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Abstract

Adding programmability to the interior of the network provides an infrastructure for distributed applications.
Specifically, network management (NM) and control applications require access to and control of network device state.
For example, a routing load balancing application may require access to the routing table, and a congestion avoidance
application may require interface congestion information. There are fundamental problems associated with this in-
teraction that are apparent in current technologies. In this paper, the basic tradeoffs associated with the interaction
between an active process and its environment and presenting ABLE++ as an example architecture is studied. Most
notably, two design tradeoffs, efficiency vs. abstraction and application flexibility vs. security are explored. The ad-
vantages of the architecture by implementing a congestion avoidance algorithm are demonstrated. © 2001 Published

by Elsevier Science B.V.
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1. Introduction

In active networks [14], network elements, such
as routers, are programmable. Code can be sent in-
bound and executed at the router rather than just
at the edge nodes. The rationale behind active
networks is that moving computation from the
network edges to its core facilitates more efficient
use of the network. Many of the suggested appli-
cations [20], such as congestion control and
adaptive routing, require the active code to be
aware of local state information in the router.
When active networks are used for network man-
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agement (NM) [8,16,18], interfacing with the
managed router is even more important, because
management applications need efficient monitor-
ing and control functions. For example, a routing
load balancing application may require access to
the routing table, and a congestion avoidance ap-
plication may need interface congestion informa-
tion. Efficient and secure access to managed device
state is especially needed when the managed router
is logically, and to a greater extent, physically,
separated from the management active environ-
ment [16].

The design of a control/monitoring interface to
a router must balance between abstraction and
efficiency. An interface with a low level of ab-
straction, such as simple network management
protocol (SNMP) [17], can be efficient at the device
level but provides a cumbersome programming
infrastructure at the application level. Likewise, an
interface with a high level of abstraction provides
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simple programming constructs, such as Corba
[21], but is often inefficient.

Another design tradeoff we address with our
system is application flexibility versus security
vulnerabilities. Management applications require a
high level of flexibility to complete tasks needed to
manage the network. But on the other hand, al-
lowing an active routing application to change the
forwarding tables at a router may result in global
routing instability.

Our goal is to present a simple and abstract
interface to the application programmer while
maintaining the efficiency of the system which re-
quires visibility of operation costs. We address this
tradeoff by using a cache and an efficient abstract
design. We balance the latter tradeoff by address-
ing security at multiple levels of our system with-
out limiting the expressiveness of the application.

To make the discussion clearer and more con-
crete, we demonstrate our design by describing
novel extensions to the ABLE architecture [15],
ABLE++. ABLE is an active network architecture
that allows the easy deployment of distributed NM
applications. In ABLE++, we optimize the inter-
action between the active process (i.e., NM appli-
cation) and the router by adding a local cache at
the device level to store local router data. Caching
information helps in more than one way to alle-
viate the load from the core router software where
computing power is scarce. Obviously, it allows a
single data retrieval to be used by several appli-
cations. In addition, some of the popular infor-
mation we cache is ‘computed’ from consolidating
many different ‘atomic’ data units, e.g., a list of all
neighbors. Consolidating cached items serves sev-
eral aims: it reduces the processing load from the
router as a result of continuously fetching router
state, eliminates the fetching, computing and
storing overhead at the application layer, thus,
shortening the retrieval time for applications and
simplifying writing of management applications.

Our interface eliminates the management in-
strumentation details (e.g., SNMP, CLI or CMIP)
from the application layer without sacrificing effi-
ciency. In a similar way, we abstract the control
interface that allows privileged applications to
modify the router state. The control capability
introduces security hazards, which we address by

placing security mechanisms such as authentica-
tion and application classification at various layers
in the architecture. Each application is authorized
to use specific services (read and write) and re-
sources (CPU time, bandwidth, memory). Our
interfaces check for conformance to these restric-
tions.

To demonstrate the usefulness of our design, we
present an implementation of a congestion avoid-
ance application similar to the one suggested by
Wang [22]. The application constantly monitors
the load of the router interfaces. When congestion
is detected, the algorithm attempts to reroute some
flows around the congested interface. The algo-
rithm works locally: a router exchanges messages
with its 2-neighborhood routers (the group of
routers that are no more than two hops away from
it) to find a deflection route (similar ideas were also
suggested in [4]) for some of the flows that pass
through the congested interface. The algorithm
does not change the routing tables, but instead
adds temporary entries to the forwarding tables
unlike Wang’s original algorithm that uses tun-
neling on a per packet level.

1.1. Organization

In the following section, we present the new
ABLE++ architecture, Section 3 discusses the
system performance, and Section 4 discusses se-
curity issues. In Section 5, we demonstrate the
advantages of our interface design with an appli-
cation example. We discuss related projects in
Section 6, future work in Section 7 and conclude in
Section 8.

2. Architecture

NM applications require an infrastructure to
query and set state on managed devices. Current
management models support both operations but
in a very inefficient and platform dependent man-
ner. We have addressed both inefficiencies by ex-
panding the ABLE active engine architecture to
include three processing Brokers (see Fig. 1): a
Session Broker, an Info Broker and a Control
Broker.
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Fig. 1. ABLE++.

We define a “Broker” as a processing entity
that completes a task on behalf of a requester. We
have specialized the concept of a “Broker” to
handle three different types of interaction between
the active session and processing environment. The
Session Broker creates, manages, and cleans up the
processing environment as well as manages alive
active session. The Info Broker provides an effi-
cient monitoring channel by exporting local state
to active sessions and mediates all queries for local
state. The Control Broker provides a secure
channel for control operations by exporting a set
of control methods and associated policies. We
will use the terms “‘active session” and ‘“‘applica-
tion” interchangeably.

Process management, information queries, and
control requests are each handled by different
Brokers because each requires a different set of
security restrictions and/or performance metrics.
The Session Broker must have complete monitor-
ing and control access over all active sessions to
prevent excess resource usage and facilitate com-
munication between active sessions on different
nodes. The Info Broker’s main function is to
provide efficient access to local data. Since ac-
cessing data through this channel is read-only, the
Info Broker does not introduce the same security
concerns as the write-enabled control channel.
Hence, the design focus in the Info Broker is on
efficient access to data. On the other hand, the
Control Broker does introduce many security
concerns because active sessions can change the

state of the device. The design focus here is on
preventing active sessions from leaving the net-
work in an inconsistent state. All three Brokers
communicate with active sessions using TCP or
UDP sockets. Therefore, ABLE++ can support
active applications written in any language that
supports the socket interface. The following sec-
tions will discuss in more detail the design goals
and architecture of each Broker.

2.1. The Session Broker

The Session Broker manages the initiation, be-
havior, communication and termination of all ac-
tive sessions. Conceptually it is a meta-Broker as it
can be viewed as giving session control services to
the system. The communication aspect of the
Broker is the only non-meta service it performs for
the session, and thus, might call for a separate
entity. However, the separation introduces ineffi-
ciencies in handling out-going messages and thus,
was left for further research.

Most of the functionality of the Session Broker
was inherited from the original design of the
ABLE active engine [16]. Therefore, we will only
go into a brief discussion. Both ABLE and
ABLE++ architectures are designed to support
long lived, mobile active sessions. NM applica-
tions must be long lived to implement any ongoing
monitoring services. Mobility is essential to prop-
agate a distributed application throughout the
network. ABLE++ allows active sessions to con-
trol code distribution. Therefore, the Session
Broker’s responsibilities can be divided into two
parts: managing active sessions (the meta-Broker)
and exporting mechanisms for communication and
mobility.

2.1.1. Managing active sessions

The Session Broker initializes, monitors and
terminates active sessions. During the initialization
phase, local resources (CPU, memory or band-
width) are allocated to each session. “Watch dogs™
or aging timers monitor all activities to prevent
excess resource consumption or prevent session
termination without freeing its assigned resources.
All active sessions are registered with our Security
Module. The Session Broker can terminate an
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Table 1
Communication and mobility interface

Name Description

int Distribute ()

int DistributeAll ()
int Distribute (Addr)
byte [] Receive ()

void Send ( byte [],
DestAddr)

void SendReport (String
DestAddr, Port)

Receives a packet

Sends program and data to neighbors except original sender. Returns the number
of successful messages

Sends program and data to all neighbors. Returns number of successful messages
Sends program and data to Addr. Returns number of successful messages

Send packet to DestAddr.

Send String to DestAddr at Port

active session if it uses too many resources or at-
tempts to violate security restrictions. We will
discuss security in ABLE++ in Section 4.

2.1.2. Communication and mobility

The Session Broker controls active session
communication and mobility through an exported
API (see Table 1). Distribute() and Dis-
tributeAll () are used to propagate an appli-
cation to every active node in the network. Session
Broker will prevent multiple copies of the same
application on a single node. Distrib-
ute (Addr) is used to send an application to a
specific spot in the network. This function is es-
pecially useful for monitoring only specific regions
on the network for bottleneck or congestion de-
tection. send(byte []) and byte [] re-
ceive () are standard communication functions
used to pass messages between active sessions both
on the same node or different nodes. We have also
included a specialized report sending function,
sendReport (String, DestAddr, Dest-
Port). Event or alarm reporting is a crux of NM.
Often, reports are the only ongoing documenta-
tion of the network’s behavior. Therefore, we have
added a specialized function for reporting.

2.2. The Info Broker

The Info Broker is used to export local device
information to active sessions. Specifically, the
Info Broker specializes in retrieving information or
state from local devices for active sessions. With-
out the Info Broker, active session programmers
must worry about how to get local information

and what kind of information is available. The
three components of the Info Broker, FEngine,
Interface and Cache (see Fig. 2), abstract these
details away from the application programmer all
while providing an infrastructure for efficient in-
formation retrieval. In the following text, we will
discuss each component in more detail.

2.2.1. Engine

The engine is the “intelligence” of the Info
Broker. Active sessions send requests for local
state to the engine. The engine then, determines
the “best” avenue to handle the request, retricves
the information, and finally translates it back to
the active session.

The most interesting part of the engine is how it
selects the “best” avenue. Data is classified by its
volatility. In the simplest case, one can identify
two types of data items: volatile, such as the
number of active TCP connections or non-volatile,
such as the router name. However, volatility is a
continuous spectrum where each datum can be
associated with the length of time it can be cached
before its value is expected to change significantly.
To simplify the implementation, the engine iden-
tifies a requested datum as part of three classes:
volatile, quasi-volatile or static. Static and quasi-
volatile data are cached in the local Cache. For the
quasi-volatile data, we attach a time-to-live
counter, that invalidates after a predetermined
time period. Quasi-volatile data that expires can be
either removed from the cache or be refreshed.

The advantage of placing the policies in the
engine is that it abstracts the instrumentation de-
tails away from the programmer, thus, reducing
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Fig. 2. Info Broker.

the complexity of applications. For example, if an
application needs local state from three different
managed devices and each device requires a dif-
ferent communication protocol, the programmer
must implement each protocol to manage those
devices, thus resulting in a large, complicated
program. Not only does the engine abstract those
details from the application layer, it also reduces
response latency by choosing an appropriate ave-
nue for retrieving information. Currently, we have
two modules, SNMP and control line interface
(CLI), implemented. We also understand there are

Table 2
Info Broker interface methods

some instances in which the application would like
control over how the information is retrieved.
Thus, we have added small instrumentation hooks
like SNMP’s get (0id) and getnext(oid) to
force the engine to use a particular instrumenta-
tion. This brings us to an important question. How
do active sessions communicate queries to the
engine?

2.2.2. Interface

The engine exports local state to active sessions
via a predefined interface (see Table 2 for a list of
methods).

As mentioned previously, the main design goal
of the Info Broker is efficient access to local device
state. Current information retrieval models allow
applications to ask for small “atomic™ pieces of
local state. However, applications monitor and
make decisions at a much higher level. For ex-
ample, a load balancing application needs to cal-
culate load on managed interfaces. In the current
practice, interface “load” is not exported at the
device level. It must be derived from atomic pieces
of local state such as MIB-II’s 1 fOutOctets and
if8peed over a given period of time. The appli-
cation must query for several variables and com-
pute the load before continuing with the
algorithm. This is an inefficient use of system re-
sources and time. The application must wait until
all variables have been received before proceeding.
Waiting through several possible round-trip
transmit times prevents the application from

Name

Description

int getNumIf()

String getName ()

String [] getIpAddrs (Interface)
int getIfNumber (IPAddr)

String getNextHopAddr (DestAddr)
String getNextHopIf (DestAddr)
float getLoad (Interface)

int getStatus (Interface)

String [] getNeighbors ()

String [] getNeighbors (Interface)
Boolean isLocalLoopback (IPAddr)
Boolean isLocalLoopback (Interface)
String [] getDestAddrs (Interface)

Number of interfaces

Local machine name

List of IP addresses for Interface

Interface number for IPAddr

Next Hop IP address towards DestAddr
Interface number of Next Hop towards DestAddr
Load of interface

Operation status of Interface

List of IP addresses for all “alive” neighbors except loopback
List of neighbor IP addresses for Interface

True if IPAddr is loopback

True if Interface is loopback

Destination IP addresses for Interface
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working at fine grained time scale. We have ad-
dressed this problem by exporting high level data.
Applications can now ask “Who are my neigh-
bors?”’” with one query, “How many interfaces are
alive?”” with two queries, and finally “What is the
load on this interface?” with one query, just to
name a few. We have pushed the data correlation
into the device level, thus reducing the number of
queries generated at the application level as well as
the total round-trip latency.

2.2.3. Cache

We have added a small local cache to decrease
query response time at the application level and
reduce the query load from the managed device.
Our cache reflects the design of the Interface and
engine policies. As mentioned before, we only
cache popular static and quasi-volatile local state.

The access time to the router local information
is inherently much larger than accessing the local
cache (see Section 3). This is because routers are
not optimized to answer queries and treat them
with low priority. On the other hand, accessing the
local cache does not require crossing of the user/
kernel boundary and is much faster. When multi-
ple sessions require the same local data, using the
cache reduces the number of queries the router
receives.

Caching state introduces a trade-off between
retrieval efficiency and information freshness. A
high update frequency benefits from storing fresh
state, but at an increased retrieval cost. The cache
policies must be tuned to achieve an appropriate
trade-off between resource usage and stale state.
Different caching policies can be set for each type
of information. For instance, volatile data should
be refreshed frequently, whereas static data will
not change as often.

Another related design issue is what triggers
data updates. One option is to update the data
periodically at some rate (that may depend on
the data change rate [7]). Another option is to
update stale data only if a new request arrives.
Periodic updates may result in unnecessary
overhead but maintain fresh information at all
times, while the former approach may have a
longer reaction time if an application is accessing
stale data.

2.3. Control Broker

The Control Broker is a bidirectional channel
that enables active sessions to control the behavior
of the router. This allows authorized sessions to
perform network engineering tasks such as
changing an IP route, or modifying the QoS pa-
rameters in the router. Giving such an extended
power to an active session comes with an heavy
cost; unauthorized, or malicious sessions can “‘take
over” the router and destroy the entire network.
Thus, one should be very careful with the use of
this feature. Only authorized sessions should be
allowed to use it, and the possible side effects
should be minimized. Even when sessions do use
this privilege correctly, there is a problem of co-
ordinating the overall local (and also global) effect
of the combined control action. Consider two NM
applications: one is designed to monitor the status
of all interfaces, and once a down interface is de-
tected it tries to reset it; the other application is a
security application that turns off an interface
when an attack is detected. The results of these two
applications working together in the same node
might be that the interface is turned on and off
alternately.

The overall structure of the Control Broker is
very similar to that of the Info Broker: it has an
Interface that is, a collection of classes used by the
active session to request the service, and an engine
which processes requests. The engine receives a
request, checks whether it is legal by both au-
thenticating the sender session and verifying no
conflicts with previous, active requests exist, and
then executes it using the best available underlying
method or indicates an error has been found. The
Security Module checks the authorization of a
session to take certain control actions as well as
detect conflicts. The Control Broker can commu-
nicate with the router to perform control tasks via
SNMP, the router’s CLI, or a special-purpose
control protocol. Note that the requirements of
many control functions include the retrieval of
information, so the control action functions, in
many cases, return values to the active session.
However, the focus and thus, the performance
considerations in the design of the Control Broker
and the Info Broker are substantially different.
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A Dbasic, but extreme example of a control
function we have implemented is cliControl
(String command). This function takes as an
argument a CLI command, executes it on the
router, and returns the outcome string. This is a
very basic, low level device-dependent function
and the application (the active session) has to
know (by checking possibly through the Info
Broker) what type of a router is located at the
node, and then uses a router specific CLI to per-
form the control task. It is also very dangerous, as
it allows the session to perform harmful operations
such as the unix shutdown command.

A higher level example is the function tmp-
SetRoute(destination, gateway, route-
TTL). This function creates a manual entry in the
local router’s forwarding table for destination
with gateway as the next hop, for a period of
routeTTL ms. The function returns immediately
and does not wait until the new route has been
canceled. This requires that the Control Broker
engine maintain state for each route deflection re-
quest that is in progress. It also has to resolve and
raise alerts for possible conflicts. This design en-
sures the atomicity of the Control Broker service
which has an important safety aspect. Since the
Broker is expected to be more stable than any
session, atomicity ensures that any temporary
change a session makes in the router state will in-
deed be cleared in due time. However, if the
Control Broker fails, the router may be left in an
unstable state. We discuss this further in Section 4.

3. Performance

As stated before, a main design goal of
ABLE++ is to improve the efficiency of the in-
teraction between the application layer (active
sessions) and the managed device. In this section,
we demonstrate how the ABLE++ architectures
achieves this goal.

3.1. Reduced network traffic
Current management technologies, such as

SNMP, export atomic pieces of data which are
available to the application via an interface or

Table 3
Reduced message count

Direct SNMP Info Broker

getNeighbors() 4* 1
getLoad() 8 1
getNumIf () 1 1

#Per routing entry
®Per polling interval

protocol. Management applications must query
many of these atomic pieces of data before deriv-
ing the computation result needed to reason about
the state of the device or network. Such a low level
interface generates an unnecessary amount of
traffic in the network. ABLE++ alleviates this
traffic by including a device level cache. Table 3
lists the number of messages needed to compute
three functions, getNeighbors (), getLoad()
and getNumIf () (described below), using both
SNMP library directly and the Info Broker inter-
face from the application layer.

3.2. Info Broker performance

Now that we have determined that using the
Info Broker can reduce the number of messages
needed to query for device state, there are two
performance questions left to answer:

e How fast can the application retrieve device
state?

e Does the Info Broker incur additional overhead
for the application?

In this section, we answer both of these ques-
tions by analyzing the response time between an
active session and a managed router’s SNMP
agent. We measure the response time for the fol-
lowing three functions, each decreasing in com-
plexity (see Table 2 for the entire list):

o getNeighbors() walks the SNMP routing
table (ipRouteTable) looking for directly
linked IP addresses (ipRouteType). The func-
tion returns a list of neighbors for all local
interfaces.

e getLoad(interface) polls the router for
number of received octets (ifOutOctets), system
time (sysUpTime), and link speed (ifSpeed) over
a period of time. The load is computed by calcu-
lating the rate of received octets divided by the
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link speed and returned. We ignore the waiting

interval between measurements.

e getNumIf () simply polls the router for the
number of interfaces (ifNumber) and then re-
turns this number.

Our test program performed 200 consecutive
function calls for each above three functions using
three different communication channels between
the application and the router (see Fig. 3):

A. Direct SNMP. Opens a connection directly
with the SNMP agent, polls for needed state us-
ing only SNMP get and getnext functions,
then computes the result within the active ses-
sion.

B. Broker SNMP (no cache). Opens a connection
with the SNMP agent through the Info Broker,
polls for needed state using only the Info Broker
get and getnext functions, then computes
the result within the active session. (The only
difference between this channel and Direct
SNMP is an additional inter-process communi-
cation (IPC) between the session and the Info
Broker.)

C. Broker SNMP (cache). Opens a connection with
the Info Broker and polls the local cache for
computed result.

Our implementation of the Info Broker as well
as active sessions run on JVM 1.1.8, 200 MHz
Pentium PCs with 64 MB RAM running on
FreeBSD 3.2 operating system. Response times
were measured using Java’s system clock method
(System.currentTimeMillis()). Over 200 consecu-
tive trials, we notice periodic increases in response

getNumif
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Fig. 4. Sample of the response time between active session and
router for getNumlf.

times (see for example Fig. 4). We suspect the in-
crease is due to Java garbage collection and ap-
plication thread scheduling algorithms in the JVM.
Therefore, we have plotted in Fig. 5 the median of
the 200 response times for the different monitoring
channels and functions. For getNeighbors()
using Direct SNMP and Broker SNMP (no cache),
the median value is within 7.14% of 25% quartile
value and 12.4% of 75% quartile value. In the rest
of the experiments, the median, 25% quartile and
75% quartile values differed by only 1 ms. The
reason for the higher difference in the first two
experiments may be attributed to the longevity of
the algorithm. The full cumulative distribution is
plotted in Fig. 6. It is clear that for all the three
monitoring channels most of the ‘probability mass’
1s concentrated around the median value, and that
the median is very close to the minimum. This
spikes observed in Fig. 4 are responsible for the
tails.

InfoBroker Response Time
200 T T

Direct SNMP

150 Broker SNMP (no Cache)
% Broker SNMP (Cache)
% 100 T
£
IS

50 T

o H —
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Fig. 5. Median response time between active session and
router.
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In all three functions, using the cache decreased
response latency. In the most complex function,
getNeighbors(), the cache improved perfor-
mance by approximately 98% over both Direct
SNMP and Broker SNMP with no cache. This
demonstrates that caching the right data can be
extremely effective in reducing response latency,
especially for complex functions.

Another important point to note in Fig. 5 is the
difference between Direct SNMP and Broker
SNMP (no cache) response times. Both monitor-
ing channels are the same except for the IPC cost
between the active session and the Info Broker.
Thus, the difference of response times is the over-
head of using the Info Broker. The Info Broker
overhead is insignificant as shown by getNumlIf()
method which simply retrieves one atomic piece of
state. (Our measurement tools could not measure
time at a finer granularity than 1 ms.)

4. Security
As mentioned before, security and safety are

crucial components of ABLE++. The separation
between the active engine (AE) and the router

plays a significant role in asserting safety. How-
ever, when an active session has the power to
manipulate the router’s state, and to divert non-
active streams, separation is not sufficient. There-
fore, we have built a multi-level mechanism to
ensure the secure and safe operation of ABLE++.

The main idea is that sessions (at the thread or
process level) will be isolated, much as the sandbox
concept of JAVA applets. However, in our case,
sessions may need to have access to resources such
as the file system, communication to the outside
world or access to the router’s state. Thus, we have
to tailor the right envelope around each session, in
a way that will allow it to perform restricted ac-
tions in a controlled way, and deny the use of
unauthorized services. We call this flexible enve-
lope the rubber box.

As explained in Section 2.1, all the communica-
tion to or from the session is done through the
Session Broker. This serves several purposes si-
multaneously: first, at each given time there is only a
single copy of each session, additional code be-
longing to the same session will be sent to the session
and will not create a new copy. It also prevents a
session from interfering with other sessions’ com-
munication, or manipulating other sessions’ code.
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When a session is created, a list of authorized
services is built in the session control block, and
the required authentication is checked, using the
ANEP header options [3]. The granularity of the
authorized service list can be very fine, e.g., de-
scribing each of the Control Broker functions, or
coarse with a few predefined security permission
levels.

When the session’s JAVA code is first run, we
execute it inside a Class Loader, modified to work
in the appropriate level. For example, if the session
is unauthorized to access the file system, it will be
run inside a loader that blocks all classes that ac-
cess the file system. This adds a second level of
safety around the session.

When services (such as Control Broker or Info
Broker) are requested, the appropriate broker
checks the authorized services list and acts ac-
cordingly.

In addition, we use an IP level packet filter for
the outgoing packets. A packet that originated
from one of the active sessions, and was not sent
through the Session Broker, is blocked. This pre-
vents a session from trying to communicate out-
side the execution environment without proper
authorization.

The problem of deadlock prevention, and safe
execution of the code of each session, is of course a
very hard problem. We do not intend to address it
here. Safe languages [11] and techniques like Proof
Carrying Code [12] can be used to address some of
these problems.

5. An application example — congestion avoidance

In the current Internet, congestion is treated by
end-to-end flow control. The network signals to
the end-points the existence of congestion. As a
result, the end-points reduce the rate at which they
inject new packets into the network. Usually con-
gestion is signaled via packet drop, which is a
wasteful process because the network already
consumed resources in getting the packet to the
point in the network where they were dropped.
Recent suggestions to use explicit congestion no-
tification (ECN) [6] allow signaling about conges-
tion before packets must be discarded, enabling a

more efficient use of the network bandwidth. In
both cases, the network reaction time depends
heavily on the algorithm at the end-points, namely
TCP, and on the round trip delay of the various
connections.

These end-to-end flow control mechanisms have
proved to be stable and efficient; however, due to
the long control loop they do not prevent transient
congestion in which packets are dropped. We
suggest a local congestion avoidance algorithm to
augment current mechanisms. The main idea be-
hind the algorithm is to find a temporary deflec-
tion route for a portion of the traffic passing
through a congested link. The algorithm thus,
eases the load at this link and reduces the amount
of packet loss until the end-to-end flow control
decreases the flow rates. It is important to note
that the algorithm does not interfere with the
routing algorithm and can work in conjunction
with any existing routing algorithm. The deflection
is done by adding entries to the forwarding tables,
temporarily overriding the route chosen by the
routing algorithm.

5.1. General description

After initiation, each node locally monitors the
load on each of its outgoing interfaces. When an
interface is identified as congested, e.g., by com-
paring the interface current transmission rate to
the maximum transmission rate, the node tries to
find deflection routes. The first step is to identify a
destination (d) of some flow that passes through
the congested interface. Then the node (denoted
by ¢) sends to all its neighbors (not connected
through the congested interface) the message
CONGESTED(c, ¢, d,0). The first field identifies the
congested node id, the second field is the message
sender id, the third field is the chosen destination,
and the last field is a counter denoting the hop
distance of the sender from the congested node. A
node, n, that receives a CONGESTED(c, ¢, d,0) can
be either upstream from the sender, i.e., it for-
wards packets to destination d through node ¢, or
it can be off-stream, meaning it forwards its
packet to d via some other route. In the latter,
node n sends node ¢ the message ARF(n,d) indi-
cating that an Alternative Route was Found. In
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1 foreach interface ¢

2 if load () > threshhold then

3. d + finddest(7)

4 foreach interface j # ¢

5 send CONGESTED(c, c, d, 0) to all neighbor(j)

Fig. 7. The pseudo-code for the load detection algorithm at
node c.

1. For CONGESTED(c, s, d, cnt)

2. if nexthop(d) = ¢ OR nexthop(d) = s then // upstream
3 if ent = 0 then

4. foreach j € neighbors()

5. if j # ¢ then

6. send CONGESTED(c, n, d, 1) to j

7. else // off-stream

8 send ARF(n, d) to s

©

. For ARF(m, d)
10.  settemproute(d, m)

Fig. 8. The algorithm pseudo-code for node n.

the first case, node n propagates the search by
sending message CONGESTED(c,n,d, 1) to all its
neighbors except c.

A node, »', that receives the message CON-
GESTED(c,n,d, 1) sends ARF(#', d) to node n if the
next hop to destination d is neither node ¢ nor n.
Otherwise, it ignores the message.

A node that receives the message ARF(#n, d) adds
a temporary static entry to its forwarding table
indicating that the next hop to destination d is
node n. This static route is automatically removed
after a pre-configured time interval. The algo-
rithm’s pseudo-code appears in Figs. 7 and 8.

The algorithm design details and its global
performance are beyond the scope of this paper.
We concentrate here, on the services required from
the active node environment to efficiently facilitate
the algorithm’s execution.

5.2. Implementation discussion

In this section, we discuss services the applica-
tion receives from ABLE++. We believe these
services are typical for many applications running
above any NodeOS.

The simplest group of services contains func-
tions that require atomic data such as the local

host name. This is omitted for brevity from the
code of Figs. 7 and 8. The application can learn its
local machine name for the sender id (line 5 in
Fig. 7, and lines 6 and 8 in Fig. 8) by calling Info
Broker getName () function. Other functions of
the group are defined to get the router OS or IP
statistics. The main advantage of these simple
services is the abstraction of the interface type, the
simplification of obtaining the data (one single
call), and, in case of static data such as hostname,
the ability to use caching.

Next in complexity are services that require a
modest amount of queries. An example in the code
of Fig. 7 is load(i) which checks the load on in-
terface i. In our implementation, this function has
an optional parameter that defines the measure-
ment granularity, by specifying the time difference
between two queries that check how many bytes
have been send (ifOutOctet). Together with the
interface speed, one can calculate the load.

The most complex services are the ones in-
volving neighbor lists. MIB-II [9] does not hold
this list explicitly, and one needs to search for the
neighbors in the tables that were designed for
other purposes, e.g., in the IP routing tables. The
task is further complicated by small variants in the
implementation of these tables among manufac-
turers. As a result, obtaining the neighbor list
(neighbors()) seems cumbersome and hard for an
application developer. Other services we supply in
this problem domain are the list of all neighbors
attached to a specific interface (neighbor(j)), and
the nexthop neighbor on the route to some desti-
nation (nexthop(d)).

In addition, we supply a service which is
somewhat tailored to this specific application:
finddest(i) returns some destination to which
packet are routed through interface i. Our strong
belief in local algorithms to solve global function
suggests that other such applications can benefit
from this service.

In order to react to problems by taking cor-
rective actions, an application (with the right per-
mission) must be able to control the router. In this
example, the function settemproute(d,m) adds a
temporary static route to node d through the
neighbor m. This service is more than abstract-
ing the CLI (command line interface) from the
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programmer. A session can specify the duration of
the temporary route leaving the service responsible
for deleting the static route after the specified time
period has expired. In addition, the service vali-
dates that no conflicts between requests exist, and
is responsible for eventually cleaning up the tem-
porary changes even if the application was termi-
nated incorrectly.

In general, control services are more complex
than monitoring since (as we see in the example
above) one needs to make sure that an applica-
tion error will not have a long term negative
effect on the router operation. Specifically, one
needs to check for state coherency at all times.
Thus, control services need to be at higher level
of abstraction. To illustrate this, suppose an
application wants to change the route to some
destination, d. One way to do this is to supply
the application with two services: deleteroute(d)
and setroute(d). In this case, if due to an error
the application terminates after deleting the
route and before adding the new one packets to
d will be routed through the default route which
might cause routing loops. A better design of the
interface is to supply a higher-level abstraction,
say a service forceroute(d) that performs the
delete and set operation at the Broker Interface
level.

6. Related work

The IEEE P1520 [1] is an ongoing effort to
standardize the interface between the managed
element and the control software. The current
drafts define three levels of interfaces: CCM be-
tween the hardware and the control software
(drivers), L (low level) between the control level
software and the low level implementation soft-
ware (IP routing, RSVP), and U (upper level) be-
tween the low level software and the high level
services.

Since the IEEE PI1520 is not standardized,
yet, other standards are being used. Due to the
wide spread of SNMP it is clearly a current at-
tractive candidate for a standard agent-node in-
terface. However, with a few exceptions [10,23]
SNMP is missing from most past system design.

Recently, there where several suggestion for
agent systems that incorporate an SNMP inter-
face [13,19,24].

The SmartPackets Project [18] at the BBN takes
a language based approach to implementing an
active network system. The active process, coded
in capsule form, interacts with the device through
built-in language constructs. The current imple-
mentation can query router supported MIBS using
a Mib-type. The SmartPackets active network does
not support persistant NM applications needed for
long term management tasks, e.g., resource or load
monitoring.

Distributed management framework (DMF) [5]
by IBM Zurich is a distributed processing
environment for management applications. DMF
focuses on the mobility and communication of
applications by augmenting the ObjectSpace
Voyager [2] platform with a distributed directory
service. DMF does not attempt to address the ef-
ficiency or security of the interaction between the
application and the managed device.

7. Future work

Areas of future work for ABLE++ includes,
among others, the following.

7.1. Dynamically extensible cache

We have shown that caching consolidated
management information results in a performance
boost at the application layer. Thus, the perfor-
mance of the application is tied to the behavior
and policies of the cache. Both the behavior and
policies of our current cache implementation are
static. Our cache has a predefined list of informa-
tion to retrieve from the router at specified inter-
vals. It would be interesting to look at how a
“dynamically extensible cache” or ‘learning
cache” could boost application performance over
a wide variety of applications.

7.2. Distributed cache

ABLE++ currently focuses on the interaction
between application (active sessions) and the local
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router. Since only local router state is available,
applications must send messages to other active
nodes to get a global picture of the network. An-
other approach to exporting global network state
to a local application is to replace our current local
cache with a distributed global cache.

7.3. Fine grain resource control

The session broker implements rudimentary
resource control. When the execution environment
is created for an active session, the session broker
allocates a finite amount of resource (CPU,
Bandwidth and memory). If the active session
behaves outside the given constraints, the session
broker simply terminates its execution. Unfortu-
nately, such abrupt termination could result in a
global instability of a distributed application.
Currently, we leave it up to the application pro-
grammer to handle such situations.

8. Conclusions

In this paper, we have presented the NM dis-
tributed framework ABLE++. We have discussed
various trade-offs including abstraction versus
efficiency and application freedom versus security
constraints. The design of ABLE++ allows it to
be efficient while presenting a simple, abstract
interface for programming ease. We use a cache
to store correlated data at the device level.
Caching at the local level reduces information
retrieval latency, amortizes computation among
applications and reduces resource consumption.
Our interface abstracts instrumentation details
from the application programmer without giving
up performance. We have also added security
mechanisms into the layered fabric of our archi-
tecture to prevent applications from harming the
network. We have demonstrated the performance
of ABLE++ with the following three performance
metrics: reduced message count, efficient appli-
cation retrieval time and low processing over-
head. Finally, we have demonstrated the ease of
programming using ABLE++’s interfaces by
presenting a novel congestion-avoidance algo-
rithm.
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