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A supplier of multicast information services will often be faced with the following prob-
lem: Broadcasting to the whole customer base (including non-paying customers) is cheaper
than multicasting only to the paying customers. However, broadcasting discourages potential
customers from paying. The result is an economic game in which the supplier tries to max-
imize profit in the face of rational, but not omniscient, behavior by customers. In this work
we build a model for such environments, which we believe is both reasonably realistic and
amenable to mathematical analysis. The supplier’s basic strategy is to broadcast every service
for which the fraction of subscribed customers exceeds some threshold. The customers do not
know the exact threshold value, however they can estimate the perceived probability of getting
services for free. We then model the customers’ behavior in such a game. From this model,
coupled with some mild assumptions on the supplier’s cost structure, we can find the optimal
setting of the supplier’s broadcast threshold. The solution necessarily depends on choosing
functions which describe the customers’ utility for the offered services; we study in detail
several such choices. In all the examples we studied, our model predicts that the supplier’s
profits will be maximized if the supplier’s broadcast threshold is set below 100%. The loss
in revenue due to customers subscribing to fewer services is offset by the cost savings made
possible by broadcasting the most popular services to all customers. We found our model to
be fairly robust with respect to parameter choices. As such, we believe it can be of value to a
supplier in devising a multicast/broadcast strategy, and that broadcasting when subscriptions
are sufficiently high is likely to be the approach of choice in maximizing profits.
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1. Introduction

1.1. Background

In services such as cable or satellite TV, the subscription model has traditionally
been periodic; e.g., customers pay a monthly fee and receive the channels they subscribe
to over the next month. As service demand becomes more diverse, more applications
appear where the subscription model is no longer periodic and applies to shorter time
frames. For instance, pay-per-view services allow customers to pay for a single movie
or sport event. In order to support such a customized subscription model, the information
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supplier needs to use some type of multicast capability. Since satellite and cable TV are
broadcast channels, access control in general, and multicast in particular, is implemented
by encrypting the content; the required decryption keys are given only to customers who
have paid their subscription fees [9].

Typically, each customer i receives two decryption keys: one is an individual
key Ki , which is unique to the customer; the other is a key KG that is shared by all
the customers. When the supplier needs to broadcast to all the customers, it encrypts
the transmission (e.g., a movie) using the shared key KG. Otherwise, for a pay-per-view
multicast, the supplier encrypts the movie with a randomly generated session key Ks,
and then encrypts the session key using the individual key Ki of every customer i

who subscribed to the movie. The supplier then needs to periodically broadcast the
encrypted session keys (to allow subscribers to “tune in” to the movie while it is already
in progress).

A customer i within the system is able to decrypt the content in two cases: either
the transmission is encrypted using the shared key KG which every customer has, or the
transmission’s random session key Ks is encrypted using the customer’s key Ki . We say
that a transmission is broadcast if it is encrypted using KG. We say that a transmission
is multicast to customers i1, . . . , iM if the random session key Ks is encrypted using
Ki1 , . . . , KiM .

Note that in such a system, all the transmitted content is encrypted by some key.
Therefore, receivers outside the system, who do not have any decryption keys, cannot
access any content despite receiving the physical transmission signal.

Such a system has the following property: Unless the group of subscribers is very
small, broadcasting to the whole customer base is typically cheaper than incurring the
operation costs1 associated with multicasting only to the paying subscribers of a partic-
ular service. This observation becomes more acute when the customers are allowed to
personalize their subscription to a high degree of granularity. Therefore, from a cost per-
spective, when the number of paying subscribers is high, the supplier has an economic
incentive to broadcast to everyone, and to tolerate some free-riders.

However, allowing free-riders is risky. When the customers realize that they occa-
sionally receive services they did not pay for, their willingness to pay will drop, which
may lead to fewer subscribers and to a loss in revenue for the supplier. This, in turn,
will affect the supplier’s behavior, thus creating a feedback loop. At the extreme, if the
supplier always uses broadcast, rational customers will never pay.

Thus we arrive at an economic question: What is the strategy that maximizes the
supplier’s profit? Would she gain or lose by using broadcast at all, and under what cir-
cumstances? In order to answer these questions, we need to model a rational customer’s
behavior, and to analyze what is the strategy that would maximize his utility. Naturally,
the strategies of the supplier and customers depend on each other, and form an economic
game.

1 Key transmissions are usually done via a special low-bandwidth control channel. Therefore, minimizing
the key transmission overhead is an important cost control measure.
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1.2. Related work

Games among parties with asymmetric information have been studied by econo-
mists. One example is the seller–buyer game, where the seller has more information
about the object (say a used car) than the buyer. It has been shown that such a condition
may lead to an adverse selection and to a decrease in the market activity in comparison
with a full information game. Another important example is the principle-agent prob-
lem, where a principle hires an agent to take some action for her, but the agent grows
to have more knowledge than the principle and can thus act to maximize his own profit
rather than his principle’s. For a discussion about these and related problems we refer
the reader to [8, chapters 13, 14]. In our case, the monopolistic content supplier knows
which films it will broadcast whereas the customers do not. The interest in Internet eco-
nomics has been growing since the early 1990s. Particular attention has been given to
topics such as pricing, and economic relations among ISPs (see [7, and the references
therein]).

As for multicasting, the aspect of fair cost sharing among the receivers has been
analyzed in [6], using the theory of cooperative games. Their model fits a scenario in
which the multicast group is long-lived, and the shared multicast tree is owned by the
receivers (or by a non-profit entity). More recent works attempt to optimize the profit of
the content supplier using an auction system which is based on the price of the multicast
tree branches and the bids receivers are willing to pay. The supplier will only accept
bids from subtrees that increase its profit and will reject the rest of the bids [4]. This line
of research is generalized for multiple multicast rates by [1]. In contrast to this line of
work, in our model the multicast groups are transient and short-lived. Furthermore, it is
the profit-seeking supplier who bears the operating cost of the multicast infrastructure.

The research community is currently working on lowering the key-management
cost of secure multicast (cf. [3,5,10]). In particular, Abdalla et al. [2] suggested a key
management scheme which occasionally tolerates a controlled number of free-riders.
The authors showed that allowing some free-riders can substantially decrease the total
number of keys each customer needs to store. Hence, from a technological point of
view, allowing free-riders is advantageous when key storage is very limited, such as in
applications using smartcards. In this paper we investigate, in a more general setting, the
economic consequences that such an approach brings.

1.3. Our approach

Let us imagine that a supplier of information services sells movies2 to customers
in the following manner. The supplier announces in advance that at some particular time
(9:00 pm Thursday) a particular movie (Men in Black) will be shown, and if you want
to watch, you agree to pay a fixed subscription fee ($5). At 9 pm Thursday you turn on
your TV set to the assigned channel and watch the movie.

2 For ease of exposition, we will refer to the services being supplied as movies to be viewed on a TV.
However, our model applies equally well to any other short-term subscription-based service.
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As we discussed before, it is cheaper for the supplier to use broadcast (encrypt with
the shared key KG) than to use multicast (encrypt with multiple keys Ki). However, her
revenue will dwindle to zero if she always uses broadcast. Thus a canny supplier will
broadcast only some movies; naturally she will prefer to broadcast the ones for which
large numbers of customers have paid, since those are the most expensive to multicast
(and also the ones whose broadcast would provide free service to the fewest customers).

Note that in a full-information scenario (where, e.g., a customer can see how many
of his colleagues are paying), we quickly reach paradoxical situations. Informally, if
Alice knows that many customers are paying, Alice concludes that the movie will be
broadcast, so she does not pay. But all rational customers will do the same, so nobody
will pay, and the movie will not be broadcast. This leads to an unstable multi-party game
in which the players will be forced to adopt random strategies.

It is our contention that a full-information scenario is an unrealistic. There is almost
certainly no way for a customer to find out what the other customers are doing, and
there is more than adequate uncertainty in the evaluation of the popularity of a movie to
prevent a customer from making a reliable judgment on the number of payers. Customers
are not in a position to cooperate, and cannot be expected to do anything more than
observe the supplier’s behavior and act to maximize their individual expectations.

In what follows we propose a mathematical model for this system which is con-
sistent with reasonable behavior, and permits analysis with as few arbitrary assumptions
as possible. In the model a customer weighs his value v for seeing the movie and his
estimate of the probability p of its being broadcast for free in order to decide whether
he should pay. The value v is assigned randomly and depends on the “percentile pop-
ularity” of the movie; to compute p the customer combines his estimate (based on his
own valuation v) of the movie’s popularity and the supplier’s past behavior. The supplier
broadcasts all movies for which enough customers have paid, which will turn out to be
the same as broadcasting all movies which are sufficiently popular.

Even in this partial-information model, we need to be ensure that the game is sta-
ble. If the most popular movies are broadcast with high enough probability, rational
customers will stop paying for them, and paradoxes will ensue. To guard against this
situation, we require a certain monotonicity property, which will constrain the allowed
values for the supplier’s threshold.

The most arbitrary feature of the model is the choice of a parameterized family of
probability densities describing how v varies among the customers for a movie of given
popularity. We provide some guidance for selecting such families, and give some simple,
reasonable examples which are then solved to determine the supplier’s optimal policy.

2. The model

2.1. The customer

We begin by describing the customers’ behavior. Fix a customer and a movie (that
is, a particular showing of a movie); let v stand for the value attached by that customer



Y. Shavitt et al. / On the economics of multicasting 5

to seeing the movie, expressed (say) in dollars. Thus if it were the case that he could
see the movie only by paying the fee λ, he would pay if v > λ but not if v < λ. Since
v will later be drawn from a continuous probability density, we do not need to concern
ourselves with the zero-probability event that v = λ.

If the customer believes that with probability p > 0 the movie will be broadcast,
so that he gets to see it for free, then he will of course be less willing to pay for it. Since
his expected gain when he pays is v − λ and when he does not, pv, he will pay when
v − λ > pv and not when v − λ < pv. This leads naturally to the following definition.

Definition 2.1. Let v be the value attached by a customer to seeing the movie, and let λ

be the subscription fee. The payment desirability function is

q(v) = 1 − λ

v
.

The customer pays the subscription fee λ whenever his estimated broadcast prob-
ability p is less than q(v). The questions of how v is determined and how the customer
computes p will be addressed shortly.

Remarks.

• We have assumed that the customer is rational and has a linear utility for money in the
range of interest; neither will be precisely true but both are reasonable approximations
in the aggregate.

• This is a very simple model of customer behavior. In particular, we are not modeling
any disutility, or “regret”, which a customer will experience if he “tries his luck” and
fails to see the movie. Analyzing more refined models, which include disutility, is
left for future research.

2.2. The supplier

The behavior of the supplier is very simple indeed: she broadcasts all movies for
which the fraction of paying customers exceeds some threshold B.

Definition 2.2. B ∈ [0, 1] is called the supplier’s broadcast threshold.

We assume she will attempt to choose B so as to maximize her profit, and our
model will in principle allow her to do that. Recall that the customers do not know the
value B.

The result of the supplier’s broadcast policy will be that a certain fraction b ∈ [0, 1]
of movies will be multicast only to subscribers, and the rest will be broadcast to every-
one. Since the value b will be deducible by customers after sufficient time, their actions
will be influenced by it. In particular, we should expect that a customer’s estimate p of
the probability that a movie will be broadcast will depend on b.
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If individual customers adapt their strategies to the observed value of b, the aggre-
gate effect will change b. Thus we are actually modeling a dynamical system, which has
a feedback loop between the customers’ strategies and b. If the system is stable (see sec-
tion 2.6), then after sufficient time, the system will stabilize to a fixed (Pareto-optimal)
point. The customers will be using strategies which will cause a fraction b of movies to
be multicast, and for this particular value of b the customers would not have an incentive
to change their strategies.

Definition 2.3. The observed broadcast threshold is the fixed point fraction b of movies
that are multicast only to subscribers.

Since we are only interested in the system’s stable state, we shall take b to always
refer to the fixed point observed broadcast threshold.

2.3. The probability of broadcast

A major issue is whether, and how, a customer’s calculation of p should depend on
the quality of the movie. The simplest assumption is of course that it does not; having
observed that a fraction 1 − b of the movies are broadcast, the customer merely takes
p = 1 − b.

We believe, however, that customers will not fail to notice that it is the most popular
movies which are broadcast. They will of course also be aware that opinions of movies
(and time slots) vary, thus they can only guess at the popularity of a particular offer.
Naturally that guess will, and should be, influenced by the customer’s own valuation.

Thus we arrive at what we believe is the simplest and most natural way to model a
nontrivial dependence of p upon b: the customer computes the a posteriori probability
p = p(b, v) that the movie will be broadcast, given that his own valuation of the movie
is v. Of course, no customer will literally compute this value and most will not even
think about the values v and b. But it is not unreasonable to expect a customer to think:
“Hmm, I’d really like to see this one, but if I want to see it then it’s likely others will also
sign up, and I’ve noticed that a lot of the time popular movies are shown for free”. . . and
the aggregate result ought to be something like the mathematical behavior of our model.

One weakness of this simple dependence is that it does not take into account the
possibility that a customer wants to see a movie that he knows, perhaps from conver-
sations with friends, is not popular. Another is that customers will have different ideas
about the a priori distribution of movie valuations; however, even the assumption that p

does not depend on v would require us to select a family of distributions for valuations,
so it costs us little to introduce this level of sophistication into the model.

2.4. The rank of a movie

To model the variability in the desirability of a movie at a time, we introduce the
concept of the rank r ∈ [0, 1] of a movie. The rank of a movie is its percentile level of
“desirability” (relative to all the movies offered by the supplier).
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Definition 2.4. The rank r ∈ [0, 1] of a movie at a given time is its percentile level of
desirability.

Thus a rank of r = 0.75 indicates a movie which is “better liked” than 75% of the
movies shown. By definition, the rank of a random movie is a uniformly random real
from the unit interval [0, 1].

Note that the notion of rank is entirely external to the model. A priori, neither the
supplier nor the customers actually know the rank of any particular movie with certainty.
After the customers subscribe to a movie, the supplier may obtain a good estimate of the
movie’s rank, based on the number of subscribers – if a certain monotonicity assumption
holds. We shall elaborate on this point in section 2.6. The customers learn much less:
in our model, the only a posteriori information they get about the movie’s rank comes
from the supplier’s decision to use multicast or broadcast.

2.5. The distribution of valuations

We will assume throughout that both the number of customers and the (potential)
number of movie offerings is large, and therefore we shall use continuous mathematics,
and in particular probability density functions, to describe the distribution of valuations.

We assume that the valuations of a movie of rank r among the customers fit a prob-
ability density function fr , so that the fraction of customers whose values fall between
x and y is ∫ y

x

fr(v) dv.

This is again a simplification, since in reality two equally popular movies might have
different valuation “profiles” – perhaps one has relatively uniform valuations while the
other is highly controversial. Thus we must regard fr as a kind of average density, and
then it is reasonable to make the following “majorization” assumption:

Assumption 2.5. If r ′ � r then the valuation density fr ′ majorizes fr , that is,∫ ∞

a

fr ′(v) dv �
∫ ∞

a

fr(v) dv

for every a.

From a customer’s point of view, the rank of a movie is a priori unknown, thus its
valuation distribution is given by the mean density function

f (v) =
∫ 1

0
fr(v) dr.

In section 3 we will choose some particularly nice families of distributions on
which to make test calculations. Until then we may represent various probabilities as
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integrals. For example, the probability that a random customer values a random movie
higher than the subscription fee λ is

∫ 1
0

∫ ∞
λ

fr(v) dv dr . If no movies are broadcast, this
quantity, multiplied by λ, would represent the mean revenue per customer per movie.

2.6. Monotonicity

We have said that our supplier will broadcast all movies paid for by at least a
fraction B of the customers, which causes a fraction b of all movies to be multicast, and
the rest to be broadcast. To make the analysis tractable, we would like the following
invariant to hold:

Invariant 2.6. The movies that are broadcast are precisely the movies of rank r > b.

To ensure that invariant 2.6 holds, we need the following, seemingly benign, yet
critical, property:

The higher a movie is ranked, the more people will subscribe to it.

Formally, we have the two following definitions.

Definition 2.7. Let the subscription fee be λ, and assume the observed broadcast thresh-
old is b. Denote the fraction of the population that will pay for a movie of rank r by
Fλ,b(r).

Definition 2.8. We say that the global monotonicity property holds if Fλ,b(r) < Fλ,b(r
′)

for every two ranks r < r ′.

Clearly, if the global monotonicity property holds, then invariant 2.6 holds. In
view of our majorization assumption (assumption 2.5), it would suffice to show a local
monotonicity property: That each customer becomes more likely to pay for a movie if
his valuation is higher. Formally:

Definition 2.9. A customer’s strategy is called locally monotone if for every two
movies x and y with subjective valuations vx < vy , he pays for y if he pays for x.

Local monotonicity certainly sounds reasonable. But it is also the case that in our
model, as the value v goes up, so does the estimated broadcast probability p. Conceiv-
ably, the model might predict that a customer will cease wanting to pay for a movie when
his valuation rises past some point, because he is then nearly certain that the movie is
popular enough to be broadcast. As we have mentioned before, this situation leads to a
paradoxical, unstable game.

We do not think this aberrant behavior is likely in practice. A customer’s “natural
monotonicity” – the positive correlation of his inclination to pay for an item, and his
desire to have it – is not something which will be overcome by the soft information he has



Y. Shavitt et al. / On the economics of multicasting 9

about the likelihood of broadcast. Hence, we will restrict ourselves to parameter ranges
in which the local monotonicity property holds. For each specific valuation distribution
density function fr(v), we will need to establish what these ranges are. Typically, the
restriction will take the form of a lower bound on B.

2.7. The customer payment threshold

Supposing the local monotonicity property (definition 2.9) holds, and hence, in-
variant 2.6 holds, a customer who has observed b and valued a particular movie at v will
compute p = p(b, v) as follows:

p = Pr(this movie will be broadcast | my valuation = v)

= Pr(r > b | v)

∫ 1
b
fr(v) dr∫ 1

0 fr(v) dr
. (1)

As we discussed in section 2.1, the customer will pay if p < q(v) (the payment
desirability function) and not if p > q(v). If local monotonicity holds then we would
expect there to be a single threshold t = t (b) above which the customer always pays.

Definition 2.10. The threshold t for which if v > t then p < q(v) and if v < t then
p > q(v) (if it exists) is called the customer payment threshold.

2.8. Calculating the fraction of paying customers

If a movie of rank r is offered, the fraction Fλ,b(r) of the population that will pay
for it is thus

Fλ,b(r) = Pr
(
random customer has v > t(b)

) =
∫ ∞

t (b)

fr(v) dv. (2)

F is subindexed by λ to remind the reader of the dependence on the subscription fee λ

(through the customer payment threshold t).

2.9. The broadcast threshold B and the observed threshold b

The monotonicity property translates to an assurance that Fλ,b(r) is monotone in-
creasing in r. By the definition of B, the movies that are broadcast are those for which
Fλ,b(r) > B, and since Fλ,b(r) is monotone increasing this is equivalent to the condition
r > F−1

λ,b(B). But by the definition of b, these movies coincide with the movies whose
rank is r > b. Therefore, we conclude that the supplier’s broadcast threshold is

B = Fλ,b(b). (3)

This formula allows us to optimize the observed broadcast threshold b in our analysis,
and then to translate the best choice into a policy for the supplier.
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2.10. Revenue, cost, and profit

According to the model, Fλ,b(r) of the customers will pay for a movie of rank r,
so we have, per customer:

revenue(r) = λFλ,b(r). (4)

Continuing to work on a per customer, per movie basis, we have the following
parameters affecting the cost:

Definition 2.11. Let γ be the marginal cost per customer for multicasting a movie only
to its subscribers. Let β the cost per customer for broadcasting to all of them.

Thus if a fraction s of the customers pay for a movie, then the supplier’s cost
per customer is sγ if the movie is multicast only to subscribers, and simply β if it is
broadcast (see figure 1).

We assume that β < γ < λ, so that broadcasting is cheaper than multicasting to
everyone, and the supplier is motivated, even while multicasting, to attract a maximum
number of customers. This does not mean the supplier always makes a profit, because
the fixed cost of offering a movie (which may well dominate the marginal costs) may
put the supplier in the red. Here, however, we can without loss of generality ignore the
fixed costs and define profit as if the fixed costs were zero.

According to the model, movies ranked above b are broadcast to everyone, and
lower ranked movies are multicast only to their subscribers. Thus, the cost per customer
per movie is

cost(r) =
{

γ Fλ,b(r), r < b (multicast),
β, r > b (broadcast).

(5)

Figure 1. The supplier’s marginal cost structure.
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Therefore, averaged over all movies,

profit =
∫ 1

0
revenue(r) dr −

∫ 1

0
cost(r) dr

= λ

∫ 1

0
Fλ,b(r) dr − γ

∫ b

0
Fλ,b(r) dr − β(1 − b).

It remains only to choose b so as to maximize this quantity.

3. Examples

In this section we analyze in detail some examples of our model. Much of the
notation we use is summarized in table 1 for quick reference.

3.1. The bilinear density

Let us suppose that there is a natural maximum valuation, which we normalize
to 1. We may imagine that for this unit price a customer can buy the movie on a video
cassette or DVD, thus no customer will value any movie higher than 1. Of course, after
normalization we need λ < 1 to have any potential buyers.

In that case a natural overall valuation density (averaged over all ranks 0 � r � 1)
is the uniform density on the unit interval. The simplest nontrivial family of densities
that enjoys a uniform overall valuation density is the family of the bilinear functions

fr(v) = 2rv + 2(1 − r)(1 − v) (6)

(see figure 2). A movie of rank 1/2 has, like a random movie, a uniform valuation in
[0, 1].

Table 1
The notation used in this paper.

v The customer’s valuation of a movie.
r The rank of a movie.
fr (v) The probability density function of the valuations a movie of rank r .
B The supplier’s broadcast threshold.
b The observed broadcast threshold.
p(b, v) The customer’s estimated broadcast probability function.
q(v) The customer’s payment desirability function.
t The customer payment threshold.
λ A movie’s subscription fee.
γ The per-customer multicast cost.
β The per-customer broadcast cost.
Fλ,b(r) The fraction of the population that pays for a movie of rank r .
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Figure 2. The bilinear density fr (v) = 2rv + 2(1 − r)(1 − v).

Figure 3. The estimated broadcast probability p = p(b, v), and the payment desirability q = q(v), as
functions of the valuation v, for an observed broadcast threshold of b = 0.75 and different values of λ.

3.2. An individual customer’s strategy

Assume that the supplier’s broadcast threshold is set at B, and that the customers
strategies have already stabilized to adapt to it. Thus, the observed broadcast threshold b

is stable and known to the customers. The first step in our analysis is to compute a
customer’s a posteriori estimated broadcast probability p = p(b, v), for a movie he
values at v. Note that the bilinear density (6) is symmetric in v and r, so we have that∫ 1

0 fr(v) dr = 1 for any v ∈ [0, 1]. Plugging this into the definition of p in (1) we obtain
that

p(b, v) =
∫ 1

b

fr(v) dr = v
(
1 − b2) + (1 − v)(1 − b)2.
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Figure 3 depicts the resultant estimated broadcast probability p along with the payment
desirability function q = 1 − λ/v. As we discussed in section 2.6, we need to ensure
that the functions p and q have a single intersection point in the range 0 � v � 1, at
the customer payment threshold v = t (b). For this to hold, it suffices to ensure that
p(b, 1) < q(1), since p(b, v) is linear in v, q(v) is concave, and p(b, λ) > q(λ) = 0
for any b. Therefore, monotonicity holds if and only if

b >
√

λ. (7)

Once we are assured that a single intersection point exists, we can compute the
customer payment threshold t (b) by solving the equation p(b, v) = q(v). In our case
t (b) is the smaller of the two roots of the quadratic equation

v2
(
2b − 2b2

) + v
(
b2 − 2b

) + λ = 0.

The customer payment threshold t completely characterizes the strategy of indi-
vidual customers: a customer would pay for any movie which he values at v > t .

Remarks. Requiring that b is bound from below is a reasonable condition. For instance,
it is not hard to check that if b < λ < 3/4 then p(b, v) and q(v) do not intersect at all.
In other words, when the observed broadcast threshold b is so low, no customer would
ever pay for any movie. But this is behavior cannot be sustained more than briefly, since
when no customer pays, no movies are broadcast, leading to a new observed broadcast
threshold of b = 1. Thus very small values of b cannot be stable points in our game.

3.3. The population’s aggregate behavior

After we know the customer payment threshold t , we can turn to analyzing the ag-
gregate behavior of the customer population. We calculate the fraction of the population
that pays for a movie of rank r by plugging (6) into (2) to obtain

Fλ,b(r) =
∫ 1

t

fr (v) dv = r
(
1 − t2) + (1 − r)(1 − t)2.

By (3) the supplier’s broadcast threshold is B = Fλ,b(b), and since Fλ,b(r) is linear in r,
we can invert it to obtain a simple formula for the observed broadcast threshold b as a
function of B:

b = B − (1 − t)2

2t (1 − t)
.

Figure 4 depicts b as a function of B for the bilinear density (b also depends on λ,
via the customer payment threshold t). The curves are not defined for all values of B

because of requirement (7); for instance, the curve for λ = 0.15 is defined only for
B � 0.635, which corresponds to b � 0.387 = √

0.15. Lower values of B, which imply
lower values of b, would lead to nonmonotonic customer behavior. We can also see that
b reaches 1 (i.e., no movies are ever broadcast) for B values lower than 1, e.g., when
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Figure 4. The observed broadcast threshold b as a function of the supplier’s broadcast thresholdB, for
different values of λ.

λ = 0.15 we get b = 1 for B = 0.9775. This simply means that at most 97.75% of the
population ever subscribes to a movie.

3.4. Revenue, cost, and profit

From (4) we have that the aggregate revenue is

revenue = λ

∫ 1

0
Fλ,b(r) dr = λ(1 − t).

This can also be seen directly from the fact that the overall density is uniform, so if cus-
tomers pay only for movies valued at v > t , the fraction of the population that subscribes
to the average movie is 1 − t .

Recall that γ is the per-customer multicast cost, and that the per-customer broad-
cast cost is β < γ . From (5) we have that the aggregate cost is

cost = γ

∫ b

0
Fλ,b(r) dr + β(1 − b)

= γ b
[
1 − (2 − b)t + (1 − b)t2] + β(1 − b).

Figure 5 depicts the revenue and cost curves, as functions of the supplier’s broad-
cast threshold B. The curves are only defined in the range of B values for which√

λ < b < 1 (e.g., 0.635 < B < 0.9775 for λ = 0.15). However, there is an addi-
tional restriction on B: If the fraction s of subscribers is small, the cost of multicasting
to them, γ s, may be lower than the broadcast cost β. So we can limit ourselves to
B > β/γ . If β is close enough to γ , this bound is more restrictive than the bound im-



Y. Shavitt et al. / On the economics of multicasting 15

Figure 5. The revenue and cost as a function of the supplier’s broadcast threshold B, for λ = 0.15, per-
customer multicast cost γ = 0.10, and different per-customer broadcast costs β.

plied by b >
√

λ. This explains why the curve for β = 0.07 starts at B = 0.715, rather
than at B = 0.635.

We believe that typically β � γ , since in the model these values are per customer.
In reality, the cost of broadcasting is often independent of the subscriber population size
(the cost of a satellite transmission is independent of the number of receivers), so our
β would actually decrease as the total number of subscribers grows. In particular, the
value β = 0 may well be reasonable, for instance, if a unicast to a single subscriber has
the same cost as a broadcast to everyone – which is the case for satellite communication.

Figure 6 depicts the supplier’s profit. We see that for all the parameter settings we
tried, the profit is maximized if B is set to a value between 0.86 and 0.69. The cheaper
it is to broadcast, the more pronounced is the increase in profit. The most striking case
is when broadcast is “for free” (β = 0): if the supplier broadcasts whenever more than
0.69% of the population subscribes to a movie, her per-customer profit will be 93%
higher than if she never broadcasts (B = 1).

We have experimented with other settings of λ, γ , and β for the bilinear density
function. The results are qualitatively the same, with different numerical values, so we
omit the graphs.

3.5. Other density functions

In order to test the robustness of our model, and to estimate the extent to which the
conclusions are artifacts of the choice of density function, we experimented with some
other families of density functions.
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Figure 6. The profit as a function of the supplier’s broadcast threshold B, for λ = 0.15, per-customer
multicast cost γ = 0.10, and different per-customer broadcast costs β.

3.5.1. Parabolic density
In this family of densities, the density function of a movie of rank r is

fr(v) = −v2 + 2rv + 4/3 − r.

These densities have the property that the mode (= peak) of fr(v) is at v = r, for all
r ∈ [0, 1]. Their overall density, for an average r, is f (v) = −v2 + v + 5/6, i.e., a
non-uniform overall density.

Following the same sequence of computations we used for the bilinear density we
obtain that

p(b, v) = v2(b − 1) + v(1 − b2) + 5/6 − 4b/3 + b2/2

−v2 + v + 5/6
.

The customer payment threshold t is a solution to the equation p(b, v) = q(v), which is
the cubic equation

g(v) = v3b − v2(b2 + λ
) + v

(
b2

2
− 4b

3
+ λ

)
+ 5λ

6
= 0.

The leading coefficient of the cubic function g is positive, and g(0) = 5λ/6 > 0.
Therefore, ensuring that g(1) < 0 suffices to prove that a single solution to g(v) = 0
exists in the range [0, 1], and therefore to guarantee the monotonicity property. The
condition g(1) < 0 translates to ensuring that b is not too small:

b >
−1 + √

1 + 15λ

3
.
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Figure 7. The profit as a function of the supplier’s broadcast threshold B, for the parabolic density, with
λ = 0.15, per-customer multicast cost γ = 0.10.

Once we know the customer payment threshold t , it is easy to see that

Fλ,b(r) =
∫ 1

t

fr (v) dv = t3

3
− rt2 +

(
r − 4

3

)
t + 1.

The resultant profit curves appear in figure 7, using the same parameter settings we
used in figure 6. For the parabolic density, we see that if broadcast is “for free” (β = 0),
and the supplier’s broadcast threshold is set at B = 0.714, then her profit would be 79%
higher than had she never used broadcast.

3.5.2. Cubic density
In this family of densities, the density function of a movie of rank r is

fr(v) = (4 − 8r)v3 − (6 − 12r)v2 + (2 − 2r).

These densities have a derivative ∂fr(v)/∂v = 0 at v = 0 and v = 1 for all r ∈ [0, 1],
and the overall density, for an average r, is uniform. Furthermore,

∫ 1
0 fr(v) dr = 1 for

all v ∈ [0, 1]. Straightforward calculations show that

p(b, v) = (
4b2 − 4b

)
v3 + (

6b − 6b2
)
v2 + 1 − 2b + b2,

and that the customer payment threshold t is a solution to the quartic equation(
4b − 4b2

)
v4 + (

6b2 − 6b
)
v3 + (

2b − b2
)
v − λ = 0.

Requiring that b >
√

λ ensures that q(1) > p(b, 1), which is a necessary condition
for monotonicity. However, for the cubic density this condition is not sufficient, since
in principal p and q may intersect in up to 4 points in [0, 1]. But it is not hard to
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Figure 8. The profit as a function of the supplier’s broadcast threshold B, for the cubic density, with
λ = 0.15, per-customer multicast cost γ = 0.10.

show that if b > 11/19 then only one intersection point occurs in [0, 1]. Therefore, if
b > max{√λ, 11/19} the monotonicity is guaranteed.

The profit curves are shown in figure 8. Qualitatively, we see the same picture
we have seen for other density functions. Our model predicts that setting the supplier’s
broadcast threshold at B = 0.84 would lead to an 85% increase in the supplier’s profit, in
comparison to the “never broadcast” strategy. The graphs seem to indicate that the profit
would be even larger for values of B < 0.84. However, such low supplier’s broadcast
thresholds would lead to nonmonotonic behavior, and hence cannot be modeled in our
current framework.

3.5.3. Cosine density
We have also experimented with a family of density functions that are based on

trigonometric functions, which we call the cosine density. The density function of a
movie of rank r is “half the period” of a cosine curve, phase-shifted so the maximum is
at v = r, and normalized to give an integral

∫ 1
0 fr(v) dv = 1. Formally,

fr(v) = π(1 + cos(π(v − r)))

π + 2 sin(πr)
.

For this family of densities the expressions for the various components of our
model are quite unwieldy, so we omit all the details. The final profit curves are shown
in figure 9, and again, they show the same behavior we have seen all along, with slightly
different numerical values.
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Figure 9. The profit as a function of the supplier’s broadcast threshold B, for the cosine density, with
λ = 0.15, per-customer multicast cost γ = 0.10.

4. Conclusions and future work

In this work we built an economic model for multicast services, which we believe
is both reasonably realistic and amenable to mathematical analysis. A central compo-
nent in our model is that when enough customers subscribe to a service, the supplier
broadcasts the service to all the customers. From this model, coupled with some mild
assumptions on the supplier’s cost structure, we can find the optimal setting for the sup-
plier’s supplier’s broadcast threshold, and the optimal strategy for rational customers.

In all the examples we studied, our model predicts that the supplier’s profits will be
maximized if the supplier’s broadcast threshold is set below 100%. The loss in revenue
due to customers subscribing to fewer services is offset by the cost savings made possible
by broadcasting the most popular services to all customers.

We find that our model is analyzable, reasonably consistent with expected cus-
tomer behavior, and fairly robust with respect to parameter choices. As such, we believe
it can be of value to a supplier in devising a multicast/broadcast strategy, and that broad-
casting when subscriptions are sufficiently high is likely to be the approach of choice in
maximizing profits.

We believe that our model may be extended in several directions. Possible exten-
sions, which we leave for future research, include:

• Take the effects of disutility (or regret) into account. Intuitively, this should strengthen
the customers’ natural monotonicity, possibly allowing a proof characterizing when
global monotonicity holds.

• Consider more complex customer strategies, that take more than the customer’s own
valuation into account. While a full information game is unrealistic, it is reasonable
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for a client to sample a small set of friends and ask them for their opinions about a
movie. Alternatively, the customer may take into account the views of movie critics.
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