master's thesis,
Department of Mathematics and Computer Science, Bar llan
University, Oct. 2004.

networks,”



[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

R.-P. Schafer, K.-U. Thiessenhusen, E. Brockfeld, and P. Wag-
ner, “a traffic information system by means of real-time floating-
car data,” inITS World Congress 200Zhicage, USA, October
11-14.

Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-Based Ad Hoc
Routing,” in IEEE INFOCOM 2002 New York, NY, June 23—
27 2002.

J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-
based protocols for disseminating information in wireless sensor
networks,”Wirel. Netw, vol. 8, no. 2/3, pp. 169-185, 2002.

D. Braginsky and D. Estrin, “Rumor routing algorthim for
sensor networks,” ifProceedings of the 1st ACM international
workshop on Wireless sensor networks and applicaticA€M
Press, 2002, pp. 22-31.

M. PutermanMarkov Decision Processeslohn Wiley & Sons,
1994.

J. Birge and F. Louveauxntroduction to Stochastic Program-
ming Springer-Verlag, 1997.

D. Bertsekas,Dynamic Programming and Optimal Control
2nd ed. Athena Scientific, 2000.

R. Bellman, Adaptive Control Processes: A Guided Tour
Princeton University Press, 1961.

18



