568 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

The Cache Location Problem

P. Krishnan, Danny RaMember, IEEEand Yuval ShaviitMember, IEEE

Abstract—This paper studies the problem of where to place net- Mirdad [20] have proposed the use of network caches for load
work caches. Emphasis is given to caches that are transparent to halancing. Clearly, how well caching inside the network will

the clients since they are easier to manage and they require no co-\yqrk depends on where the caches are located, and how data is
operation from the clients. Our goal is to minimize the overall flow . .
disseminated to them.

or the average delay by placing a given number of caches in the
network. This paper studies the cache location problem with an em-
We formulate these location problems both for general caches phasis ontransparent en-route caché¥ERCs). When using

and for transparent en-route caches (TERCs), and identify that, tepcg caches are only located along routes from clients to
in general, they are intractable. We give optimal algorithms for ’

line and ring networks, and present closed form formulae for some S€MVers, and are plgced transparently to the servers and cIient_s.
special cases. We also present a computationally efficient dynamic AN €n-route cache intercepts any request that passes throughit,
programming algorithm for the single server case. and either satisfies the request or forwards the request toward the
This last f:ase is of pa_trti_cular practical interest. It models a n_et- server a|ong thﬂggu]ar routing path Inthe typ|ca| arrangement
work that wishes to minimize the average access delay for a single .5 -yeg are co-located with routers or with L4 switches, and are
web server. We experimentally study the effects of our algorithm L . . .
using real web server data. We observe that a small number of m.alntamed by r]etwork prov[d'ers, Who'pr.owde a better service
TERCs are sufficient to reduce the network traffic significantly. ~ Withoutincreasing the capacities on their links. Such amodel has
Furthermore, there is a surprising consistency over time in the rel- significant operational benefits since caches can be introduced
ative amount of web traffic from the server along a path, lending easily into the existing infrastructure [9]. Almost all existing
a stability to our TERC location solution. Our techniques can be 5 hing products include a transparent operation mode [6], [7].
used by network providers to reduce traffic load in their network. . . .
TERCs are easier to manage than replicated web servers since
they are oblivious both to the end-user and the server. It is im-
portant to note that in en-route caching, the requests may not be
served by the closest cache, since we are not tampering with the
|. INTRODUCTION regular routing of packets. The effectiveness of TERCs depends

ACHING improves network and system performance fn the Internet routing stability during the connection lifetime of
World Wide Web browsing by saving network bandwidth®" HTTP session. Our measurements (see Section V-B-4) and

reducing delays to end clients, and alleviating server load [13fSUlts Py others [30], [24] suggest that for the short duration of

[29]. Currently, the popular locations for caches are at the ed@ HTTP connection, routing is mostly stable.
of networks in the form of browser and proxy caches, the ends ofOur goal is to optimize the gain for the system by mini-
high latency links, or as part of cache hierarchies [8], [31]. Signizing the overall traffic in the network, and reducing the av-
nificant research has gone into optimizing cache performarége delay to the clients. With appropriate costs placed on the
[8], [33], [29], [10], co-operation among several caches [8petwork edges, we can capture the general model of links with
[23], [26], [17], [15], and cache hierarchies [31], [8], [28]. WeHifferent bandwidths. Trying to find the best location by an ac-
servers are also replicated to achieve load-balancing. curate simulation using detailed logs of web activity is compu-
Placing caches inside the network is becoming more poputgpionally infeasible. Hence, we formulate our cache location
[34], [35], [13], [20]. Danziget al. [13] had observed the ad-Problem by looking at the network as a graph, and modeling
Vantage of p|acing caches inside the backbone rather than a{h&ﬂOW of data from servers to clients as flows on this network
edges. They showed that the overall reduction in network FBaph. These flows are affected by en-route caches, in that a
traffic is higher with caches inside the backbone (core nodedient request that can be satisfied by a TERC is not propagated
rather than with caches on the backbone edges (external nod@sthe server. We associate a hit ratio with each flow to repre-
Their study was based on data from early 90's NSF backbo#@nt the performance of the caching algorithm with respect to
traffic. A multicast-based approach to adaptive caching in tife This is because flows may have significantly different cacha-

network was also proposed recently [34], [35]. Heddaya aRdity. e.g., some flows may be coming from regional caches and
thus maybe less cachable than those coming directly from end

. . . rs.
Manuscript received February 19, 1999; revised August 9, 1999 and Mar%ﬁe s o])
14, 2000; approved by IEEE/ACMRANSACTIONS ONNETWORKING Editor K. In general, optimizing the location éfcaches in the network

Calvert. . . _ raph for criteria like minimum average delay is intractable.
P. Krishnan was with Bell Laboratories, Lucent Technologies, Holmdel,

07733 USA. He is now with ISPSoft, Inc., Tinton Falls, NJ 07724 USA (e-maill N€ Proof follows via reduction from the well-knownamedian

pk@ispsoft.com). problem [18]. However, for some special cases an optimal so-
D. Raz and Y. Shavitt are with Bell Laboratories, Lucent Technologieg,tion can be found in polynomial time. We present optimal so-

Holmdel, NJ 07733 USA (e-mail: raz@research.bell-labs.com; shavitt@. . . .

ieee.org). tions for the line and ring topologies, and present closed form

Publisher Item Identifier S 1063-6692(00)09124-X. formulae for some special cases.

Index Terms—Location problem, mirror placement, transparent
cache.

1063-6692/00$10.00 © 2000 IEEE

KRISHNAN et al: CACHE LOCATION PROBLEM 569

One particularly interesting case is a tree network with laberia’s DynaCache 200, CacheFlow products, ArrowPoint CS
single source. This is the case of a web server that wishesstries, and Lucent’'s IPWorX.
minimize the average access delay for its clients. We present @hanget al.[34] proposed an adaptive web caching structure
computationally efficient dynamic programming algorithm fousing multicast for data dissemination to the caches. Methods
this case. The computational complexity(ién - - k), where similar to the one we present could also be used to optimally
n is the number of nodes in the tréeis its height, and: is the place their adaptive caches. Cunha [12] studied a similar loca-
number of caches to be placed in the tree. tion problem in the context of push servers [3] and load bal-

In practice, an ISP that allocates a budgetfa@aches wants ancing. He presented simple local heuristics for load balancing
to place them in the locations that will minimize the traffic irthat also reduce the overall traffic in the network; however, his
its network. As pointed out by Breslaat al. [5], most of the work did not address the optimal location problem.
traffic generated in the Internet comes from a handful of very Our dynamic programming solution is similar to the one
popular web servers. Thus, using our algorithm for each of thagged by Tamir [32] for solving the-median problem. This
popular sites will reduce the traffic significantly. In Section Vidynamic programming method can be used for solving the
we discuss this problem and propose a more general heurigiimtransparent cache location problem where requests are

solution. routed to the closest cache. However, it works only if the entire
We experimentally validate our algorithms for two Bell Lab$ietwork were a tree, the number of sources were one, and the

web servers,www.bell-labs.com and www.multi- routing infrastructure were cache-aware.

media.bell-labs.com . The tree structure was derived by

performing traceroute s from the respective web servers [I. MODEL AND DEFINITIONS

to the accessing hosts, and the flows were obtained from thqn this section, we first present the model for general cache
access logs of these servers. We observe that a small nurqber

. : . Cation, and then present the TERC location problem. We con-
of TERCs, when placed at optimal locations, are sufficien . .
N .~ sider a general wide area network, where the internal nodes are
to reduce the network traffic significantly. These optima

locations arenot at the edae of the individual networks Whererouters and the external nodes are either servers, clients, or gate-
. 9 ' ways to different subnets. A client can request a web pligm
providers currently tend to place them. We also compare

ontimal algorithm acainst a areedy algorithm and report g%rrly of the servers, and the servgisends this page to the client
thpeir relati\?e erforrr?ance 9 y ag P v, on the shortest path from the server to the client. When caches
. P . o L are present, a client can request the page from a eactagher
An important issue with the practical impact of our resul

is th timal solution “stability” If th timal he | $han from the server. If an up-to-date copy of the requested page
't.s € opfima .]:c.’o u élon S at.' ! y-'t € OE ima c?fcr N Oclais in the cache’s local memory, the page is delivered to the client.
lons vary significantly overtime it may make any o-iin€ SolUnyparyise, the cache contacts the web server, refreshes its local
tion |n3|gn|f|c§1nt. we make two important obseryatlons. Firs opy, and sends the page to the client. Current protocols allow
although the intersection between the sets of clients accessiip as 1o validate the freshness of locally stored data [2], [16].

the web server at different times can be very small, the relatiyg. | performance of a caching scheme is a function of the net-
traffic from the server along the different tree paths remains r%\ll—

tively stable. Due to thi b that althouah th i ?rk topology, the request pattern, the assignment of caches to
atively stable. DUe o this, we observe that althougn the opti uests, the cache sizes, and the cache replacement algorithms
cache locations may change slightly over time, we can use ca

locations calculated from recent history data with little penalty Ou‘r goal here is to describe a model that will be clear and

in performance. We expect that the results of this paper COLéjgsy to realize, while at the same time maintain the essential

be used constructively in deploying network caches. arameters of the problem. We refer to the bytes sent to a client

The rest of the paper is organized as follows. In Sec“of‘ s theflow to the client. Our main goal is to find good locations

we presgnt our model in detail, gnd descripe the c'omputatllo?&J the caches. Caches are generally characterized byhteir

hit ratios [33], [29], [1]. It has been shown [4], [5] that amongst
all pages on a server, only a small fraction are very popular,
A. Related Work and our measurements support this observation. In other words,

. many clients request a small subset of pages from a server, and
Mi-rr di\l(?jc[;gi/ e_rreh(i;gr?;iig ftcc))r tlk?:dugzl?)?crlgr?-t?%Si?)g:ygearwl h high probability, these popular pages will be stored in most

. - . . caches, accounting for most of the cache hits. Therefore, in our
eration techniques to dynamically download hlgh-performamlgﬁzodeI we make a simplifying “full dependency” assumption
packet filters to the kernel [14]. Zharg al.[34] also advocated e if é page will be found in any cache, it will be found in the’
thebulse of en-route caches, but did not address the placen}ﬁg cache on the way to the server, '
problem.

. . . . We associate eadadtient flow f with a single numbep ; that
_Ina typical transparent cache !mplemenftatmn [7], [6], traffig, ¢ cachability of this flow. In other wordgy is the fraction
is filtered l_)y a designated L4 SWItC_h and diverted to the cach& ihe flow that is comprised of the popular pages that are ex-
Commercial products that are built for transparent operation
and aim at the ISP market include Cisco’s CacheEngine, Infolwe use the term web page to denote any requested entity.

570 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

pected to reside in most caches. Therefore, when a flavith As pointed outin Section I, the assignment of caches to clients
cachabilityp; passes through a cach, fraction of the flow in the Internet creates many nontrivial management problems.
is satisfied from its local memory; hence, we refepjoas the This motivates the TERC model where the caches considered
flow hit ratio. When several flows pass through the same noder a client request are only those located along the path from
their effective hitratio is the weighted average of their individudhe client to the server. The formal description of the TERC lo-
hit ratios. Note, that the full dependency assumption implies thezdtion problem is almost exactly like the general cache location
the upstream flow from a cache has an effective hit ratio of zeqaroblem presented above, with one small difference in the ob-
In the simple case where all the flows have the same hit gatiojective function. For the TERC location problem, the minimiza-
the hit ratio at any node in the network is ajso tion in the objection function is taken only over the nodes along
The reason caches are placed in the network is to imprabe path from the client to the server.
performance, primarily in terms of reducing the load on the net- Problem 11.2: The k-TERC location problem. The formal
works links. From a user point of view, performance is mealefinition of the TERCk-cache location problem is exactly as
sured by the response time [27], i.e., the time it takes for a patpe generalk-cache location problem (described in Problem
to arrive. This time depends both on the link delays and on tHel), except that the minimization in the objective function is
response time of the servers. In this paper, we consider ooler the sefwv;, € (K U {vs}) N {path(v., vs)}.
the delay due to the logical distance between the client and thébserve that the noncachable part of the flows is not affected
server. This delay takes into account the propagation delay dndthe caches, and therefore cannot affect the optimal cache lo-
the delay in the routers. Our objective is to minimize the averagation. We can thus replace each flgiw. with hit ratio p,_..
delay time for the user population weighted by their individuatith a flow of f; .ps . and a hit ratio ofp = 1, as formally
flows. This is equivalent to minimizing the total network flow,proved below.

i.e., the sum of the web flows taken over all the links. Theorem Il.1: The solution of Problem I1.2 with the demands
F = {f, .} and flow hit ratiosP = {p, .} is equivalent to
A. The Formal Model solving the problem fo#” = { f, .ps, .} with hit ratio of one.

The above discussion leads to the following formal model. Proof: Note that
The network is represented by an undirected g@ph (V, E),
whereV = {v;}i=7 is the set of nodes; is the set of edges Z
d(e), the length of edge reflects the delay caused by this edge,”
andd(v;, v;) is the sum of the link distances along the route ° [Ps,c » d(ve; va) + (1 = ps,) - (dve, va) +d(vr, vs))]
between nodes; andv,. We assume that shortest path routing = min f o [d(ve, vi) + (1 = ps,) - d(vk, vs)]
is used. The request pattern is modeled by the demanH,set ae REK (<)
where f; . is the flow towv. or the amount ef data_(in pytes) _ Z min fy .- d(Ve, vs) = fo, e - Do, e - d(vr, vs)
requested by client, from serveru;, andp, . is the hit ratio of ~ e K (s, 0)
that flow. We denote by the set of at most nodes where the
caches are to be placed. Teestc,, . (in bytesx distance) of whereK(s, c) = (K U {v;}) N {path(v., vs)}. The last tran-
demandf, . using a cache in location, is sition relies on the fact that TERCs are on the path from the
client to the server. Since the first term does not depend on the
Cs.c=Js e [Ps, e d(ve, vp) (1 =ps o) (d(ve, vr)+d(ug, vs))]. setK, the minimum is achieved for the placeménthat max-
imizesf, ¢ - ps, . - d{vk, vs). The solution for the problem with
An optimal assignment of a cache to a request is to assign caghie— {fs.ps.} and a hit ratio of one is given by (by simple
vy (or no cache at all) to the request such that the egstis substitution)
minimal among all possible, in KU{v;}. As explained earlier,
we assume a full dependency of the caches. Hence, this mooEE min f, ops o - d(Ve, Ur)
does not capture hierarchical structures [28], but does captusgs “* % ()
the push model [3]. Our overall objective here is to find a set _ Z
K that minimizes the total cost, i.e., the sdof all the costs,

min fs .
vy EI((S, c)

}n,in fs,cps,c . [d(vca Us) - d(vka Us)]
o v EK (s, ¢)

c 0Cs, c- .
Thez;above discussion can be formalized as a graph optimiza- — Z,Uké%}&c) Fo.eps.cr d(ve, vs) = fo,cPs,c - d(vr, vs)
tion problem in the following way. e
Problem II.1: The generalk-cache location problem Again, the first term does not depend on the &etand the
* Instance: An undirected graphi = (V, E), a set of de- minimum is achieved for the placeme#t that maximizes; .-
mandsF: V xV — N, asetof flow hitratioP: V xV — p, .- d(vi, vs).

[0, 1], and the number of cachés Based on Theorem II.1, we assume without loss of gener-
* Solution: A subsef(c V of sizek. ality for the analytical part of the paper (Sections Il and 1V)
* Objective: Minimizing the sum of costs: that all flows have the same hit ratio which we denotebsn
interesting observation is that tkeTERC location problem is
Z min fs . a special case of the genefatache location problem. This is

o vhEKULv.} true since if we assume that the shortest path is unique, and the

[ps o d(ve, vr) +(1=ps o) - (d(ve, vi)+d{wx, v5))]. distance of any other path is at leastlonger, then choosing

KRISHNAN et al: CACHE LOCATION PROBLEM 571

TABLE | 0.5 R
HARDNESS OF THEk-CACHE AND k-TERC LOCATION PROBLEMS (PoLY d
STANDS FORPOLYNOMIAL TIME, AND NP FOR NP HARD) (>—© greedy
04 *—x optimal

Bounded General
line | degree tree | Tree | Graph
1 server Poly Poly Poly NP
m servers || Poly NP NP NP

relative cost
(o]
w

0.2
for all flows p < (A/maxd(v;, v;) + A) forces the caches to 01
be on the path from the client to the server. When the metric "o
is minimum hop (i.e.d(¢) = 1, Ye) we can simply choose No. of caches
p < (1/”) Fig. 1. Line network with a single source and homogeneous client population.

We compare the greedy algorithm with the optimal placement.
B. Hardness Results

Given a setk of cache locations, determining the optimaYVhen caches are placed on the line in nodgs: - -, #, the
(possibly non-TERC) cache for each request and computing fiR% 7 is given by
total cost can be done i@(|F| - k + n?) steps, by a straight- kil ti—1 Kl
forward computation. The real problem is to find the best setr _ Z Z it = Z (tj —t; 10— Dty —t;1)
K. Whenk is small this is still tractable by checking all the 2

possibleK sets. In general, however, the problem is NP-hard. e = (2)
Table | shows a summary of the hardness results foktbache \heret, £ 0, andty . 2041 Clearly F is minimized when
location problem. thet;s are equally spaced, i.e.

Even the simple case where there is only one server in the ‘
network, and witlp = 1 is NP-hard. In fact, it is not too difficult ot _ m 3)
to show that this case is equivalent to the well-kngamedian ! k

problem [21], [18]. The negative result for the caseo$ervers 544 the minimal overall flow is

and a tree graph is for a similar model where the caches are

put on the edges of the graph, rather than at the nodes. Thig- _ (k + 1)} n < noo_) _ n(n —(k+ 1))' (4)
corresponds to caches that are related to a specific link. The 2E+1\k+1 2(k+1)

proof is obtained via a reduction from the multicuts problem We compare the optimal solution with a greedy solution that

[11] and h.olds even if the trees.are binary. : . calculates the optimal location of théh cache without the
Interestingly, the TERC location problem is computatlonallgbi",[y to change its decision about the location of the 1
as hard as the general cache location problem. The single server : : i
: . . préviously placed caches. If a greedy approach is taken, the first
general graph case (f6FTERCs) is proved waareductmnfromcache location is optimal. Thih cache is placed in the center

the vertex cover problem and is true for the model in which thq‘ .) . .
of the largest current gap. Interestingly, this algorithm gives
caches are put on the edges.

the optimal location foR™ — 1, m =1, 2, -- -, but suboptimal
locations for all other cases.
[ll. REGULAR TOPOLOGIES The cost for the greedy solution is given by
In this section, we analytically study some regular topologies. nn—b) k+1-bn?
We omit some of the details which appear in [22]. F= T T ()
A. Homogeneous Line with a Single Source whereb = 2llegz ¥+1] js the next point aftek where the optimal

nd the greedy algorithms give the same result.

The very simple case of a line network graph with a singl% . . . :
source and hitratip = 1, demonstrates some of the difficulties Fig. 1 depicts the o_hﬁ‘erences b_etween the cost O.f the optlmal
nd the greedy solutions. Théaxis shows the cost in relation

of the cache location problem. We calculate the optimal cacﬁe

.) . L Pthe situation when no caches are used. As can be seen in this
location for this case, and compare it to an intuitive greedy al-

. S . . ase, most of the savings is achieved by the first few caches.
gorithm that places caches on the line iteratively in a greedy: . :

. . . . is phenomenon is also observed in real network structures,
fashion, without replacing already assigned caches.

Consider a line with one server (source) at one of its ends ahd reported in Section V-B-2.

n — 1 equally active clients at every other node in the line. Tr\g Homogeneous Line with Multiple Sources
n — 1 links have the same cost, normalized to 1. '

The overall flow for the line is simply A more general case is when we have multiple sources. In
this section we analyze a line with homogeneous traffic require-
el ments, i.e., between every possible pair of nodes the traffic re-
—Dn i Qi i i i
F= i = (n] (1) Quirement is identical. In such a case the flow on the links is
P 2 bidirectional. We can distinguish between two types of caches:

572 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

no caches here

a single interface cache that handles only one directional traffic,
and a multi-interface cache that handles all the traffic through a N

router. We concentrate on the multiple interface cache, and refer O~-O-O-O0- 00000000

the reader to [22] for the single interface cache analysis.

Due to symmetry, when only a single cache is available, its n-l b J g 0

position is obviously in the line center. Whén> 1 we follow

[19] and analyze the continuous line rather than a discrete set- CliLk,2)

ting. Fork = 2, the cost of the flow in the line when two caches

are put at pointg; andt, (¢ < t2) is given by Fig. 2. Definition ofC'(j, lo, Li, k).

t1 t1 12 to

F = / / 2(s — r)dsdr +/ / 2(s —) dsdr location of thek caches in that case. Recall tHaf2(i) is the

r flow on the segment; — 1, ¢). In a similar way,FC(4, I,, I;)

ot a) ds dr is the flow on the segmerti — 1,), where the closest caches
), (s —r)dsdi are atl,, andl;, withn — 1 > I, > j > I; > 0. This flow can
t1 be easily computed from the input since we assume that the hit
+/ / (p+2(1—p))(s—r)dsdr ratiop is one. Note that'R(¢) = FFC(i, n — 1, 0).
0 vt For the base casg¢,= 1, itis easy to see that forall — 1 >
, , L, > 1,01, 1,1) = FC(, 1,0), andC(1, [;,0,0) =
+ + 2(1 — _ ds d) Y1y Ly) 4y) Y1y Yy
/tl /tz (p 201 = p))(s —r)ds i FC(1,1;, 0). Forj > 1, we have
t1 pl Claim II1.1:
+ [=)o = 4l —)+t dsar
1 0 tz 0(77 lov li7 k/) = Inln{c(7_17 j7 li7 k/_1)+FC(77 j? lZ)?
—s+ D (Bll—2) —tilta =Dt —t(1-t)) . (6) O = L los lis K) + FC(. o, 1)}
8
Deriving F by ¢, and comparing to zero yields ®

Proof: The optimal placement df caches in the segment
(7) [0, 4], can either put a cache at tji location and: — 1 caches
in the segmenfo, j — 1], or put all £ caches in the segment
substltutlngtOpt in F and deriving byt; gives the optimum at [0, j — 1]. Therefore, the optimal cost is the minimum cost of

opt __ 1+t1
ty = 5

#P* = 1/3, and substituting;™" in (7) yieldst5?" = 2/3. these two cases. O
_ The algorithm now is straightforward: first compute
C. The General Line c(,1;,1,1)andC(1, I;, 0, 0) for n — 1 > I; > 1. Next for

In this section, we give an optimal solution to the generg@chj > 1 computeC(j, l,, l;, k'), for all k > k" > 0, and
cache location problem with multiple interface caches on thie— 1 > I, > j > {; > 0. The complexity of this algorithms
line, i.e., clients and servers can be located on any node andsi(n°) to compute the base case, abh?® - k) to compute
any number. We use the full dependency assumption explaiféd; L, li, k).
in Section Il. Under this assumption the optimal location does .
not depends on the hit ratio, thus, for convenience, we assunfe-aRing Networks
hit ratio of one. The case of a ring with homogeneous load and caches that

Consider a line of: nodes numbered from O to — 1. The cache the data of their two interfaces is straightforward. Due to
input is the flow requirement from (up te) servers located at symmetry considerations, the caches should be placed at equal
the nodes to (up ta) clients located at the nodes. A node cadistance on the ring, regardless of their number of the hit
accommodate both a client and a server. From the input it is egsgbability p.
to calculate the flow requirement on segmént 1,), denoted Fig. 3 depicts the relative flow with three caches as a func-
by F'R(3). tion of the relative location of the caches in a bidirectional ring.

We use bottom-up dynamic programming method, to builéixing one cache on the ring, th&-axis is the distance the
an optimal solution to the segmefft ;], from the optimal so- two other caches are placed at relative to the first cache. The
lution for shorter segments, i.@, j — 1]. Let C(j, I, I;, &) optimum is achieved at 1/3, with an almost 75% reduction in
be the overall flow in the segmeftt, j], whenk’ caches are lo- traffic. At X = (1/2), the two additional caches are co-located.
cated optimally in it, and the closest cache to the segment bordéis depicts the traffic gain for two caches, which is a third of
node from the left (assume node 0 is the rightmost node) is ktre original traffic.
cated at nodé,, and the closest cache to the right is located at Symmetry considerations are not straightly applied to
nodel; (inside the segment). Fig. 2 shows an example of suchunidirectional rings (or bidirectional rings with single interface
segment. Note that — 1 > [, > j > [, > 0, placing caches at caches). However, regardlessiohndyp, the caches should still
the endpoints (0 and — 1) will not help, and we do not need tobe spread at equal distances to achieve optimal performance.
consider the case wheké > j. For simplicity we prove the case whege= 1.

The overall flow in the optimalk-location problem is Putting the first cache in the ring breaks the symmetry.
ming<;,«p C(n — 1, n — 1, I;, k), and what we seek is the Without loss of generality (w.l.0.g.), we can assume the cache

KRISHNAN et al: CACHE LOCATION PROBLEM 573

034 is to replicate the server. Explicit replication creates problems
0.32 with managing the different copies and redirecting the client to
' different locations.
§ 0.3 Automatic caching is an attractive proposition. An impor-
o tant question with caching that may have a big impact on the
:ﬁo.za overall improvement in performance is: where should one put
N the caches? If they are put very close to the server, the server load
0.26 may decrease but network congestion will remain a problem.
If they are put too close to the clients, there will be a lot of
02 s 03 045 04 045 05 caches, and each cache (i.e., copy of the document) will be

distance from 1st cache underutilized. Finding the optimal locations for the caches in-

Fig. 3. Relative flow in a ring network with three caches as a function of th\cleOIVeS looking at both these issues, and wranslates exactly to

distance of two caches from the third (assuming the distances of the two cach@&ving thek-cache |Ocati9n pr.oblem on the network graph in-
from the first are the same.) duced by the server and its clients.

Most of the web traffic is generated by a small number of
is put at location 0. The flow in the ring, when a second caclservers [5]. Therefore, an ISP that wishes to reduce the traffic in

is put at locatiord < z < 1, is given by its network can use our algorithm to reduce the traffic to these
z px z pl handful of servers. The same algorithm can also be used by con-
F = / / t—sdtds +/ / t—axdtds tent providers. These are companies that provide hosting ser-

0 S 10 ~ vices with the promise of fast content delivery to the end-user.

+/ / tdtds +/ / t— wdtds Using transparent caches in optimal locations for their clients

o Jo @ Ja can minimize the average access delay.

Lot Lo As mentioned in Section 1I-B, even the case when we have a

+ /w /S t—sdtds+ /ac /0 tdtds single server is NP-hard for general networks. We can, however,
2 _ 3z + 322 solve this case on a tree graph. Fortunately, if the shortest path

(9) routing algorithm implied by the Internet is stable, the routes to
various clients as viewed by any single server should be a tree
. graph. Thus we can apply an algorithm for the tree graph for the
comparing to zero. . X i :
one server case. As we will see in our experiments reported in

Next we prove that the optimal location &f caches in a) o . .
L . . Section V, some heuristics are needed to apply our algorithm in
unidirectional ring requires the caches to be placed homogfr— ctice

neously. For this end, examine three neighboring caches locate : .)
: . . e present two algorithms for this problem: a natural greedy
at locations 0 (w.l.o.g.)z, andy. It is sufficient to prove that lqorithm in Section IV-A and imal d :
= (y/2). The flow in the segmerfo, 4] is given by agorlt m in e_ct|on V-A and an opt|ma_1 ynamic program-
* yr=J. T ming algorithm in Section IV-C. The solution to the cache loca-

T t T 1 . . .
_ _ tion problem depends heavily on the request pattern. One might,
7= /0 /0 t—sdsdi+ /0 /t bdsdt therefore, argue that if this pattern is constantly changing, there

6
The optimal location: = (1/2) is obtained by deriving= and

y gt y plta is no real meaning to an “optimal” cache location. As we will
+ / / t—sdsdt+ / / t—adsdt demonstrate in our experimental results in Section V-B, it turns
xz xz xz t .. .
20 N _ 2 outthatthisis nottrue. Although the actual set of clients changes
8272~ y) 3$(26 Wy + G-y . (10) agreatdeal, the request pattern is stable. In particular, the flows

_)))) do not change that much at places that really matter, lending sta-
The optimal locationg = (y/2), is obtained comparing the bility to the solution.

derivative ofF to zero.
In the more general setting, where the ring is not necessamly Simple Greedy Algorithm

h_omogeneous, We can use our dynamic programming algoThe intuitive greedy algorithm places caches on the tree iter-

rithms from Section I11-C and from [22]. As we mentioned, the; e\ in a greedy fashion, without replacing already-assigned

first located cache breaks the ring into a line. Therefore, we Calches. That is, it checks each node of the tree to determine

run these algorithms, for any possible first cache location Wiffjere o place the first cache, and chooses the node that min-

an additional factor 0®(n) to their complexity. imizes the cost. It assigns the first cache to this node, updates

the flows on the network due to this cache, and looks for an ap-

propriate location for the next cache. Recall that we model the
The case of optimizing performance for clients of one wegffect of a cache by the hit ratjpalone. That is(1 — p) of the

server is of particular interest both from the theoretical and praisw into a cache is propagated up the tree to the server. The

tical points of view. Consider a popular server that gets many @emplexity of the greedy algorithm 8(nk).

quests and responds with large quantities of data (like big soft- o . .

ware and news distribution servers). As the number of requeSts Motivating the Optimal Algorithm

to the server and the data it serves increase, the performancas we showed in Section IlI-A for a line graph, algorithm

of the server declines sharply. One way this problem is tackl&teedy is suboptimal, but the difference is not signifi-

IV. SINGLE WEB SERVER CASE

574 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

(®) server
& client

(g o cache
@ C(ibk’,1+1)? 3

No cache at node i Cache at node i
Fig.5. Depiction of the dynamic programming optimizationdefi, . 1) in
éj)é a tree.

Greedy

O) Cligkk'i+1) Cligk',1) () 0) Cligk-k*-1,1)

Optimal
tion of the caches in these solutions. The amount of data we have
Fig. 4. A worst case example of Greedy versus Optimal. to keep iSO(nhk). At each node, for each < k&’ < k, and
0 < I < h, we have to check all possible partitionsidfto the
cant. In theory, the approximation ratio of Greedy (i.eleft and right subtrees. Therefore, the overall time complexity
lim sup{cost(Greedy)/cost(Optimal)}) is unbounded, where is hounded by (nhk?). However, using a clever analysis from
a bad example is a full homogeneous binary tree wite 2° [32], we can reduce the bound@(nhk). This is based on the
leaves andh caches. Clearly, the optimal solution will put aobservation that one cannot put in a subtree more caches than
cache in each leaf resulting in 0 cost, while the greedy algorithfiile number of nodes in it. Thus, for small subtrees (that have
will occupy the nodes from the root downward, ending with Ress thank nodes) we have to work less. Combining this with
cost ofn — 1. Itis true, however, that Greedy always needs afcounting argument that shows that the number of “big” (i.e.,
most twice as many caches to get the same cost as the optigiah children of the node have more thgi2 nodes in their sub-

algorithm (see Fig. 4). trees) isD(n/k), one can show that the actual complexity of the
] _)) algorithm isO(nhk) (see Lemmas 1 and 2 in[32]). Thisis much
C. The Optimal Dynamic—Programming Algorithm better than th&(n>k?) complexity of a different dynamic pro-

Given a tree ofn nodes, a set of (at most) flows repre- gramming algorithm for this problem proposed in [25].
senting demands satisfied by a single server located at the roothis dynamic programming algorithm has been imple-
of the tree, and the number of cacheswe need to compute mented, and it can solve the cache location problem on a tree
the optimal locations for the caches and the total cost. We useamsisting of several tens of thousands of nodes, with a depth of
bottom-up dynamic programming approach in the spirit of [32§ixteen, and: = 30 caches in a few minutes on a Sun Ultra-1
First, the general tree is converted into a binary tree by imachine. Our algorithm can also be used in more general cases,
troducing at most dummy nodes. We then sort all the nodeas described in the next section.
in reverse breadth first order, i.e., all descendants of a node ardhe same basic dynamic programming technique can, in fact,
numbered before the node itself. For each nbtaving chil- be used to handle the generalization of our model where we re-
dreni; andig, for eachk, 0 < k < k, wherek is the maximum place the cost of a hop from unity to any distance metric. This
number of caches to place, and for eddh< [< h, wherehis change does not affect the computational and space complexi-
the height of the tree, we compute the quan(ity, k, [). This ties of the algorithm.
quantityC(i, k, [) is the cost of the subtree rooted:awith %
optimally located caches, where the next cache up the tree is at V. EXPERIMENTS AND RESULTS
distancel from <. With each such optimal cost we associate a
flow, (i, k, I), which is the sum of the demands in the subtret?1

. . . e results from our experiments. Recall that reducing flow and
rooted at that do not pass through a cache in the optimal SOIféiwerin the average delay are equivalent in our model and we
tion of C(¢, k, 1). Itis not too difficult to verify that if no cache 9 g y q

is to be put at nodé, then the optimal solution faf'(¢, k, 1) is use these terms synonymously.

the one where

In this section, we describe our data collection method and

A. Data Collection and Methodology

021,2,;(0(“’ KoL+ D4R, k=K, T+ D+(1+1) We collected data from two web servers: a medium size
-7 P Y ‘ site, www.bell-labs.com , that receives about 200-300 K
(G, B D)+ F(ig, =K T+ 1)+1 f5i) - cachable (i.e., non-cgi) requests a week, and a smaller site,
is achieved (see Fig. 5). If we do put a cache at ngcte www.multimedia.bell-labs.com , that receives
optimal solution is the one where up to 15000 cachable requests a week. We denote the
. PR L , www.bell-labs.com site by BL and thewww.multi-
ngl,?(%_l)(c(%’ K, 1)+ Clin, k=1-F,1) media.bell-labs.com site by MMfor convenience. We

P Y, considered two weeks of server logs from seBer(from late
+ (i, b U+ 1)+ Flin, k=K, 1+ 1) 1997 and early 1998) corresponding to “nonholiday” periods.

is achieved. While running the dynamic program we should al€ver these two weeks, an average of 14000 unique hosts per
compute the appropriate(é, &, [), and keep track of the loca- week accessed the server and 1 Gbytes of cachable data per

KRISHNAN et al: CACHE LOCATION PROBLEM 575

week were retrieved. We similarly chose seven weeks of servi ' ' ' ‘ ‘ == gresdy 100
-6~ optimal 100
logs from serveMMOver these seven weeks, an average of 40 oss| -7 groody 300 ¢
. optimal
unique hosts per week accessed the server and 180 Mbytes | — - greedy 500
0.96 ~&- optimal 500 H

week were retrieved. The log files provided us with the serve
to client flows required by our model. Note that requests to thr oss}
web server were post proxy cache, and hence the traffic tr |
servers see has already passed, in part, through existing cact

To obtain the network graph (in this case, the tree along whic £ ooy]
data is sent from the server to the client) we did the following ® | i
For each of the unique hosts that accessed the servers, we
traceroute from the respective server to the hosts. In ar °%*
ideal world with an unchanging network and perfect shortes g}
path routing, we would get a tree rooted at the web server b
putting together the traceroute information. What we obtainec
however, was not a tree, due to several reasons. Some of t 08 : L s " . . E P
routers have several parallel links and multiple interfaces the.. No. of caches
make the network graph a directed acyclic graph (DAG) rather
than a tree. This was easily corrected by specifying for eagly. 6. Greedy versus optimal. The relative amount of traffic remains when
router the lists of its multiple interfaces. The more difficult probusing TERCs for serveBL, when the top 100, 300, and 500 pages are cached
lems occur due to destinations that were alternating between tffgek of bec. 1997).
(or more) routes. This phenomena was observed mostly in the

traceroutes from servéL, since it was bi-homed through twowe also show that the cache location solution is stable, i.e., an
ISPs (BBNPLANET and ALTERNET) during the time of the offline calculation of the cache location based on past data is
experiments; the same phenomenon was observed, to a legsgdningful.
degree, in routes passing through the MCI backbone. Whent) Traffic Reduction: To demonstrate the amount of traffic
multiple paths to a node are identified we left in the graph ontat can be saved using TERCs, we computed the total cost after
the path with the maximum aggregated flow, and pruned the rgsfitting TERCs in the optimal location with respect to the cost
The trees that we obtained had about 32 000 nodes for dityer without caches. Recall that our cost is computed in terms of the
and about 12 500 nodes for serd This technique of creating pytes of data times the number of hops it travels. This was done
the topology tree from a set of traceroutes has been used befeig several cache sizes and is presented in Fig. 6 for a week
e.g., in [12]. of December 1997. For this week, caching the top 100, 300,
For each data set, we computed the 100, 300, and 500 m&s8l 500 pages requires caches of size 0.6, 3.5, and 7.9 Mbytes,
popular pages at the server. Following our model, we assume@pectively. For a week of January 1998, the respective cache
that all caches host these popular pages. The cachability of eggles are 1.2, 14.4, and 22.5 Mbytes (see explanation later). It
flow is thus defined as the portion of the popular pages in th@n be seen, for example, that in caching the top 500 pages,
flow. putting just three caches (in the appropriate locations) reduces
In Section V-B, we present the results of our experimentge overall traffic by more than 15% for the December 1997
using this data. Intuitively, nodes contributing a small flow havigeek. Similar savings can be achieved by using six caches that
minimal chance of impacting the solution, but add to the runnir]g)|d the top 300 pages. Better improvements were observed for
time. We therefore studied simple heuristics for speeding up aHe January 1998 week. More significant reduction in traffic is
algorithm by pruning the tree and eliminating nodes with littlachieved when we consider only the traffic of a single ISP as
contributing flow. The exact method for pruning was to discargemonstrated in Fig. 9. One can also observe that the greedy
nodes that contributed less thaf of the total flow into the algorithm works well in both cases (Figs. 6 and 9) within 3% of
server. We observed that for sufficiently small values plike the optimal.
z < 0.1%, the solution computed by our dynamic programming The reason for the large difference between the two weeks
algorithm did not change, but the number of nodes to proceggses from a sub-tree in the server that contains a collection of
decreased. Pruning also helps in visualizing the important pagfge files; each file contains slides to accompany a chapter of

0.82+ bt

of the tree. an operating system book. In the second week, the demand for
these slides rose tenfold and advanced 20-30 very big files, each
B. Results 0.4-1 Mbytes, in the popularity chart from below the top 500

The results can be viewed under several categories. We ffi& the first week to places in the range of 123-360. This also
demonstrate the amount of traffic reduction that can be obtaini8fluences the cachability figures: for the week of December
by using TERCs. We then show that choosing the “right” [01997 the percentage of the flow (byteisops) which is stored
cation is nontrivial, and our approach has advantage over fh¢caches with the top 100, 300, and 500 pages is 21%, 31%,
common use of caches at the edges of the network. We compitd 38%, respectively, while for the January 1998 week these

the optimal algorithm with the greedy cache location algorithrRumbers are 17%, 46%, and 55%, respectively. The cacheability
increases when the caches include over 300 pages, but so does

2BBNPLANET is now part of GTE. the required cache size.

576 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

TABLE I
COMPARING THE GREEDY AND THE OPTIMAL . DATA FROM THE SERVER BL FOR
THE 1997 WEEK, CACHING THE TOP 500 PAGES.

Greedy Optimal
cost [node | cost node location
01 -1 -
1 |} 0.901 3210901 | 32
2 || 0.830 18 | 0.830 | 18 32
3 | 0.767 40767 | 18 324
4 || 0.740 | 126 | 0.740 | 18 126 32 4
5 || 0.727 48 | 0.727 | 18 126 48 32 4
6 || 0.716 74 | 0.716 | 74 18 126 48 32 4
7 || 0.708 23 [0.708 | 74 18 33 126 48 103 4
8 || 0.701 | 204 | 0.700 | 74 18 33 126 48 103 23 4
9 || 0.695 52 | 0.693 | 74 18 33 204 126 48 103 23 4

TABLE I
COMPARING THE GREEDY AND THE OPTIMAL . DATA FROM THE SERVER BL FOR

Fig. 7. The outgoing traffic from serveBL with the portion of the BBN THE 1997 WEEK, CACHING THE TOP 100 FAGES

network emphasized.

Greedy Optimal
2) Comparison with Common Practicddaving realized cost _|node| cost node location
the benefit of putting TERCs in the network, we would liketo 9 || 1 -1 -
demonstrate the importance of where the caches are located. ; g'gzg ‘g g'gig ?g 32
A commonly ysed solution is to put caches at the edges of the 5 || g3 40930 | 18324
network. Putting caches at all the boundary nodes of a network 4 |l 0.922 | 126 | 0.922 | 18 126 32 4
is an example of this solution and would presumably reduce the 5 || 0.917 | 48 | 0.917 | 18 15748 32 4
provider network traffic significantly. However, there are many 6 | 0.914 | 74 | 0.914 | 74 18 157 48 32 4
such connection points, requiring a large number of caches to 7 || 0.912 | 204 | 0.911 | 74 18 33 157 48 103 4
be placed. 8 || 0.909 | 23| 0.909 | 74 18 33 157 48 103 23 4
An alternative approach is for the network provider to use the 9 110907 | 52]090774183320412648103234

algorithms presented in this paper and determine a small number

of nodes at which to put TERCs. We show that such an approach.. . .
can save almost the same amount of traffic using significant| q:'g' 9 shows the relative cachable flow in the BBN network

fewer caches. For this experiment, we considered only thetraﬂ}éer placing a number _(betvx{een 0-25) of caches accqrdmg to
inside the network of one of the ISPs (BBNPLANET) for serve?"® of the four strategies discussed ab‘?"e- Fpr placing]‘our
BL. Fig. 7 shows the entire outgoing tree from serBerup to caches and more, .the boundary strategy is trailing the opurpal
depth of 16, where the BBNPLANET network is emphasize&nd greedy strategies by over 10% of the_cachable floyv, which
Out of the more than 11 000 nodes in the figure, 415 nodes feanslates to over 4% of the overall traffic. From a different
long to BBNPLANET. Fig. 8 shows part of the outgoing traffic@nale, tp get _the traffic_reduction achieved with seven caches
tree as viewed by servaL. In all tree figures in this paper (ex- Placed in optimal locations, we need to place 15 caches on
cluding Fig. 7), the number nextto a node is its unique id, and tft€ Poundary. Note that, as expected, random placement is ex-
number near an edge is the normalized traffic on this edge. TiHmely inefficient since with high probability caches are placed
radius of the node is proportional to the traffic through it. Thi& low traffic regions.
server is always located at node 0. For clarity, we only present3) Comparing the Algorithms’ Performancei/e now com-
the part of the tree which is the most relevant. pare the greedy algorithm presented in Section IV-A and the
There are about 360 relevant points at which the network@gtimal cache placement algorithm presented in Section IV-C.
connected to different parts of the Internet, so putting caches\8f¢ present a few examples of the locations found by the optimal
all these edges would enable us to reduce the cachable tradfi¢l the greedy algorithms, and measure the actual benefits of
in the BBN network practically to 0. We compared four cachesing them, taking into account the traffic stability. In Tables Il
placement strategies (see Fig. 9): Optimal, greedy, optimal and Ill, we present the optimal cache locations and the cache
the boundary only, and random. The optimal and the greelbgations obtained by the greedy algorithm, along with the nor-
algorithms are the ones discussed in Sections IV-C and IV-falized cost of the resulting configuration for serBrusing
respectively, applied only to the BBN portion of the networkhe first week of data.
For the special case of boundary placement, we observe than Table Il we can see that until the sixth cache (fourth in
the greedy strategy is optimal. This is true since here no tWable IIl) both algorithms behave the same. If we look at the
caches can be placed on the same path from the server. Tésulting costs, however, it turns out that the difference is only
random strategy simply selects locations uniformly at randort%; not as dramatic as one might expect. Fig. 6 plots the cost of
We average five random selections for each point. both algorithms as a function of the number of TERCs; Fig. 9

KRISHNAN et al.:

CACHE LOCATION PROBLEM

Q32261

82

1040

@ 32262

8

7 49
S

45 Lo 32268

g 46

82 p 32263

S 3

180
17

1 g 32270

17
5 50

0.9

0.8

0.7F

061 N

relative flow
o o o [
n w E w
T T T T

o
T

optimal
greedy
boundary/| |
random

No. of caches

25

10446
4]

032264
8365

727

2 0

o 32271

24

X 127

2 ¢ 2366

Lo 32277
| 728

o 32273

g 158

4
© 204
o 32272
2856

585

6 290

577

o 32274

o 159

2857
le 1 g 2858

29 32275

3o 586

g 291 6 292

$ o293

13260

126 1267 13263

13 264

L 729

1 730

15137

1o 731

o 32276
o 681
o 32265

Lo 1811

3 o 32267
o 1372

S 18421

is when the seventh cache is placed. There, the optimal algo-
rithm removes the cache from node 32, and puts two caches at
nodes 33 and 103, which are the children of node 32. This is
a common transformation that the optimal algorithm performs.
Table 11l exhibits another typical behavior (though observed in
fewer cases than the first) in the transformation from four to five
caches. A cache in node 126 is replaced by a cache in node 48
which is its great-grandparent and in node 157 which isits child
(see Fig. 8). Later the transformation from eight to nine caches
replaces a cache in node 157 with a cache in its parent node 126
and its child 204. The reason for these transformations is that
the route 32-48-124-125-126-157-204 has a large portion of
the traffic, with some heavy splits along it. Node 48 is a BBN
backbone router that receives a third of the traffic fiBin node

204 is the BBN interface to MAE-east that receives about 5% of
the traffic. The transformation from six to seven caches involves
(as in Table Il) the replacement of a cache in node 32 with two

Fig. 9. Comparison of several placement strategies for a single ISP netwe&ches at its children nodes, 33 and 103.
(BBN in this case).

Overall the difference between the two algorithms is very
small and typically in the range of 0.75-3%. We checked over

plots larger differences for the BBN portion of the network. 1830 cases by considering a combination of daily and weekly data
Table I, the first time the two algorithms behave differentlyor both servers and detected the same phenomenon.

578 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

32510
g SR 11 2

o
i T
449 & 32579
o S 576
587
y 633 24
7 443 E D

EP 331 o > 50
~7

Des

28 651
/‘ 2
152 S 194s
0 Se 1563
Y
100 16 o g
JONL 16 § 1
9
7 512
S 038
D=0 1173
D 6
32515
68 . 665 666
L ! 5718
3 e LI LT
173 517
308523
1 9
1 6403
7527
68 1 3
49 2528
63
0
! 2541
86 877
= A
4 127
2564
o
52 23 847
213
2
& N 2
124 o
42524 1
1 o342
2 N
- ofe
& i
148 T 5
3 4. 184
4 oY 23(9)7
3. 08 5630
oy 128
S 32582
@0 ™
168 35
adt | 32558
e e 4751
478
10; 306
8 471
= feid
o > o 1750

Fig. 10. Routing tree for January 13, 1998, for sefBkr

As discussed in Section IV-B, in theory, the approximation This similarity is surprising given the fact that the client pop-
ratio of greedy is unbounded. However, in practice, based alation varies significantly from day to day. We observe that
our experiments, the greedy algorithm behaves quite well. Thigere were only between 2.7-7.5% “repeat clients”, i.e., there
is probably due to the fact that the scenarios in which the greedgs a very small intersection between the client populations of
algorithm performs badly are somewhat pathological and do rasty two days for the two-week data from ser@dr. In partic-
appear in practice. Specifically, the example where Greedy patar, for the two days shown in Figs. 10 and 11, there were only
forms miserably is for a balanced tree, while, in practice, we48% repeat clients. A similar effect was seen for sekikt
noticed that the flow trees tend to be highly imbalanced. Table VI and VIl in the Appendix show details of this phenom-

4) Stability: Inthis section, we show that over time, the flonenon.
pattern from the source to the clients is stable, at least in the parfo measure stability of the cache placement solution, we
of the tree that has most of the flow and is therefore relevantdo the following. We calculate the optimal cache locations
caching. using the entire two-week data for seri8L, assuming for

As we said in the Introduction, although the client populatioconvenience a constant hit ratio for all flows. For each day,
changes significantly from day to day and from week to weetlye compute the cost for that day using these cache locations,
the flow in the outgoing tree from the server to the clients rend compare it with the cost of the optimal location for that
mains pretty much stable in the branches that carry most of tthey. Table 1V shows this ratio for placement of six and twelve
traffic. This means that the part of the tree relevant for cachirgches. The difference is between 1%-55%. However, most
does not change by much as time progresses. of the big differences occur in the weekend days when traffic

Figs. 10 and 11 show the trees obtained from the logs feolumes are smaller and where traffic patterns are somewhat
serverBL for two days in January 1998, the 13th and the 14thifferent. Table V compares the performance of the cache
The two trees are visibly similar (actually, mirror images, sindecation calculated based on the seven week data from server
the two gateway nodes, 2 and 14, are reversed in the two plodMwith respect to the optimal location per week. For six

KRISHNAN et al: CACHE LOCATION PROBLEM 579

32517

524 | 5701 L s
74 156,450 Ly5e1 $2525
V32531 ~ 155013
o5l 1 o 5023
32532
2 e
. 33 a2 5 o 1343
8 —©
A 13 150
*\xw————ﬁ—eg{“
37253 L 32547
98
367) §(2)543
86 87
1127
1805
190 533
4 32562
839
9 100 2 o, S5
548
425
273
81 847
g
548
L 6610
/ﬁ.:—‘l_;gzgz
165
- re—— L
| 8s 0
ad 1075
—e0————o 33
s —— i
s ——]
N — 1
46
104 o 35
471
62 oW1 a1 105
1
et
2 145 2 s
52 ase
. 633 ?gég
449
N 361 4 ;5 ;3 s
1173
3 32528
21, o
2662
1246
£
167 2 32520
5 410
2787
350
6
Fig. 11. Routing tree for January 14th, 1998, for se®ker
TABLE IV TABLE V
RATIO BETWEEN THE PLACEMENT SOLUTION BASED ON THE TWO-WEEK RATIO BETWEEN THE PLACEMENT SOLUTION THAT IS BASED ON THE
DATA AND THE OPTIMAL DAILY SOLUTION FOR SERVER BL ACCUMULATED 7 WEEK DATA AND THE OPTIMAL WEEKLY SOLUTION
FOR SERVER MM
day date 6 caches | 12 caches
SUN | Jan 11 { 1.33221 [1.40064 week || 6 caches | 12 caches
MON | Jan 12 || 1.06318 | 1.24182 8 |1 1.03795 | 1.14502
TUE | Jan 13 || 1.0331 1.11151 9 |l 1.06289 | 1.16789
WED | Jan 14 | 1.18086 | 1.12338 10 1'06615 1.26899
THU | Jan 15 [} 1.02191 | 1.05215 1 1.10764 1'22822
FRI | Jan16 | 1.01368 | 1.15499 : :
SAT | Jan17 || 1.36181 | 1.55984 12 1 1.18493 | 1.29394
SUN | Nov 30 || 1.09162 | 1.30728 49 || 1.04459 | 1.12884
MON | Dec 01 || 1.28618 | 1.43075 50 || 1.34613 | 1.41774
TUE | Dec 02 || 1.09031 | 1.202
WED | Dec 03 || 1.08761 | 1.19723
THU | Dec 04 || 1.10327 | 1.18992 based on historical data, one can reduce the network traffic by
FRI | Dec 05 || 1.04525 | 1.10881 15% . v six TERC . 40% hi o f I
SAT | Dec 06 || 1.14363 | 1.32723 % using only six S, assuming a o hit ratio for al

flows.

a) Routing Stability: The effectiveness of TERCs de-
caches, in five of the weeks the difference is less than 10%. fEmds on the stability of Internet routing. Since a TERC is
twelve caches, the differences are between 13%-14%. snooping on TCP packets, a route change may result in discon-

It is instructive to view these results in the context of thaections. Paxson’s measurements [30] suggest that most routes
traffic improvement numbers from Fig. 6. By placing caches remain stable over the small lifetime of an HTTP connection.

580 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

VI. DISCUSSION

Web caching is a very cost-effective method to deal with net-
work overload. Solutions like TERCs have the advantage that
they do not require changes (like a proxy assignment) by a user,
and are easy to install and manage locally within a provider net-
08 - work. Therefore, they are attractive building blocks to any future
caching strategy. Once installed, the benefit from a device will
determine the further use of this solution. We identify that the
04} . location at which the caches are placed play a prime role in the
resulting traffic and load reduction. Thus, addressing the loca-
tion problem of caches is an important part in the campaign for
02 1 web caching.

In this paper, we laid the groundwork for research in this
area by defining the model and devising a computationally effi-
o e me e s me e ww cient algorithmic solution for the important practical case of one

No. of pages cached server. We have experimentally demonstrated the advantage of
using TERC-like caching devices in today’s World Wide Web,
and the importance of the cache location problem.

Clearly, there are still many open questions. The most im-
Labovitz et al. [24] studied Border Gateway Protocol (BGP)portant problem is how to optimally locate TERCs in the case
route changes and concluded, similarly, that in reality, Intern&hen there are many servers. That is, where should the caches
routing is stable. They found that 80% of the routes change @@ put inside a provider network that supports many clients and
frequency lower than once a day. To verify the Internet routirggrvers. Our results suggest that the following iterative heuristic
stability in the context of caching we measured the short-teffrereedy which is an adaptation of the greedy technique,
stability of Internet routes. To do so, we performed three cofibould work well in practice. Fof = 0, algorithm¢-Greedy
secutivetraceroute s from Bell Labs to 13 533 destinations S the standard Greedy algorithm described in Section IV-A.
On the average, the time between the start of the first tracerofiff generalé, algorithm £-Greedy greedily replaces some
and the last was about one minute. Initially, we found that ovéf'éady assigned caches with+ 1 caches. That is, caches
90% of the routes did not change during that period. Usirifjat are already assigned can be moved around in a limited
equivalences (eliminating differences that are due to multipf®y t© improve the objective cost function. The intuition for
interfaces of the same router), we observed that almost 93%”EJ§ algorlthm stems from our observation that, in practice, the
the routes are actually stable in our measurements. We ex mal solution for our single server experl_ments was always
the real number to be higher, since our equivalence inclu fained by2-Greedy For example, the optimal solutions in

only interface pairs we could positively identify as equivaler}nae{/?d;?:d 2:1 aﬁlﬂgg?\/{zﬂr bﬁfgfﬁ;ﬁzeowt?"; Fi)srotzlztn?t is
and we expect that we missed many more. g any P 9

Due to the packet re-orderings caused by route changes, le"’nlrder to obtain general network web traffic data.

ISPs implement route caching for TCP connections (€.g., usin Another important issue is our objective function: What do

e . . want to optimize in a wide-area network to get better per-
NetFlow Switching in the Cisco 7200 and 7500 series router§ ymance? Our algorithm would work for any average benefit
i.e., even when routing entries change, existing “connectio

the old routi th. Th i hing did not effect "Rinction that corresponds to a global criterion but will not work
use the old routing path. The route caching did not NeCt Oy 4ot case measures like improving the most loaded link, or

meaSl_Jrements e_tsacerogte _uses UD_P packets. _Note tI_"atthe most loaded server. Other interesting directions for further
fluttering (or rapidly oscillating routing) if not combined with oqearch include the extension of the model to enable it to cap-
route caching can create problems for TERC effectiveness; hqyyze hierarchical caching structures and multicast traffic. Tech-
ever, fluttering creates many performance problems for TCP i, e Jike the ones used in active networks and the continued
general [30]. o 5 process of memory cost reduction may lead to a scenario in

b) Popularity Stability: Fig. 12 shows stability of \yhich caches can be dynamically moved in the network. This

the most popglar pages in 'S“BL- For every numberz, i require local distributed techniques to deal with the dy-
1 <z < 500, it plots the portion of the pages that are on thggmic optimal cache location problem.

top = popular page list in both weeks (November, 1997 and
January, 1998). For example, seven out of the top eight list
of one week are also on the top eight list of the other week,
and therefore, the persistence plotted is 7/8. Fig. 12 shows that
for the first 50 pages, the popularity list of both weeks always Tables VI and VII show the fraction of the clients that access
share more than 90% of the pages, and in most cases more tharweb server in two different days (weeks in the case of server
95%. In general, the popularity lists are, at least, 75% identicMM). For each two days, we calculated the number of unique
Note that the two weeks compared are not consecutive (thesers who accessed the site in both days divided by the total
are five weeks apart). number of clients accessing the server in either of the two days.

% persistent
o
o
T
L

0.3p T

0.1

Fig. 12. Popularity stability for servesL.

APPENDIX

STABILITY STATISTICS

KRISHNAN et al: CACHE LOCATION PROBLEM

581

One can see that only a small fraction of the user population
(2.5%—-8%) repeat coming back to both sites. In addition, agig]
expected, this fraction decreases as the distance between the

days (weeks) increases.

(1]

(19]

REFERENCES
Proc. Usenix Symp. Internet Technologies and SystBes 1997.

[20]

[2] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer pro-

tocol—HTTP/1.0,”, RFC 1945, May 1996.

[3] A.Bestavros, “Demand-based document dissemination to reduce traffig21]

[4]

(5]

(6]
(71
(8]

[9]
(20]

(11]

and balance load in distributed information systemsPiioc. 7th IEEE
Symp. Parallel and Distributed Processing (SPDP;9San Antonio,
TX, Oct. 1995, pp. 338-345.

——, “Speculative data dissemination and service to reduce server loa
network traffic and service time for distributed information systems,” in
Proc. 1996 Int. Conf. Data Engineering (ICDEJew Orleans, LA, Mar.
1996, pp. 180-189. 23]
L. Breaslau, P. Cao, L. Pan, G. Phillips, and S. Shenker, “Web cachiné
and Zipf-like distributions: Evidence and implications,”mmoc. IEEE [24]
INFOCOM'99, Mar. 1999, pp. 126-134.

B. D. Davison. Proxy cache comparison. [Online]. Available: [25]
http://www.web-caching.com/proxy-comparison.html

Jupiter Communications. Internet caching resource center. [Online].
Available: http://www.caching.com/ 26
A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K.[]
J. Worrell, “Hierarchical internet object cache,” presented at the Useni>T27
Tech. Conf., San Diego, CA, Jan. 1996. 1
M. Chatel, “Classical versus transparent IP proxies,”, RFC 1919, Mar.
1996.

E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving end-to-end [28]
performance of the Web using server volumes and proxy filtergydm
SIGCOMM Sept. 1998, pp. 241-253.

G. Calinescu, C. G. Fernandes, and B. Reed, “Multicuts in unweightedzg]
graphs with bounded degree and bounded tree-width,Inbeger
Programming and Combinatorial OptimizatipiR. E. Bixby, E. A.

Boyd, and R. Z. Rmos-Mercado, Eds. New York: Springer, 1998, pp.[30]
137-152.

[22)

TABLE VI
PERCENT OFCLIENTS THAT APPEAR IN THELOGS OF ANY TWO DAYS FOR SERVER BL
day 0111 | 0112 | 0113 | 0114 | 0115 | 0116 | 0117 | 1130 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206]
0111 435 | 4.00 | 3.78 | 3.69 | 3.55 | 3.73 | 3.25 | 3.12 [3.21 | 296 | 3.01 | 2.79 | 3.36
0112 || 4.35 6.93 | 6.06 | 5.66 | 5.34 | 3.58 | 2.77 | 440 | 3.85 | 3.86 | 3.87 | 4.02 | 3.33
0113 || 4.00 | 6.93 748 | 6.10 | 6.12 | 4.26 | 3.28 | 4.58 | 4.25 | 4.16 | 4.34 | 4.25 | 2.96
0114 || 3.78 | 6.06 | 7.48 7.33 | 648 | 4.07 | 3.03 | 4.21 | 423 | 4.28 | 4.34 | 4.25 | 3.15
0115 || 3.69 | 5.66 | 6.10 | 7.33 741 | 4.30 | 2.77 | 3.71 | 4.02 | 425 | 3.98 | 420 | 2.88
0116 || 3.55 | 5.34 | 6.12 | 6.48 | T7.41 5.38 | 3.13 | 421 | 4.56 | 4.12 | 4.10 | 4.36 | 3.25
0117 || 3.73 | 3.58 | 4.26 | 4.07 | 4.30 | 5.38 3.36 | 299 | 3.14 | 2.86 | 2.88 | 3.18 | 3.46
1130 || 3.25 | 2.77 | 3.28 | 3.03 | 2.77 | 3.13 | 3.36 432 | 4.08 | 415 | 3.42 | 3.49 | 4.23
1201 || 3.12 | 4.40 | 4.58 | 4.21 | 3.71 | 4.21 | 2.99 | 4.32 7.00 | 6.34 | 6.06 | 497 | 3.58
1202 || 3.21 | 3.85 | 4.25 | 4.23 | 4.02 | 4.56 | 3.14 | 4.08 | 7.00 6.88 | 5.89 | 5.35 | 3.94
1203 || 2.96 | 3.86 | 4.16 | 4.28 | 4.25 | 4.12 | 2.86 | 4.15 | 6.34 | 6.88 7.01 | 5.58 | 3.48
1204 || 3.01 | 3.87 | 4.34 | 434 | 3.98 | 4.10 | 2.88 | 3.42 | 6.06 | 5.89 | 7.01 7.15 | 3.95
1205 || 2.79 | 4.02 | 4.25 | 425 | 4.20 | 4.36 | 3.18 | 3.49 | 497 | 5.35 | 5.58 | 7.15 4.82
1206 || 3.36 | 3.33 | 2.96 | 3.15 | 2.88 | 3.25 | 3.46 | 4.23 | 3.58 | 3.94 | 3.48 | 3.95 | 4.82
TABLE ViII [12] C. Cunha, “Trace analysis and its applications to performance enhance-
PERCENT OFCLIENTS THAT APPEAR IN THELOGS OF ANY TWO ments of distributed information systems,” Ph.D. dissertation, Boston
WEEKS FORSERVER MM Univ., Boston, MA, 1997.
[13] P. B. Danzig, R. S. Hall, and M. F. Schwartz, “A case for caching file
wk || 8 9 10 11 12 49 50 objects inside internetworks,” idCM SIGCOMM Sept. 1993, pp.
239-243.
8 6.30 | 4.75 [548 | 3.92 | 2.21 | 2.29 [14] D.R.Englerand M. F. Kaashoek, “DPF: Fast, flexible message demulti-
9] 6.30 7.68 | 5.59 | 437 | 2.13 | 2.07 plexing using dynamic code generation,’/A€M SIGCOMM Stanford,
10 || 4.75 | 7.68 6.17 | 4.65 | 1.76 | 1.71 CA, Aug. 1996, pp. 53-59.
11 [5.48 | 5.59 | 6.17 6.62 | 2.08 | 2.16 [15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
12 || 3.92 | 4.37 | 4.65 | 6.62 2.16 | 2.09 able wide-area Web cache sharing protocol AGM SIGCOMM Sept.
49 || 2.21 | 2.13 | 1.76 | 2.08 | 2.16 7.44 1998, pp. 254-265.
502202071 171] 216 | 2.09 | 7.44 [16] R.T.Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, and T. Berners-Lee,
“Hypertext transfer protocol—HTTP/1.1,”, RFC 2068, Jan. 1997.
[17] S. Gadde, M. Rabinovich, and J. Chase, “Reduce, reuse, recycle: An

approach to building large internet caches,”Hroc. 1997 Conf. Hot
Topics in Operating Systems997.

M. R. Garey and D. S. Johnso@pmputer and Intractability: A Guide
to the Theory of NP-CompletenessSan Francisco, CA: Freeman, Nov.
1979.

M. W. Garrett and S.-Q. Li, “A study of slot reuse in dual bus multiple
access networksJEEE J. Select. Areas Communwol. 9, pp. 248-256,
Feb. 1991.

A. Heddaya and S. Mirdad, “Webwave: Globally balanced fully
distributed caching of hot published documents,”lifith IEEE Int.
Conf. Distributed Computing SystenBaltimore, MD, May 1997, pp.
160-168.

O. Kariv and S. L. Hakimi, “An algorithmic approach to network loca-
tion problems—Part II: p-medians3IAM J. Appl. Math.vol. 37, pp.
539-560, 1979.

P. Krishnan, D. Raz, and Y. Shavitt, “Transparent en-route cache loca-
tion in regular networks,” ilDIMACS Workshop Robust Communication
Networks: Interconnection and Survivabilityol. 53, N. Dean, F. Hsu,
and R. Ravi, Eds., New Brunswick, NJ, Nov. 1998, pp. 81-96.

P. Krishnan and B. Sugla, “Utility of co-operating web proxy caches,”
in Proc. 7th Int. World Wide Web ConBrisbane, Australia, Apr. 1997.
C. Labovitz, G. R. Malan, and F. Jahania, “Internet routing instability,”
in ACM SIGCOMM'97 Aug. 1997, pp. 115-126.

B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby, “On the op-
timal placement of web proxies in the internet, TEEE INFOCOM'99
Mar. 1999, pp. 1282-1290.

R. Malpani, J. Lorch, and D. Berger, “Making world wide web caching
servers cooperate,” iAroc. 4th Int. World Wide Web Conbec. 1995.

1. Melve, “Why internet service providers should integrate web caches
into their networks,” inWeb Caching in the Internet ConSep./Oct.
1996.

National Laboratory for Applied Network Research. (1998) A dis-
tributed testbed for national information provisioning. [Online].
Available: http://www.nlanr.net

National Laboratory for Applied Network ResearcNLANR Web
Caching Workshop Boulder, CO, June 1997, [Online]. Available:
http://www.nlanr.net/Cache/Workshop97/.

V. Paxson, “End-to-end routing behavior in the InternédEEE/ACM
Trans. Networkingvol. 5, pp. 601-615, Oct. 1997.

582 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000
[31] G. Chisholm, A. Rousskov, and D. Wessels. Squid internet object cacl Danny Raz(M'99) received the doctoral degree from
[Online]. Available: http://www.nlanr.net/Squid the Weizmann Institute of Science, Israel, in 1995.
[32] A.Tamir, “An O(pn?) algorithm for thep-median and related problems From 1995 to 1997, he was a Post-Doctoral
on tree graphs,Oper. Res. Lettvol. 19, pp. 59-64, 1996. Fellow at the International Computer Science
[33] S. williams, M. Abrams, C. R. Stanridge, G. Abdulla, and E. A. Fo Institute, Berkeley, CA, and a Visiting Lecturer at the
“Removal policies in network caches for World-Wide Web documents University of California, Berkeley. Since October
in ACM SIGCOMM 1996, pp. 293-305.)) 1997, he has been with the Networking Research
[34] L. Zhang, S. Floyd, and V. Jacobson, "Adaptive web caching Center at Bell Labs, Lucent Technologies, Holmdel,
'r? N/'7ANR Web ?&Che /}/IVor(l;shopune 1997, [Online]. Available: NJ. His primary research interest is the theory and
ttp://www-nrg.ee.lbl.gov/floyd. —+ it f
[35] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd, and V. Ja ﬁgmgﬁggn of management related problems in 1P

cobson, “Adaptive web caching: Toward a new global caching archi-
tecture,” presented at the 3rd Int. World Wide Web Caching Workshop,
Manchester, U.K., June 1998.

P. Krishnan received the Ph.D. in computer science
from Brown University, Providence, RI, and the B.
Tech in computer science from the Indian Institute o
Technology, Delhi, India.

He is currently with ISPSoft, Inc. Prior to joining ;
ISPSoft, he was with the Networking Researcl ‘
Center at Bell Labs, Lucent Technologies, Holmdel ~-~4-"
NJ. His research interests include IP networking - -

Yuval Shavitt (S'88—M’'97) received the B. Sc. in
computer engineering (cum laude), M. Sc. in elec-
trical engineering, and D. Sc. from the Technion—Is-
rael Institute of Technology, Haifa, Israel, in 1986,
1992, and 1996, respectively.

From 1986 to 1991, he served in the Israel Defense
Forces, first as a System Engineer and the last two
years as a Software Engineering Team Leader. After
graduation, he spent a year as a Postdoctoral Fellow
at the Department of Computer Science, The Johns
Hopkins University, Baltimore, MD. Since 1997,

and management, the development and analysis beé has been a Member of Technical Staff at Bell Labs, Lucent Technologies,
algorithms, prefetching and caching, and mobileHolmdel, NJ. His recent research focuses on active networks and their use in
computing. network management, QoS routing, and Internet mapping and characterization.

