TRANSPORTATION SCIENCE

Vol. 39, No. 2, May 2005, pp. 233248
1sSN 0041-1655 | E1sSN 1526-5447 | 05| 3902 | 0233

[l lorms}

por 10.1287/trsc.1030.0080
©2005 INFORMS

Shipping Multiple Items by Capacitated Vehicles:
An Optimal Dynamic Programming Approach

Shoshana Anily

Faculty of Management, Tel Aviv University, Tel Aviv, Israel, anily@post.tau.ac.il

Michal Tzur

Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel, tzur@eng.tau.ac.il*

e consider a system in which multiple items are transferred from a warehouse or a plant to a retailer
through identical capacitated vehicles, or by identical freight wagons. Any mixture of the items may
be loaded onto a vehicle. The retailer is facing dynamic deterministic demand for several items, over a finite
planning horizon. A vehicle incurs a fixed cost for each trip made from the warehouse to the retailer. In addition,
there exist item-dependent variable shipping costs and inventory holding costs at the retailer, which are both
constant over time. The objective is to find a shipment schedule that minimizes the total cost, while satisfying

demand on time.

We address and partially resolve the question regarding the problem’s complexity by introducing a dynamic
programming algorithm whose complexity is polynomial for a fixed number of items, but exponential otherwise.
Our dynamic programming formulation is based on properties satisfied by the optimal solution, and uses an
innovative way for partitioning the problem into subproblems.

Key words: logistics; inventory/production; multiple item; dynamic programming
History: Received: July 2002; revision received: March 2003; accepted: June 2003.

Introduction and Literature Review
Consider a system in which items of several types are
transferred from a warehouse or a plant to a retailer
through identical capacitated vehicles, or by identi-
cal freight wagons, each with a finite capacity. We
assume that the transportation activity is outsourced
to exogenous freight carriers so that the number of
vehicles available in a period is unlimited. Any mix-
ture of items may be loaded onto a vehicle as long
as the capacity restriction is not violated. The retailer
is facing dynamic deterministic demands for sev-
eral items, over a finite planning horizon. The carrier
charges a fixed cost for each vehicle that is dispatched
from the warehouse to the retailer, in addition to
item-dependent variable shipping costs. Items that are
stored at the retailer at the end of a period incur item-
dependent inventory holding costs. Both the item-
specific shipping costs and inventory holding costs
are constant over time. The objective is to find a ship-
ment schedule that minimizes the total cost, while
satisfying demand on time.

The same problem may arise in a production envi-
ronment, in which production decisions of multiple
items have to be made, using a certain resource.
A fixed cost is associated with the production of a

*Currently visiting the Transportation Center and IE/MS Depart-
ment, Northwestern University.

233

batch (or a partial batch) of items, where each batch
is of limited quantity. A specific variant of either the
transportation or the production setting that we refer
to in the sequel occurs when there is a capacity restric-
tion in each of the periods, i.e., the number of avail-
able vehicles or batches in each period is limited to
one.

In the case where multiple vehicles may be used
in each period (each vehicle has limited capacity, and
each incurs a fixed cost), we refer to the problem as
the multiple items, with multiple vehicles (MIMV)
problem, which is the focus of this paper. The related
problem, in which only one vehicle may be used, is
referred to as the multiple items with a single vehicle
(MISV) problem.

Capacity restrictions exist in most realistic trans-
portation or production systems, but are often
ignored. One apparent reason for this phenomenon
is the difficulty associated with the consideration
of capacitated resources, together with nonstationary
demand, even in relatively simple systems. (See the
literature review below.) Another issue, which is not
well addressed in the literature, is the consideration of
transportation in multiple batches, in particular when
multiple items are involved. In this paper, we analyze
the transportation problem of several different items
by multiple capacitated vehicles.

234

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

For the MIMV problem, we identify structural
properties that are satisfied by an optimal solution.
Those enhance our understanding of the solution
arrangement, and lead to algorithmic improvements
in our suggested solution procedure. We show a close
connection between our problem and the MISV prob-
lem, and explain how our results can be used to
solve the latter. The importance of our results, in
addition to our algorithmic enhancements, are in the
insight that we gain into the solution structure, which
may be useful for more complex systems with similar
characteristics.

The importance of the MIMV problem has increa-
sed in recent years, with the growing practice of many
manufacturing companies to outsource transportation
activities to exogenous freight carriers. In fact, some
companies are outsourcing their entire supply-chain
activities, in which case the MIMV problem may arise
as a subproblem: when the entire system includes
multiechelons, for example. The MIMV problem may
also be associated with a production facility and a
warehouse, where the former is located in a distant
location, and the latter is in close proximity to the
customers. The problem of shipping different items
by capacitated vehicles—possibly via an exogenous
logistic company, from the production facility to the
warehouse, where they incur holding costs—is well
represented by the MIMV problem.

We conclude this section with a literature review
on capacitated transportation or production problems,
with and without batching considerations. Most of
these problems are from the literature on dynamic lot-
sizing problems, where production batches stand for
vehicles. The single-item with a single batch problem
is known in the literature as the capacitated dynamic
lot-sizing (CDLS) problem. Two versions of the prob-
lem are associated with the cases where the capaci-
ties are constant (static) or time varying (dynamic).
When T denotes the number of periods in the prob-
lem, Florian and Klein (1971) introduced an O(T*)
algorithm for the CDLS with constant capacities, con-
cave production costs, and linear holding costs. Van
Hoesel and Wagelmans (1996) improved this result by
introducing an O(T?) algorithm for the same prob-
lem with time-varying linear cost parameters. Florian
et al. (1980) proved that the same problem under
time-varying capacity restrictions is NP-hard. They
suggested a nonpolynomial procedure to solve the
problem. Chen et al. (1994) suggested a more effi-
cient, though still exponential, dynamic programming
approach to the latter problem.

When considering the single item with multiple
batches (SIMB) problem, only the static capacity case
has been considered in the literature. Pochet and
Wolsey (1993) investigated the SIMB problem with
time-varying setup, inventory holding, and variable
production costs. The problem was shown to be poly-

nomially solvable by finding a shortest path in an
appropriately defined network, resulting in an algo-
rithm whose complexity is O(T*min{C, T}) = O(T?),
where C is the capacity of a batch. They also showed
that the problem can be formulated as a linear pro-
gramming problem with O(T®) variables and con-
straints. Lee (1989) addressed the SIMB problem in
which there exists a setup cost for ordering in a par-
ticular period, in addition to a different setup cost
incurred for each batch; he presented an O(T*) proce-
dure for the problem.

Proceeding to problems that consider multiple
items, the literature becomes very sparse. Constantino
(1998) studied the MISV problem in a production
setting, where in addition to the total capacity in a
period each item that is produced in a given period is
subject to lower-bound and upper-bound constraints
on its production quantity. Federgruen et al. (2002)
studied the MISV problem, where the capacity limits
and the cost parameters vary over time. They devel-
oped and analyzed a heuristic, which under mild
parameter conditions can be designed to be g-optimal
for any ¢ > 0, with a running time that is polynomi-
ally bounded in the size of the problem. Pryor et al.
(2000) considered the same MIMYV problem as we con-
sider here, suggesting a heuristic as well as an opti-
mal procedure. Both solution methods are based on
finding the shortest path in a network with nodes
that correspond to periods and arcs that correspond
to a schedule from the lower to the higher indexed
node. This general shortest path approach is common
to many algorithms for this type of problems, includ-
ing our approach. The difficult part is in computing
the arc costs, however (see §2). Their heuristic gen-
eralized a heuristic algorithm due to Lippman (1969)
for the single item case; it was based on computing
heuristically the arc costs in the above network. They
also presented a generalization of a search algorithm,
which determines the optimal solution for the prob-
lem. They did not specify the complexity of the opti-
mal search algorithm. In an accompanying paper to
this one, Anily and Tzur (2004) investigated the per-
formance of several algorithms for the MIMV prob-
lem, including a new exponential search method.

Yano and Newman (2001) analyzed a more gen-
eral problem than the MIMV problem, in which the
demand for the items dynamically becomes available.
However, their algorithm does not necessarily gener-
ate the optimal solution for the special case of our
problem, as we demonstrate in §2.

Unfortunately, it is still unknown whether even
the simplest multiple item versions, i.e., the MISV
or the MIMV problems with constant capacity and
cost parameters, are polynomially solvable or NP-
hard. In this paper we partially resolve this ques-
tion by introducing for the MIMV problem a dynamic
programming formulation whose solution complexity

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

235

is polynomial for a fixed number of items but expo-
nential otherwise. This means that for a fixed number
of items, the problem is polynomially solvable. When
the number of items is part of the input, the com-
plexity issue is still unresolved, though our conjecture
is that it is NP-hard. In addition, we prove that the
MIMYV problem is at least as hard as the MISV prob-
lem, both under constant capacity and cost parame-
ters. Therefore, the results obtained in this paper for
the MIMV problem are also applicable for the MISV
problem.

The rest of the paper is organized as follows: In
the next section we introduce the problem’s nota-
tion, an integer linear programming (ILP) formula-
tion of the problem, and some preliminary results
on the structure of an optimal policy. In addition,
we prove that the problem is at least as hard as the
MISV problem with constant capacity. In §2, we pro-
pose an algorithm that computes an optimal policy
by solving a shortest-path problem on an appropri-
ately defined network. However, computing the arcs’
costs of this network is the intricate part of the solu-
tion. To compute the arcs’ costs we develop, in §3, an
exact dynamic programming formulation whose com-
plexity is polynomial for a fixed number of items, but
exponential otherwise. Section 4 concludes the paper.

1. Notation and Preliminaries
The MIMV problem is specified by the following
parameters:

M =number of items.

T =number of periods in the planning horizon.

d; = demand for item i in period ¢t. We assume that
all demands are integers.

p; = cost of shipping a unit of item i.

h; = cost of holding in inventory at the retailer a unit
of item 7 at the end of each period.

K = setup cost of dispatching a vehicle (or part of it).

C = capacity of a vehicle, i.e., the number of units
that may be loaded in one vehicle.

We assume that all items have the same weight and
volume specifications; therefore, a vehicle may con-
tain any mix of items as long as the total number
of units does not exceed C. No limitations exist on
the number of vehicles that can be dispatched in one
period. All demands must be met on time without
backlogging. Demand in a given period may be sat-
isfied through shipment in the same period, or from
the period’s initial inventory. The problem is to find
an optimal shipping policy that minimizes the sum of
dispatching, variable shipping, and holding costs.

The following decision variables will be used in the
ILP formulation below:

X;(t) = shipping quantity of item i in period ¢,
l<i<Mand 1<t<T,;

Y () = number of vehicles dispatched in period ¢,
1<t<T;

I;(t) = inventory of item i at the end of period ¢,
l<i<Mand 0<t<T.

We assume that the initial inventory of each item
and its final inventory at the end of the horizon are
zero, i.e., [;(0)=0and [(T)=0for 1 <i <M.

Let V(X) denote the total cost incurred by the ship-
ping quantity matrix X, i.e.,

T M
V(X)= Z(Z(pixi(t) L) + KY(t)).

t=1 \i=1
In the sequel we also use the following notation:

X(t) = total shipping %Jantlty of all items in period
tie, X(H =2, X;(t),1<t<T;

I(t) = total inventory of all items at the end of
period t,ie., [(H) =M, L(t), 1<t<T.

We also use the following auxiliary notation.

Let D;(', t') =Y/ d;; and D(¥, ') = 2, Di(t', 1)
be the total demand in periods t/, ..., t" —1. We define
D(t',t)=0.

The MIMV problem can therefore be written as
follows:

Min V(X)=MinZ<Z(Pin-(t)+h1-1i(f))+KY(t)>

t=1 \i=1

st. L) =L{t-1)+X,(t)—d; 1<t<T, 1<i<M
M

X(t) = > X(t) 1=<t=T
i=1
X(t) < CY(t) 1<t<T
1,(0) = 0, I(T)=0 1<i<M
L(t) =0, X;(t)=0 1<t<T, 1<i<M
Y(t) integer 1<t<T.

Due to the fact that the variable shipping costs are
static and
T
> X(T)=D;(1,T+1) Vi,
t=1
the total variable shipping cost of a feasible solution
is constant, namely,

M

> piD(1, T+1),

i=1
Therefore, we ignore this cost component in our
future analysis. In other words, the only costs that
affect the cost of a solution are the vehicle-dispatching
costs and the items” holding costs. (In the sequel, we
use the terms solution, policy, and schedule inter-
changeably; they have the same meaning.) A pol-
icy can be described by a matrix X of M rows and
T columns where the (i,t)th element in the matrix
is X;(#).

The above ILP formulation for MIMV contains

as many general integer decision variables as the

236

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

number of periods in the problem (the Y (t) variables).
Therefore, the solution time, when solved through
general ILP software, may be relatively large. In a pre-
liminary study that we performed, we ran the above
ILP using the AMPL software with the CPLEX solver.
For problems with number of periods and number of
items ranging from 10 to 50, we observed that run-
ning times were variable, and ranged from 1 second
to over 5 hours. Moreover, even for problem instances
with the same parameter characteristics, there was a
large variability in solution time. Our conclusion is
that although some problems may be solved through
ILP, this is not an appropriate solution method for this
problem in general.

We use the term full vehicle to refer to a vehicle
loaded by a quantity of C units, and the term partial
vehicle to refer to a vehicle that is loaded by a posi-
tive quantity of less than C units. Therefore, a ship-
ment of X(¢) units in any period ¢ consists of | X(t)/C]
full vehicles. If X(t)modC > 0, then the shipment
consists, in addition, of a partial vehicle loaded by
X(t)mod C units.

Assume that the items are numbered in a nonde-
scending order of their holding cost rates. Note that
different items with identical holding cost rates can be
combined into a single item, since they are identical
for all computational purposes. Therefore, we assume
without loss of generality that 0 < hy <h, <.+ < hy,.

We are now ready to present our first lemma,
which consists of four important properties—denoted
as (P1)—(P4)—that are satisfied by an optimal solu-
tion. The first property is an extension by Pryor et al.
(2000) to a similar property that was proved by Baker
et al. (1978) for the CDLS problem. Property (P4) was
proved in Pryor et al. (2000).

LemmAa 1. For any optimal policy X and associated
optimal inventory matrix 1, the following properties hold:

ProperTY (P1).
It—1)(X(#H)modC)=0 1<t<T
ProrerTY (P2).

X(f) = 2 (dy = Li(t=1))"

X(H)modC if X(t)modC >0
< 1<t<T
C if X(t)mod C =0
ProPeRTY (P3).
X(t)<[D(t, t+1)/C]C 1=<t=T

ProPERTY (P4).

Lyt)<C 1=<t<T.

Proor. Property (P1) states that if the initial inven-
tory in period t is positive, then the shipping quantity
in period t consists of full vehicles only; otherwise, we
could reduce the total costs by delaying the shipment
of some of the items that are carried from the previ-
ous period. For the same reason, if the optimal policy
is to ship a partial vehicle then the initial inventory in
that period should be zero. Property (P2) states that
an optimal schedule never dispatches a vehicle whose
entire content is for future periods. This is true since
otherwise we could reduce the total costs by postpon-
ing the shipment of the entire vehicle. Property (P3)
states that the maximum shipment quantity never
exceeds the total capacity of the minimum number
of full vehicles required to cover the demand in that
period. Otherwise, we could reduce the total costs by
delaying the shipment of at least one vehicle. This is
in fact a special case of (P2), when the starting inven-
tory in a period is zero. Finally, Property (P4) states
that the amount that we hold in inventory from the
most expensive item is always less than the vehicle
capacity. O

Note that as a result of the above lemma the ending
inventory of an optimal schedule in two consecutive
periods t and t + 1 must satisfy I(t+1) < I(t) +C.

In the next lemma we show that, given the total
shipping quantities X(t) for each period ¢t, 1 <t <T, it
is beneficial to delay the shipment of expensive items
(i.e., items with high inventory holding cost rates) as
much as possible. A similar property was presented
in Pryor et al. (2000).

LemmMma 2. Consider two feasible policies X and X' such
that X;(t') > 0 and X;(t") >0 for 1 <t' <t" < T and
h; < h; for two items 1 <i < j < M. If policy X" is identi-
cal to policy X except for the following elements, Xi(t') =
X;(#) -1 X{(t) = X, () +1; Xi(t") = X;(t") +1; Xi(t") =
X;(t") =1, then V(X') < V(X).

Proor. The changes in policy X’ (compared to pol-
icy X) are: (i) One unit of item i is shipped in period #
instead of in period #” and (ii) one unit of item j is
shipped in period t” instead of in period #'. Since both
policies are feasible, the first change incurs an addi-
tional holding cost of I; for each of the periods t', ' +1,
..., =1, and the second change saves a holding cost
of hj for each of the periods t/, ' +1, ..., t" — 1. There-
fore, V(X') = V(X) = (t"—t')(h; —h;) <0. O

CoRroLLARY 1. For any optimal policy X and associated
optimal inventory matrix 1, the following holds: If for some
period t we have that X,(t) > 0 for some item i, then for
items j>1, L(t—1)=0.

Based on Lemma 2, and given a vector (X(1), ...,
X(T)) of aggregated quantities shipped in each
period, the Scheduling algorithm described below
computes the best detailed schedule for each period,

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

237

that is, it determines the shipment quantities of each
item in each period. Given a vector (X(1), ..., X(T)),
the algorithm uses the following procedure to deter-
mine the quantities X;(t) for I1<i<Mand 1 <t<T:
Start at the last period and allocate to it X(T) units
by giving priority to the most expensive items that
are demanded in this period (i.e., start with the most
expensive item and allocate to it its demand, continue
with the next expensive item, and so on, down to the
least expensive item). If X(T) < D(T, T + 1), then shift
the excessive demand in period T, i.e,, D(T, T+1) —
X(T) least expensive units, to period T — 1 and repeat
the process backward to period 1. A formal descrip-
tion of the algorithm is given in Appendix A.

The complexity of the scheduling algorithm is
O(TM), given that the items are ordered in a nonde-
scending order of their inventory holding costs. Oth-
erwise, it is O(MT + Mlog M).

We conclude this section by proving that under
static capacity and cost parameters the MIMV prob-
lem is at least as hard as the MISV problem, i.e.,
any algorithm that solves the MIMV problem is also
capable of solving the MISV problem. Note first that
the MISV problem is feasible if, and only if, for any
t, 1<t=<T, DA,t+1) <tC, ie., the total demand
over the first t periods does not exceed the cumu-
lative maximum load that is allowed by the vehi-
cle capacity during these periods. Our first step is
to prove that it is sufficient to consider only MISV
instances for which the demand in each period does
not exceed C. To do this, we present an algorithm,
referred to as the Shifting algorithm, which is applied
to any feasible instance of the MISV problem to get
another instance of MISV, in which the demand in
each period does not exceed C. This is done recur-
sively by shifting the demand for the least expensive
items from a period whose total demand is greater
than C to the previous period. The complexity of the
algorithm is O(TM). A formal description of the algo-
rithm is given in Appendix B. Lemma 3 below proves
that both instances have the same optimal shipment
schedules.

LemMA 3. Suppose we are given a feasible instance 11 =
{Di(t,t+1):1<t<T, 1<i<M]} of the MISV prob-
lem for which there exists at least one period t,2 <t <T,
such that D(t, t +1) > C. By applying the Shifting algo-
rithm we obtain a new instance of the MISV problem 11’ =
{Di(t,t+1):1<t<T, 1<i<M}with D'(t,t+1) <
C for 1 <t <T. Then a shipment schedule is optimal for
instance 11" if and only if it is optimal for instance II.

Proor. We first prove that the optimal solution to
IT" is also optimal to II. Our proof is based on the fol-
lowing claims: (i) The cost of any solution X that is
feasible for both instances 11 and II' incurs under 11

a higher cost than under II'. However, the cost dif-
ference is a constant, which does not depend on X.
(if) Any feasible solution for II’ is also feasible for II
but not vice versa. (iii) The optimal solution for II is
feasible for IT'.

As a result of the above three claims, the set of fea-
sible solutions to instance II' is a subset of the set
of feasible solutions to instance II, but it contains all
optimal solutions of II. Since the costs of any solution
to II and II’ differ by a constant, the optimal solution
for IT' is also optimal for II.

Claim (i) follows from the fact that a unit that was
shifted from, say, period t to period ' < t incurs
under II the additional cost (compared to II') of being
held in inventory for (t — ') periods. The sum of
these inventory holding costs over all units that were
shifted is the cost difference, which depends only on
the identity of the shifted units, their holding cost
rates, and the number of periods by which they were
shifted, but not on the solution.

Claim (ii) follows since, given a feasible solution to
IT’, we obtain a feasible solution to II by just keeping
in inventory the units that were shifted. Not every
solution to II is feasible for IT', however, since under
I" a unit that was shifted from t to # has to be
shipped by period ', while it may be shipped after #
(but before t) according to the solution to II.

To prove claim (iii), note that due to the capac-
ity restrictions, the same number of units that were
shifted by the Shifting algorithm have to be shipped
early by any feasible solution to II. Moreover, they
have to be shipped as early as the period to which
they were shifted. According to Lemma 2 it is prefer-
able to shift first the units of the least expensive items,
as is done by the Shifting algorithm.

To prove that the optimal solution to II is also opti-
mal to II', we note again that the set of feasible solu-
tions for IT' is a subset of the feasible solutions for 11,
that the optimal solution for II is feasible for II', and
that the cost of each feasible solution for II' differs
from the cost for II only by a constant. [

The next lemma is based on Lemma 3, and proves
the desired relationship between the MIMV and MISV
problems.

LemMA 4. For static capacity and cost parameters, the
MIMYV problem is at least as hard as the MISV problem.
That is, if the MISV problem is NP-hard, then the MIMV
problem is also NP-hard.

Proor. We show that any algorithm that solves
the MIMV problem can also be used to solve the
MISV problem. As a result, if no polynomial algo-
rithm exists for the MISV problem (unless P = NP), it
implies, also, that no polynomial algorithm exists for
the MIMV problem because otherwise it could also be

238

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

applied to the MISV problem. Thus, if the MISV prob-
lem is NP-hard, the MIMV problem is also NP-hard.

To show that any algorithm that solves the MIMV
problem can also be used to solve the MISV problem,
recall that by Lemma 3 and the fact that the Shift-
ing algorithm is polynomial, it is sufficient to consider
MISV problems in which the total demand in each
period does not exceed the capacity limit. Thus we
consider such instances from now on in the proof. By
applying the optimal algorithm for MIMV on such
an instance of MISV, we get a schedule in which at
most one vehicle is dispatched in each period. This is
due to the fact that the total demand in each period
does not exceed C, and with two dispatched vehi-
cles in a given period all the content of the second
vehicle is for future use, contradicting the structure of
an optimal schedule (see (P2) of Lemma 1). Because
the MISV problem is more restricted than the MIMV
problem, but the solution of the latter is feasible for
the former, we conclude that it is also optimal to the
former. 0O

As mentioned in the introduction, the complexity
of the MISV problem is still unknown. Here we have
shown that any method for the MIMV problem can
also be applied to the MISV problem. In particular,
one can apply the dynamic programming formulation
suggested in §3, which is polynomial for a fixed num-
ber of items but exponential otherwise.

2. Formulation as a Shortest-Path

Problem

In this section we show how to find an optimal policy
by solving a shortest-path problem on a network with
nodes 1,2,..., T+ 1. In the proposed network there
exist arcs connecting pairs of nodes ' and t” with
1<t <t"<T+1. An arc connecting node #' to node
t” represents the minimum cost schedule between
period t' and period t" —1, given I(t' —1) =1(t"—1) =
Oand I(7) >0 for t'—1 < 7 < t”"—1. The cost on this arc
consists of all dispatching and inventory holding costs
incurred in periods ', +1,...,t" —1. An optimal
schedule for arc (t', t”) dispatches the minimum possi-
ble number of vehicles in periods t', ..., " —1 to cover
the demand in these periods. This observation fol-
lows from Property (P1) of Lemma 1, which ensures
that the shipping quantity in periods t'+1,...,¢" —1
should all be full vehicles (i.e., integer multiples of C).
Only in period t' can a partial vehicle be dispatched,
since then the starting inventory is zero. Thus, the
total setup cost of arc (¢, t”) is K[D(t', t")/C]. If the
total holding costs on the arcs were given to us,
we could obtain the optimal solution by applying a
shortest-path algorithm that requires O(T?) time. (See
the example at the end of this section, illustrating the
shortest-path construction.)

As mentioned in the introduction, Yano and
Newman (2001) solved a more general problem
than the MIMV that we consider here. Their solu-
tion method, when applied to our MIMV problem,
resolves the issue of computing the holding costs on
the arcs by employing a simple procedure that dis-
patches the vehicles as late as possible without caus-
ing a backlogging. Indeed, for the SIMB problem (i.e.,
M =1) it is easy to see that this proposed schedule is
optimal for all possible arcs. However, we use the fol-
lowing example by Pryor et al. (2000) to demonstrate
that delaying shipments as much as possible is not
necessarily optimal for all arcs in the network when
multiple items are involved. Consider an arc of four
periods and two items with C =10, h; =1, h, =100,
demand for Item 1: 0, 0, 6, 6 in Periods 14, respec-
tively, and demand for Item 2: 4, 4, 0, 0 in Periods
1-4, respectively. According to Yano and Newman’s
(2001) schedule, shipments are delayed as much as
possible, thus 10 units are shipped in Periods 1 and 3
and none in Periods 2 and 4. More specifically, eight
units of Item 2 and two units of Item 1 are shipped
in Period 1, and 10 units of Item 1 in Period 3. How-
ever the optimal solution for this problem is to ship
10 units in each of the first two periods (four units of
Item 2 and six units of Item 1 in each period).

As discussed below, the intricate part of the solu-
tion for this problem is the computation of the hold-
ing cost of the arcs. If this part of the algorithm were
polynomial the whole procedure would be polyno-
mial. In §3 we propose a dynamic programming for-
mulation for computing the holding cost of an arc,
which is polynomial for a given number of items, but
exponential otherwise, implying the same complex-
ity statement for the overall procedure. However first
we show that some of the arcs are not admissible,
and therefore may be removed from the network. This
result will help us enhance the computation of the
dynamic programming formulation of §3.

Removing Nonadmissible Arcs

Consider an arc (', t”) in the network. Clearly X(#') >
D(t', t' + 1) because the initial inventory in period t'
is 0; that is, all demand in period # must be covered
from a shipment in period t'. The next lemma speci-
fies the exact quantity shipped in period t'.

LemMA 5. Suppose that in an optimal policy X* we
have two periods t' and t" (' < t”) such that I(t' —1) =
I(t'—=1)=0and I(7) >0 for ' —1 < 7 < t"—1. Then,

(a) X*(#)mod C =D(t, t")mod C

(b) D(¥', t' +1) < X*(¥) < [D(¥,t +1)/C]C.

Proor. Part (a) follows from the fact that the ini-
tial inventory in period ' and the final inventory in
period t” — 1 are both zero, and the shipment quanti-
ties in periods t'+1, ..., t" —1 are all in full vehicles.

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

239

The lower bound in Part (b) holds for any feasible
solution since I(#' —1) = 0. For the upper bound, see
Property (P3) in Lemma 1. 0O

The following two corollaries are immediate from
Lemma 5:

CoroOLLARY 2. If D(¥, t")mod C < D(#, t'+1) mod C
and D(t', t"ymod C #0, then arc (t', ") is not part of the
optimal solution.

ProofF. Recall that an arc connecting node ' to node
t” represents the minimum cost schedule between
period ' and period t” —1 given I(t' —1) =I(t"—1) =0
and I(7)>0fort' —1<7<t"—1.If D(#,t")mod C <
D(t',t +1)mod C and D(t,t")mod C # 0, then by
Lemma 5(a) and the left inequality of Lemma 5(b),
X*(t) = [D(t',t + 1)/C]C + D(t', t")mod C, which
contradicts the right inequality of Lemma 5(b). O

COROLLARY 3. The only arc emanating from a node t'
with D(V', ' + 1)mod C =0 is the arc (', t' +1).

Proor. Consider a period t' such that D(t', ' + 1)
mod C =0 and suppose that there exists an arc (¢, t”)
for 1<t <t"<T+1 in the network. Then this arc
represents a policy for which I(t' —1) =I(t"—-1) =
0 and I(1) > 0 for ¥ <7 < t" — 1. Suppose by con-
tradiction that t” > #' + 1. This assumption implies
that I(#') > 0, and therefore, X(¢') > D(#, t' +1). How-
ever, in view of Lemma 5(b), and because the total
demand in period t' is an integer multiple of C, we
obtain X(#') =D(#,t + 1), a contradiction. Thus, " =
t+1. 0O

To illustrate the results of this section, consider a
problem that consists of only Items 1 and 2 from the
example provided in Appendix C. The network asso-
ciated with this example consists of Nodes 1, 2, 3, and
4 and Arcs (1,2), (1,3), (1,4), (2,3), (24), and (3/4). The
total setup cost of these arcs are K, 2K, 4K, K, 4K,
and 3K, respectively. However, note that Arcs (1,3)
and (2,4) are not admissible since the whole content
of the last (partial) vehicle shipped in its first period is
for future use. This demonstrates the use of Lemma 5
and the reduction in the size of the network that can
be achieved. In this case, only two paths in the net-
work have to be considered: (1,4) and (1,2)—(2,3)—(3,4).
Using the dynamic programming we provide below,
we calculated the optimal holding costs for the arcs
that need to be considered; they are equal to 5k, =5
(Arc (1,4)), and zero for all other arcs. Assuming K =
20, we get the following total costs (denoted locally
by c(t', t")) for the arcs: c(1,4) =85, ¢(1,2) =20, ¢(2,3) =
20, and ¢(3,4) = 60. Now, solving a standard shortest-
path problem on this network, we conclude that the
optimal path is to use Arc (1,4) with total cost of 85.
The specific shipping quantities in each of the peri-
ods for each of the items are also found through the
solution of the dynamic programming algorithm.

3. An Exact Dynamic Programming

Formulation

In this section we present an exact dynamic program-
ming formulation that computes the total holding cost
of an arc. The procedure is based on the properties of
an optimal solution, developed in the previous sec-
tions. For simplicity, we denote in this section a gen-
eral arc (t', t”) in the network by (1, T +1).

DeriniTION 1. Given a shipment schedule for peri-
ods 1,...,¢, let Indx(t) be the most expensive item
held in inventory at the end of period t. If the inven-
tory at the end of period ¢ is zero, then Indx(f) is set
to 1. Formally,

max{i: [;(t) > 0}
Indx(t) =
1 otherwise.

if I(t) > 0

DeriniTION 2. Given a shipment schedule for some
initial periods, let 7; 1 <j < M be the first period
after those initial periods, in which at least one item
from the set {1, ..., j} is shipped, and 7, =T + 1. The
sequence 7, is nonincreasing in j by definition. Ini-
tially we set T = 1 for 1 <j <M. If for some item j
and some ¢, I,(t —1)=D,,(t, T +1) for all m <j, then
at the end of period t —1 we set 7, =T + 1 for all
m<j.

Note that at the end of period t > 1, some 7 val-
ues might be updated as a result of decisions made
in period t, while the other 7 values might remain
unchanged.

DEerINITION 3. Given the values 7y <7y, <---<m7
at the end of period t —1, let k(t) = min{i: 7, =t}. That
is, k(t) is the least expensive item shipped in period t.
(Except maybe initially, when =1 for1<j<M by
definition. In this case, if the demand of Item 1 in the
first periods is zero, we may choose not to ship Item 1
in Period 1.) If 7, > ¢, then set k(f) = M + 1, which
means that no shipment occurs in period t. For ease
of notation, we use k instead of x(t) and denote the
time index only for periods other than ¢.

Note that « = k(t) > Indx(t — 1), as follows from
Corollary 1. Note also that by definition, 7,_; > ¢t.

LEMMA 6. [i(t — 1) satisfies D;(t, ;) < [i(t — 1) <
Di(t, 7,_4) for all j < k.

Proor. The lemma is a result of the definitions of
k and the 7’s. O

When developing our dynamic programming for-
mulation, it is clear that at the beginning of period ¢
it is required to know the initial inventories of all
items, i.e., the value of [,(t—1) forall m=1,..., M.
However, proceeding with a straightforward dynamic
programming formulation that considers all possi-
ble shipment quantities will result in a very ineffi-
cient procedure. Thus, in the following definitions, the

240

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

7 values defined earlier are used to decompose the
problem into smaller subproblems.

Let F(t, 7y, 7y, ..., Ty, L(t—1), L(t-1), ..., Ii,(t—1))
= the minimum holding cost incurred by items that
are shipped in periods f,..., T, when at the end of
period t —1 the inventory of item i is [;(t —1) and the
first period in which at least one item from the set
{1,...,1i} is shipped is in period 7;, for all 1 <i <M.

For 7., > t, let G(t, 7.1, k, I.(t — 1)) be the
minimum holding cost incurred by items «,..., M
shipped in periods ¢, ..., 7, —1, when in period t
the initial inventory of item « is L (f —1) > 0 and
the initial inventory of items « +1,..., M is zero.
Note that these items satisfy the demand of these
periods only: that is, no units are shipped in these
periods for consumption in periods later than 7,_,,
ie., I,(r._;—1)=0 for all m > k. Period 7,_; is the
first period after ¢+ where an item in {1,...,k — 1} is
shipped. (In such a period the beginning inventory of
all items m, m > k must be zero; see Corollary 1.) We
let G(t,t, ., .) =0; in addition, G(t, 7y, M+1,0)=0
because no shipment occurs in periods ¢, ..., 7y, — 1.

Given the above two definitions, Theorem 1 pro-
vides us with a way to decompose a certain problem
into several smaller subproblems.

THEOREM 1.

T, =1, L(t=1), ..., I, (t—=1))
=G(t, 1.1, k, L(t —1))

F(t,m, 1y, ...

k—1
+ Z G(le Tj—l/ j/ I](t - 1) - D](t/ T]))
j=1

with k as in Definition 3 above.

Proor. Consider one term from the summation
expression associated with periods 7;, ..., 7,_; — 1. For
this term we show that all restrictions imposed by the
G(:) function are a result of properties of the optimal
solution.

If 7, = 7;_;, then no periods are included in
Tiseer, Tisi— 1, and by our convention G(t, f, ., .) =0.
Otherwise, for T < Ty, only items j,...,M are
shipped in periods 7, ..., Ti1— 1 since by definition
of Tj_1, NO shipment of items 1, ..., j—1 occurs before
period 7;_;. In period 7; item j is shipped the first
time in or after period t, therefore its inventory at the
beginning of period ; is [;(t —1) — D;(t, 7;). In addi-
tion, the beginning inventory at period 7; is zero for
items that are more expensive than j, as implied by
the G(-) expression, and justified by Corollary 1. At
the end of period 7,_; —1, the G(:) function requires
that I,,(7;.; — 1) =0 for all m > j, which is justified
by considering the next set of periods, i.e., periods
Ti1,---,Ti_p — 1, and repeating the argument with
respect to the beginning inventory.

The above justification applies for all j in the sum-
mation expression, as well as for the first term, asso-
ciated with periods ¢, ..., 7., —1. O

Due to Theorem 1 we are able to consider all G(-)
functions separately. Computing the G(-) functions is
in fact the core of the problem and most of the work.
Solving the entire problem is associated with find-
ing the value of F(1,1,...,1,0,...,0). Note that ini-
tially, =1 for 1 <j<M and Ij(0)=0 forl1<j<M,
thus k =k(1) =1 and 7., =7 =T + 1, so that
F(,1,...,1,0,...,0) is equivalent to G(1, T+1, 1, 0).
We present next a recursive functional equation to cal-
culate it.

Calculation of G(t, 7,_;, k, [.(t — 1))

Note that when calculating a certain G(t, 7,_q, k, .)
function, all values of 7; for i < k are already
determined from the shipment schedule of periods
1,...,t—1. The decision in period ¢ may only change
the 7 value of items i with 7, =t (i.e., i > k).

The idea behind the efficient computation of the
G(-) functions is that under the optimal policy only
certain identity and quantity combinations are pos-
sible for items held in inventory. We organize these
possible combinations in a list, defined as follows:

Let L(t, 7._, k, [.(t = 1)) for 7,_; > t+1, be a list of
all possible allocations (into specific items) of inven-
tory at the end of period ¢ of all items m, m > k that
were shipped in period t for periods ¢,..., 7., —1,
when in period t the initial inventory of item « is
I[.(t—1) >0, and of items k+1, ..., M is zero. A mem-
ber in this list specifies the most expensive item held
in inventory at the end of period ¢ (i.e., Indx(t)), the
inventory levels of all items m, k < m < Indx(t) at
the end of period t (i.e., L(), L1(t), .-, naxe (),
and the period for each item i > k, in which it, or
a less expensive item, will be shipped next (denoted
as defined above by 7, 7,1, ..., T). Note again that
the values 7y, ..., 7,_; that are already known at the
end of period t — 1, are not affected by the ship-
ment in period t because items 1,...,k —1 are not
shipped in period t. The newly determined sequence
Ter Tests - - - » Tag SPecifies the value of k(t+1), which is
required for the cost calculation in period ¢+ 1. Thus,
a member in this list is referred to as

(k, Indx(t), k(t+1), L (t), -, Inaxty (B)) Tues Te1 s -+ Tar)
eL(t, 7._q,k, I (t=1)).

Note that the 7 values in an element of the list L(¢, .)
are associated with the end of period t. If 7,_; =t+1,
we use an initial condition to solve the associated G(-)
problem (see below).

The list of all possible allocations is constructed by
enumerating all possible values of all the parameters
that specify an element in the list, excluding combi-
nations of values that do not satisfy the optimality

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

241

conditions discussed throughout the paper. Later in
this section we show how to find the elements that
construct this list, and demonstrate that there are rel-
atively few such elements. For now, we assume that
the list of elements exists, and use it in the dynamic
programming formulation, presented in Equation (1)
below.

For 7,y >t+1, let H(¢, [(t — 1), Indx(t), L.(¢), ...,
Lnax((1)) = the holding costs incurred by units of
items k, k +1, ..., Indx(t) that are shipped in period
t, when in period t the initial inventory of item «
is I.(t — 1) = 0, the initial inventory of items that are
more expensive than k is zero, and the inventory at
the end of period ¢t of items «, ..., Indx(t) is L (), ...,
Lngxv (t), respectively. Note that 7,_; >t + 1 implies
that Indx(t) > k and therefore the function H(-) is well
defined. If k = M + 1, then set H(¢,-) =0 because it
means that no items are shipped in period t. Note
that the H(t, -) function represents the holding costs
incurred by units that are shipped in period t, and
until the units are consumed.

Given each item’s inventory at the end of period ¢,
it is clear when each unit of it will be consumed
(assuming (without loss of generality) a first-in-
first-out (FIFO) mechanism). Therefore, the value of
H(t, I(t = 1), Indx(t), L.(t), ..., Lnaxw(t)) may be cal-
culated as follows (see the explanation following the
expression):

H(t, L(t = 1), Indx(t), [(t), - - -, Lngx (t)

Indx(t) T+1
= Z Z hi(I;(t) = Di(t, 7)*
i=k+1 7=t
T+1

+ Z hK[IK(t) - (Ik(t - 1) - DK(tl 7-))7L

— (D(t, 1) = L(E=1)'T".

According to the definition of H(:), the holding
costs in the above expression consider only items that
were shipped in period ¢. In the first part we account
for the costs of holding items « + 1, ..., Indx(t) in
periods t,..., T. In the second part we account for
the costs of holding item « in periods t,..., T, an
expression that is calculated as explained next. The
term (I (t —1) — D,(t, 7))" represents the number of
units of item « that are held at the end of period
7 — 1 and were shipped before period t, therefore
should not be included in the H(-) function. The term
(D,(t, 7) = L.(t —1))* represents the net demand from
period t to 7 — 1, as observed at the end of period
t — 1. At most one of these terms is positive. In
either case (whichever is positive), the term [I(t) —
(I(t = 1) = D,(t,)* — (D,(t, 7) — L, (t—1))*]" repre-
sents the number of units of item « that were shipped
in period t and are held in inventory at the end of
period 7 —1.

We are now ready to present the general functional
equation of the dynamic programming formulation
for the G(-) function. The equation is given in three
parts, (1a)—-(1c), referred to together as Equation (1).

G, 11,k L(t—1))=00

if t#1 and ((DK(t‘,'rK_l)—IK(if—l))+

M
+ > Di(t,*rKl))modC;éO (1a)

i=k+1

G(t,7e_1,k,L(t—1))=0
if t#1, 7._,=t+1and

M
<(dkt—IK(t—l))++) d,.,)modczo (1b)

i=k+1
otherwise (i.e., 7,_; >t+1, thus Indx(#) >«),
G(t,7._1,k,L(t—1))=Min
(k,Indx(t), k(t+1), L (1), ..., Fnaxer (1),
Tes Teqtr - Tm) €EL(E, Ty, K, I (t—1))
H(t, L (t=1),Indx(t), L. (), ..., [naxe (1)
+G+1, Trry—1, K(E+1), Ly (1)

k(t+1)—1
+ > G(r, 74,0, () —Dy(t+1, 7)) (1c)

i=Kk

Explanation and Justification

Recall that we use the G(t, -) function for calculating
the value of F(t,), according to Theorem 1. In the
proof of the above theorem, it was demonstrated that
the restrictions imposed by the definition of the G(-)
function are justified by the optimality conditions.
It remains to justify, given the restrictions imposed
by the definition of the G(-) function, its calculation
according to Equation (1). Recall that the total dis-
patching cost for a given subproblem is constant, and
therefore computed separately, as explained in §2.
Therefore, the G(-) function includes (also by defini-
tion) only holding costs.

The decision at the minimization stage is how much
to ship in period t from each of the items «,..., M,
the only items that may be shipped in that period.
Equation (la) represents the case where there is no
feasible schedule that satisfies the optimality condi-
tion of dispatching only full vehicles (when t#1, i.e.,
t is not the first period of the subproblem). To exclude
any solution that makes use of such a schedule, we
assign to it a cost of oco. Equation (1b) is associated
with the case of 7,_; =t+1, in which modulo C of the
net demand in period t is zero, therefore the cost is

242

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

zero. Note that 7,_; =t +1 implies that Indx(t) <k, a
case that is not covered by (1c) and therefore is treated
separately. In (1c), once a shipment is performed in
period t, we may have at the end of period f inven-
tory from all items shipped, and as above we denote
the most expensive item for which inventory is held
by Indx(t). For each item m, k <m <Indx(t), its ship-
ment quantity in period t determines the amount of
inventory at the end of period ¢, as well as its 7 value.
Such a combination of Indx(t) and shipping quanti-
ties is chosen from the list L(¢, 7,_,, «, L (t — 1)) of all
possible allocations (into specific items), as explained
above.

Given the choice of an element from the list L(-),
the resulting cost has several components. The first
term on the right-hand side of Equation (1c) is associ-
ated with the holding cost of items that are shipped in
period t. Note that according to the accounting mech-
anism defined, the holding cost is charged to items
from the period in which they are shipped (unless
consumed immediately), until the period in which
they are consumed. In period t this includes items
K, ...,Indx(t) because no items of 1,...,k — 1 are
shipped in period t and no items of Indx(¢t)+1,..., M
are kept in inventory at the end of period ¢.

Next is the holding cost associated with the ship-
ment in periods t +1,...,7.; — 1, which again
consists of several expressions. At the beginning of
period t 41, given all 7 values, the least expensive
item shipped in period t+1 is k(t+1), and the inven-
tory of items k(t +1)+1,..., M is zero. Moreover,
when item k(t + 1) —1 or a less expensive item is
shipped (i.e., in period 7,(;1)-1), the starting inven-
tory of all items «(t +1),..., M is zero. Therefore
the holding cost incurred due to the shipment of

Item

M1

items k(t+1),..., M in periods t +1, ..., T4 1)1 — 1
is represented by the term G(t + 1, 7,11, k(f + 1),
Lt41)(t))- Similarly, the holding cost incurred in peri-
ods Ti1)_1, -, Tet1)—2 — 1 due to the shipment of
items k(t +1) —1,..., M in these periods is repre-
sented by the term G(7,; 1)-1, Tegi1)-2, K(E +1) — 1,
Lgr41)-1(8) = D)1 (£ + 1, T141)-1)), and so on (recall
that the 7 values are nonincreasing). That is, the
entire interval considered is divided into subintervals
according to the 7 values.

As an example, consider a period t with k =3 and
associated values of Li(t — 1) and 7,. Furthermore,
assume an element of the list L(¢, 7,, 3, (¢t — 1)), in
which Indx(¥) = k(t + 1) =5, and some 7; > 7,, as
well as I;(t), L(t) and I;(¢) values. Then, according to
Equation (1c), the following cost is incurred:

H(t113(t_1)r5/13(t)114(t)115(t))+G(t+1/ T4,5,I5(i'))
+G(7y, 73,4, L(1)—D,y(t+1, 1))
+G(73/ 72/3r13(t) _D3(t+1r 73))1

where the terms in the above expression represent the
holding costs incurred from shipping in period ¢, peri-
ods t+1,...,7,—1, periods 7, ..., 73 —1, and periods
T3, ..., T, — 1, respectively. (See Figure 1.)

The figure illustrates a decomposition of a subprob-
lem, which consists of periods t,t+1,..., 7, —1 and
items 3, 4, ..., M. According to the figure, inventory
exists for Items 1 and 2 till the end of the subprob-
lem, so they are not shipped during these periods.
Item 3 is the least expensive item shipped in period ¢,
and the dotted line corresponding to it represents its
stock at the end of period t. Similarly, the dotted lines
corresponding to Items 4 and 5 represent the stock
of those items at the end of period t (shown as the

T

K(t+1) =5

a4t
K()=x=3+

24
14

| | | |

T

t 1+l

T T T

For the case kx =3and x(r+1) =5

[] de+rz5040)

}
T
7,1 14

I:I G((T4,’1'3,4,[4(t)—D4(t+1,T4))

Figure 1 Decomposition of G(¢, 7, 3, /5(t — 1))

| | | | | |
T

-1 73 7,17,

Time

B (@.n3.L0-D+1,7,)
(s d] H(@LG-DS L0, 1,0).150)

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

243

number of future time periods covered by this stock).
No units of items 6, ..., M are held in stock at the
end of period t: the quantities shipped of these items
in period t were just enough for the consumption in
period t. As a result, the holding cost attributed to
period t is the cost of holding the stock of only Items
3, 4, and 5 (the dotted lines), represented by the H
function.

We also observe from the figure that while Item 5
is shipped again in the next period (period t + 1), the
stock of Item 3 covers demand for this item up to the
end of period 7;—1, and therefore the next time Item 3
is shipped is in period ;. Similarly, Item 4 is not
shipped until period 7,. Thus, the strategy in period
t results in the decomposition of the subproblem into
three subsubproblems: (i) periods t 4+ 1,...,7, —1
with items 5, 6, ..., M; (ii) periods 7,, ..., 73 — 1 with
items 4,5, ..., M; (iii) periods 7, —1,..., 7, —1 with
items 3,..., M. These three subsubproblems corre-
spond to the shaded rectangles in the figure, and the
total holding cost attributed to items shipped in their
associated periods is represented by the appropriate
G function. Note that in each subproblem the only
item that can be held in stock at the beginning of the
first period is of the least expensive item, and more-
over, at the end of the last period of the subproblem
the stock of all items corresponding to the subprob-
lem vanish.

The G(-) functions are evaluated recursively, until a
resulting G(-) function is trivial to compute.

Order of Computation
The value of G(t,-) is computed for t values going
downward from Tto T—1,T—2,...,2 (for t =1, only
the value G(1, T + 1,1, 0) is required). For a given ¢,
1<t<T, and a given k, 1 <k <M + 1, the value
of G(t, 7., k,-) is computed for 7., values going
from T+1 downward to T, T —1, ..., t+1. For each
combination of ¢ and 7,_;, the G(-) value is computed
downward in the « index; that is, from M +1 to M,
M —1,...,1. For each combination of ¢, 7,_; and k,
there are O(t) possible values of I (t — 1) that need to
be considered (in any order), as explained below.
Starting with the last period, we have the first initial
condition (assuming T > 1):

G(T, T+1,x,1(T —1))
0 if ((dKT (T 1)

= + % djT)modC=0 (2)

j=k+1
oo otherwise.

This condition determines that shipping may occur
in period T only if the remaining net demand is a
multiple of C.

The rest of the initial conditions refer to the case
k = M. This case implies that k > 1 and therefore t > 1
because for t =1 we only need to compute the value
G(1,T+1,1,0) in which k =1.

The next condition refers to some earlier period and
the most expensive item. For t < T,

G, T+1, M, I, (t—1))
00 if (Dy(t, T+1)
—Iy(t—1))mod C#0
H(t/ IM(t - 1)/ M/ IM(t))
+G(t+1, T+1, M, I, (t)

= if [y(t) <dpi 3)
H(t/ IM(t - 1)/ M/ IM(t))
+G(t+1, 7, M+1,0)
+G(ry, T+1, M, L;(t) — Dy (t+1, 7))
otherwise,

where I,,(t) = C — (dy; — [, (t — 1))mod C. In the first
case of condition (3), shipment cannot occur accord-
ing to the optimality conditions. In the last two cases,
item M is shipped to satisfy period t’s demand of this
item, and at the end of period t some of the units that
were shipped remain in inventory and incur holding
costs. In the second case, the inventory of item M at
the end of period t does not cover the demand of this
item in period t+1, therefore item M must be shipped
again in period t + 1. In the last case, item M is not
shipped until period 7y, > t + 1.

Conditions (2) and (3) may be written in more gen-
erality as in conditions (4) and (5):

G(t, t+1,k, L (t—1))

M
L(t=1)"+ > d,-t)modC=0

i=k+1

0 if <(th - “

oo otherwise.
For 7py_; >t+1,

G(t, Tyo1, M, I (t—1))
00 if (Dy(t, 7p1-1)

— I (t—1))mod C#0

=3 H(t, I,(t—1), M, L,(t)) 5)
+G(Tam, Tvi—1, M, Iy (8) =Dy (F+1, 7))
otherwise,

where again, I;(t) = C — (dy; — Iy (t — 1)) mod C.

In the second case of (5) we use G(t + 1,7y,

M +1,0) =0, which was discussed earlier and (for
completeness) is stated next:

G(t, Ty, M+1,0)=0 forall t <y, (6)

244

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

where the zero in the last element is due to the fact
that I,,,,(t—1)=0.

We now return to the explanation of how to effi-
ciently construct the list L(-).

Constructing the List L(t, 7,_;, k, I (t — 1)) when
T.1>t+1

Recall that a member in this list specifies the most
expensive item held in inventory at the end of period
t (i.e., Indx(t) where Indx(t) > « is implied by 7,_; >
t+1), the least expensive item shipped in period t +1
(i.e., k(t 4+ 1) where k(t + 1) > Indx(#)), the inven-
tory levels of all items m, k <m < Indx(t) at the end
of period t (i.e., L(t), L1(t), ..., Inaxp(t)), and the
period for each item i > «, in which it or a less expen-
sive item will be shipped next (denoted as defined
above by 7, T.,i,..., Ty). Also recall that the val-
ues Ty,..., T, that are already known at the end
of period t —1, are not affected by the shipment in
period t because items 1, ..., k — 1 are not shipped in
period ¢.

By definition of the 7 values, the value of 7,_; pro-
vides an upper bound for the new determined 7’s
(e, -, Ty), where t 4+ 1 provides a lower bound for
these new determined 7’s. More specifically, t +1 <
Ty <--<r71.<r7._q For 7., >1t+1, all sequences
of T, Tey1,.-., Ty, that satisfy t+1<7, <--- <7, <
T._1, have to be considered as elements in the list
L(-). However, sequences that do not satisfy the opti-
mality conditions are excluded (see the explanation
below).

Given a newly determined sequence of 7, 7.4,

.., Ty at the end of period t, the value «(t+1)
may be computed as follows: k(t + 1) = min{i > «:
7, = t + 1}; that is, «(t + 1) and the calculation of
the G(t + 1, 7._;, -, -) function is independent of the
values of 7, 7,,...,T._,. Note also that x(t + 1) >
Indx(t). Thus, a member in the list L(¢, 7,._,, k, L. (t — 1))
is a vector (k, Indx(t), k(t + 1), [(t), ..., Lnaxs (t), T,
Tesir s Tap)-

We now analyze which elements may enter the
list L(-), and show that a feasible specification
of 7.,...,7y (thus specifying «k(t + 1)), uniquely
determines the inventory levels of L (f), ..., Iax@ (t)-
Toward that, recall that the shipping quantities in
all periods, except possibly for Period 1, are in full
vehicles. Therefore, in each period we know a pri-
ori the value of X(#)modC. In fact, given [(t — 1),
the exact amount of X(¢) is known because no more
than C — 1 units are shipped for future periods (see
Lemma 1 (P2) and Restriction 4 below). We also note
that in each subproblem G(7;, 7;_y, 1, (1, — 1)), k <
i <k(t+1)—1 in Equation (1c), we consider peri-
ods 7,7, +1,...,7_, —1 and items i,..., M only.
That is, we start the subproblem in period 7; with
I;(t; = 1) units of item 7 and no inventory of items

i+1,..., M. The subproblem ensures that we start
period 7;_; (i.e., the next subproblem) with no inven-
tory of items i, i+1,..., M, i.e, all [;(r; — 1) units of
item i that are held in inventory at the beginning of
period 7;, as well as all items that are shipped in peri-
ods 7;,...,7,_; — 1, are consumed before period 7;_;.
Therefore,

M
(ZDj(Ti, T1) — (1, — 1)>modC =0 form,>1. (7)
j=i

Applying condition (7) recursively, from item
i=M backward to item i = k, results in a condition
on [;(1; — 1)mod C for all k <i < M (see Restriction 1
below).

Then, note that for item i > Indx(t — 1), the inven-
tory at the beginning of period t is zero, and therefore
at the end of period t we have

L(t) < C
L(t) — (L(t—1)—d;)* <C

if i > Indx(t—1)

if k=Indx(t—1) (®)
and i =k.

(See Lemma 1 (P2).) Condition (8) is associated with
Restriction 2 below.

Thus, given at the end of period t, a sequence T,
k <1 <Indx(t), and the value of 7,_;, we obtain four
restrictions on the value of I;(t):

ResTRICTION 1. Its mod C value is restricted to
ensure that the net demand of all items i,..., M
in periods 7;,...,7,_; — 1, which is the same as
the total shipment quantity in these periods, obeys
condition (7).

ResTrICTION 2. Given [(t—1), the value of I;(t) for
k < i <Indx(t) is restricted to at most C consecutive
values (see Lemma 1 (P2)). (Indeed, we use here a
relaxed version of this property. The property states
that we never dispatch a vehicle whose entire content
is for future periods. Here, we say that we never dis-
patch a vehicle of a specific item whose entire content
is for future periods.)

RestrRICTION 3. The value I;(¢) should also satisfy
L(t)=D;(t+1,7) and L(t) <D;(t+1,1,_;) for k <i <
Indx(#).

REsTRICTION 4. Invoking again Lemma 1 (P2), we
obtain a restriction on

Indx(t)

IK(t) - (IK(t - 1) - th)+ + Z Il(t)/

i=k+1

which represents the total shipment quantity in
period t for use in future periods. This amount is
restricted to be less than C. Thus, in addition to the
first three restrictions on the value of specific I;(t)
values, this additional restriction refers to a sum of
inventory levels.

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

245

The fifth restriction is associated with the most expen-
sive item only:

ResTrICTION 5. [)4(t) < C for all 1 <t < T, that is,
the amount carried in inventory from the most expen-
sive item is always less than C (see Lemma 1 (P4)).

Thus, Restrictions 1 and 2 uniquely specify the
possible value of I(t) for k <i < Indx(t), given a
sequence 7;, k < i < Indx(t). The modulo C value of
I(t) is found by solving condition (7), and its pre-
cise value is found by also considering condition (8).
Restrictions 3 and 4 impose further conditions on the
above inventory values, and may indicate in some
cases that the sequence 7, k <i <Indx(t), cannot sat-
isfy the optimality conditions and thus should not be
considered in the list L(-). Restriction 5 does the same
with respect to the most expensive item.

One can observe that the number of possible com-
binations of inventory and 7 values is small. As dis-
cussed above, every sequence of 7 values determines
at most one possible choice of the set of inventory val-
ues. Hence, when counting the number of elements
in the list L(-), the number of possible sequences of
inventory values may be ignored. We consider now
the rest of the parameters.

In a given period t, for every item, there are T — ¢t
possible values of 7 and therefore the number of pos-
sible sequences of the 7 values is O((T — f)M=**1) =
O(T™M). The rest of the parameters in an element of
the list L(-) are uniquely determined by the sequence
of the 7 values, thus the number of elements in a
given list L(-) is also O(TM). To obtain the complex-
ity of the entire dynamic programming algorithm, the
number of times that Equation (1) has to be solved
remains to be determined. Here we note that for a
given subproblem, Equation (1) has to be solved for
every combination of ¢, 7,_;, k and I (t — 1) values.
The parameters t, 7,_; and k create a total of O(T*M)
combinations. In addition, the parameter I, (f —1) may
receive O(t) = O(T) values because its mod C value
is determined by (7), and its value is bounded by
t- C, because in every period no more than C units
may be stored for future periods (see Lemma 1 (P2)).
Hence, there are a total of O(T®M) combinations of
t, 7.1, k and [(t — 1) values, and the complexity of
solving a given subproblem is O(TM*3M). Because
there are O(T?) subproblems (arcs in the shortest-path
network—see §2), the complexity of solving the entire
problem is O(TM*M).

In other words, for a given number of items, M,
the complexity of solving the problem is polynomial!
Only when M is part of the input is the complexity
of our dynamic programming algorithm exponential.
For the latter case, we conjecture that the problem is
indeed NP-hard, although we were not able to prove
it formally.

A detailed example that illustrates the dynamic
programming solution procedure is provided in
Appendix C.

4. Conclusions

Most of the literature on transportation problems
focuses on the single-item case. It is usually complex
to generalize results obtained for the single-item case
to settings with multiple items of different character-
istics. For example, in capacitated shipments, if the
items differ in their volume or weight specifications,
or both, it is likely that the solution method for the
problem would have to include or be combined with
a bin-packing procedure. In this paper we consider
items that differ in one important characteristic: the
holding cost rate. The items are identical in all other
aspects, such as size, volume, transportation require-
ments (e.g., temperature), and so on.

Our problem deals with shipments between two
facilities, therefore the transportation cost of dispatch-
ing a vehicle consists of a fixed cost plus variable
item-dependent transportation cost, where the latter
term has no impact on the solution. While the SIMV
version of this problem is known to be polynomi-
ally solvable even for the nonstationary cost coeffi-
cients case, the complexity of the MIMV problem is
unknown, even for the simplest case of stationary cost
coefficients. We investigate the structure of an optimal
policy and partially unveil the complexity issue of
the MIMV problem for stationary cost coefficients by
proving that the problem is polynomially solvable for
a fixed number of items. The dynamic programming
formulation that we propose may be used to solve
optimality problems with a small number of items,
due to the high complexity when the number of items
increases. An alternative solution method is needed
for problems with a large number of items. We are
currently working on developing such a procedure.

Acknowledgments

The authors would like to thank Gilbert Laporte, the former
editor of the journal, and the anonymous referees for the
efficient handling of the paper and the helpful comments.

Appendix A. The Scheduling Algorithm

We give here a formal description of the Scheduling algo-
rithm, which, given a vector (X(1),...,X(T)) of aggre-
gated quantities shipped in each period, computes the best
detailed schedule for each period. In addition, the algo-
rithm performs a test, checking whether any of properties
(P1)—(P4) in Lemma 1 is violated. If any of them is violated,
then we say that the given vector is not a candidate to be
an optimal schedule for periods 1, ..., T. In such a case the
algorithm returns a message that the schedule is not opti-
mal. Finally, the algorithm performs a feasibility test, and
returns a message of infeasibility if there exists a period up
to which the cumulative aggregated demand exceeds the
cumulative aggregated shipment quantity.

246

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

The Scheduling Algorithm

Input: X(t) 1<t <T

Output: an infeasibility message, or the best-detailed
schedule and its cost or a message that the schedule
cannot be optimal.

Feasibility Test: (A feasible schedule exists if and only if
Y X(r)=D(1,t4+1) for 1<t<T—1and Y[X(t)=
D(1,T+1).)

t=1

while t <T —1 do begin

if Y!_, X(r) <D(1, t+1) then
goto (s) (no feasible solution exist)
t=t+1

endwhile

If YI_, X(7) #D(1, T +1) then
goto (s) (no feasible solution exist)

Construction of the Best Detailed Schedule:

Begin (initialization step)
1(0)=0
fort=1,...,T
I(t)=0
fori=1,..., M
diy =dy
L(t)=0
endfor;
endfor;

V=KX [X(t)/C] (current cost consists of
dispatching costs only)
t<T
(b) W <X(t)
F=0 (F counts the number of units shipped
in each period for future periods)
i« M

(@ Xi(t) < min{d,, W)
If X;(t) < W then begin
W« W —=X;(t)
i<i—1
goto (a)
endif
otherwise do begin

if t > 1 do begin
dig_py=diy_yy+dy—W
(shift the remaining demand of i
from period ¢ to period t —1)
L(t-1)=d,-W
F=F+L(t)—max{0, ;(t — 1) —d;}
It-1)=I(t—-1)+L(t-1)

V=V +hI(t—1) (add holding cost
of i from t—1 to

tto V)
if i > 1 do begin
fork=1,...,i—1 do begin
Lt-1)= dl/d
dl,c(t—l) = dl,c(t—l) + dl/ct
F=F+I.(t)—-
max{0, L (t —1) — dy,}

I(t=1)=I(t—1)+L(t—1)

V=V+nl(t-1)
(add to V the holding
cost of item k from
t—1tot)
endfor;
endif;
endif;

endotherwise

if t=1 then F=1I(1);

if [I(t—1)>0and X(t)ymodC > 0] or F>C or
Iy () = C or (F> X(t)mod C and
X(t)modC >0) or [[(t—1)=0 and
M d,mod C=0 and I(t) > 0]
then do begin
“it is not an optimal solution”
stop.

endif;

t<—t—-1
if t =0 stop (the best allocation is found)
goto (b)
(s) “no feasible solution exists”
endAlgorithm

Appendix B. The Shifting Algorithm
t<T
while f > 1 do begin
if D(¢, t+1) <C then
fori=1,..., M Di(t, t+1) < D(t, t +1)
otherwise do begin

C«C

i« M+1

while C’ > 0 do begin
i<—i—1

Di(t, t+1) =min{C’, D;(t, t + 1)}
C'=C' —-Djt, t+1)
endwhile
D;(t—1,t)«<D;(t—1,t)+{D;(t, t+1)—
Di(t, t+1)}
fork=1,...,i—1 do begin
D (t, t+1)=0
D (t—1,t) <D, (t—1,)+
D, (t, t+1)
endfor;
D(t, t4+1) < XM Di(t, t+1)
endotherwise;
t<—t—1
endwhile;

Appendix C
We illustrate the dynamic programming procedure by an
example.

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

247

Example: A problem of three periods and three items (this
problem could be an arc in the network of a larger problem).
The demand is given in the next table:

Period
Item 1 2 3
3 4 3 8
2 5 7 5
1 2 2 18

Other data are C =10, h; =1, h, =2, h; =3. Total demand
in this problem is 54 units.

Solving for t=T=3
Set 7,_y =T +1=4. This is the only value of 7,_; that has
to be considered.

We apply condition (4), from the most to the least expen-
sive item.

For k=3, we get:

0 if ((d33—L(2))")mod10=0
G(3,4,3,L(2) = 2o
oo otherwise.

Note that I;(2) < d3; =8 (no positive ending inventory),
= G(3,4,3,8)=0and G(3,4, 3, (2)) =« for I;(2) #8.
For k =2, we get:

if ((dys — L(2))* + daz) Mod 10 =0

G@3,4,2,L,(2) = { 0
oo otherwise.

Thus, because d,; =5 and dj; = 8, the expression is zero

if ((5-15(2))" +8)mod10 =0, which is equivalent to (5 —

I,(2))* mod 10 = 2, which is satisfied only for ,(2) = 3.

The above calculation is in fact equivalent to the follow-
ing argument: Because the demand that needs to be covered
is 13 units, L,(2)mod 10 = 3. Then, because the demand of
Item 2 that needs to be covered is five units, I,(2) < 5, which
leaves only one possibility: I,(2) = 3.
= G(3,4,2,3)=0and G(3,4,2,,(2)) = for [,(2) #3.

For k=1, we get:

0 if ((ds —L(2)"
G(3,4,1,L(2) = +dys +dsz) mod10=0

oo otherwise.

That is, the total demand in this subproblem is 31 units,
therefore I;(2)mod10 = 1. Then, because the demand of
Item 1 in this subproblem is 18 units, I;(2) < 18, there are
two possibilities: I;(2) =1 or I;(2) =11.

For I,(2) =1, the net demand in Period 3 is 30. Therefore,
we ship 30 units, clearly with no units left in inventory.
= G(3,4,1,1)=0.

For I;(2) =11, the net demand in Period 3 is 20. There-
fore, we ship 20 units, with no units left in inventory.
= G(3,4,1,11)=0.

Also, G(3,4,1,(2)) = for [;(2) #1 or 11.

Solving for t =2
Set first 1,_; =4.
For k=M =3, apply (5) and obtain:

oo if (XS: ds, —13(1)) mod 10 #0
=2
G243, M) =1 H(2, L(1), 3, L(2))
+G(73,4/3/I3(2)

—D5(3,13)) otherwise.

The demand of Item 3 in this subproblem is 11 units, there-
fore I;(1)mod 10 =1, and I;(1) < 11, which leaves only one
possibility: I;(1) = 1. The shipping quantity will be of 10
units, implying 73 =4, I;(2) =8 and I;(2) — D;(3, 4) =0.
= G(2,4,3,1)=H(2,1,3,8)=24, and G(2,4, 3, (1)) =
oo for I;(1) #1.

For k =2 we use the general functional Equation (1) and
obtain

G(2,4,2, (1)) =00 if (23—1L(1))mod10#0,
= G(2,4,2,,(1))=00 for I,(1)mod 10 # 3.

For I,(1) mod 10 = 3, we apply the minimization of (1c).

Out of the 23 units of this subproblem, only 12 are
of Item 2. Therefore, I,(1) < 12, which combined with
I,(1)mod 10 = 3 leaves only the possibility (1) = 3. The
net demand in Period 2 is 7 units, therefore we ship 10
units, and 3 units of Item 2 remain in inventory. (Because
the amount of inventory is smaller than the next period’s
demand of the least expensive item shipped, then by
Lemma 2 all the inventory will be of the least expensive
item shipped.)

The element in the list L(2, 4, 2, 3) that is associated with
this shipping schedule is k =2, 7, =3, ,(2) =3, Indx(2) =2,
and «(3) =2. That is, L(2,4, 2, (1)) ={(2,2,2,3,3,3)}, and
the associated cost is

G(2,4,2,3) = H?2, (1) =3, Indx(2) =2, L,(2) = 3)
+ G(3, Ty =4/ 2/ 12(2) = 3)
= H(2,3,2,3)+0=6.

Note that 7, =4 by definition of this case, since k =2 and
T =4

For k =1 we obtain:

Demand in this subproblem is 43 units = I, (1) mod 10 = 3.

Demand of Item 1 that needs to be covered: 20 units =
L(1) <20= L(1)=3 or 13.

= G(2,4,1,L(1)) = oo for I;(1) #3 or 13, and we com-
pute G(2,4,1,3) and G(2,4,1,13).

For I;(1) =3, the net demand in the period is 10. There-
fore, we ship 10 units, 7 units of Item 2 and 3 units of Item 3,
and no units of Item 1. Therefore, this is a contradiction to
k =1, so this case is not possible.

The case I, (1) = 13 is impossible because by Lemma 1 (P2)
the maximum inventory at the end of period ¢ is ¢- (C —1),
ie., (1) <9.
= G(2,4,1, [(1)) = oo for all values of I;(1).

Now set 7,_; =3 and apply (4).

248

Anily and Tzur: Shipping Multiple Items by Capacitated Vehicles
Transportation Science 39(2), pp. 233-248, ©2005 INFORMS

For k=3:
0 if (dy —I3(1))*mod10=0

G(2,3,3, (1) =
oo otherwise.

= G(2,3,3, (1)) = oo for (1) # 3. For I;(1) = 3 note
that at the end of Period 1 73 =3, contradicting « =3 for
Period 2. Thus, L;(1) > 0 is impossible.

For k =2:

0 if ((dy — L(1))* + day) mod 10 =0

G(2,3,2,L,(1)=
oo otherwise.

= We need ((7 — I,(1))" +3) mod 10 = 0, which is equiva-

lent to (7 — I,(1))" mod 10 =7.

= G(2,3,2,0) =0 and G(3,4,2, (1)) = o for L,(1) > 0.

This is an example for k(t) = «(2) > Indx(1) = Indx(t —1).
For k=1:

G(2,3,1, (1))
0 if ((dy —I,(1))* +dyy + dzy) Mod 10 =0
oo otherwise.

= We need: ((2—1,(1))*+10)mod10=0, which is equiv-
alent to (2—I;(1))*mod10=0. This implies that I;(1)=2,
but in this case we ship 10 units of Items 2 and 3 and no
units of Item 1, contradicting the fact that k=1. Therefore,
G(2,3,1,I;(1)) =00 for any value of I;(1).

Solving for t =1

(We need only the value G(1,4,1,0).) Demand that needs to
be covered: 54 units = the shipping quantity in Period 1
has modulo 10 =4, and because I;(0) =0 and the demand in
Period 1 is 11, the exact amount shipped is 14.

As a result, three units are kept in inventory. To account
for the possible allocations (into items) of these units, we
may consider all possible 7 sequences, where k =1 hence
T =7g=T+1=4,and t+1=2<m <7, <7 <T)=4.

However, it is clear here that out of these three units,
two units are necessarily of Item 1 (see Lemma 2), and the
additional unit is either of Item 1 or 2.

Therefore, there are two cases to consider:

e 7, =3, 7, =2, and 7; = 2; therefore k(2) = 2. In this
case, Restriction (3) implies I;(1) = 0, and Equation (7)
implies that (dy, + d3; — L(1)) mod C = 0. Therefore, (10 —
I,(1))mod C =0, thus I,(1) =0, implying I,(1) =3.

e 7,=2, 7,=2, and 73 = 2. Therefore, k(2) = 1. Restric-
tion 3 implies I;(1) = I,(1) =0, thus I;(1) = 0. However, the
net demand in Period 2 is 10, and therefore no units of
Item 1 are shipped in Period 2, a contradiction to «(2) =1.
Therefore, this option is not possible.

Therefore, the list L(1, 4, 1, 0) contains one element:

L(1,4,1,00={(1,1,2,3,3,2,2)}

and the cost is:
G(1,4,1,0) = H(1,0,1,3)+ G(2,3,2,0)+ G(3,4,1,1)
=44+04+0=4.

To summarize, the optimal shipping schedule is the follow-
ing:

Period
Item 1 2 3
3 4 3 8
2 5 7 5
1 5@ in 0(1in 17
inventory) inventory)
Total shipment 14 10 30
Total holding costs 3 1 0

In addition to the holding cost of 4, the dispatching cost in
the amount of (2+1+3)K =6K has to be added to the cost.

References

Anily, S., M. Tzur. 2004. Algorithms for the multi-item capacitated
dynamic lot-sizing problem. Working paper, Tel Aviv Univer-
sity, Israel.

Baker, K. R, P. Dixon, M. J. Magazine, E. A. Silver. 1978. An algo-
rithm for the dynamic lot-size problem with time-varying pro-
duction capacity constraints. Management Sci. 24 1710-1720.

Chen, H. D., D. W. Hearn, C. Y. Lee. 1994. A new dynamic pro-
gramming algorithm for the single item capacitated dynamic
lot size model. J. Global Optim. 4 285-300.

Constantino, M. 1998. Lower bounds in lot-sizing models: A poly-
hedral study. Math. Oper. Res. 23(1) 101-118.

Federgruen, A, J. Meissner, M. Tzur. 2002. Partitioning heuristics for
the multi-item capacitated lot-sizing problem. Working paper,
Columbia University, New York.

Florian, M., M. Klein. 1971. Deterministic production planning with
concave costs and capacity constraints. Management Sci. 18
12-20.

Florian, M., J. K. Lenstra, A. H. G. Rinnooy Kan. 1980. Deterministic
production planning: Algorithms and complexity. Management
Sci. 26 669-679.

Lee, C. Y. 1989. A solution to the multiple set-up problem with
dynamic demand. IIE Trans. 21(3) 266-270.

Lippman, S. 1969. Optimal inventory policy with multiple set-up
costs. Management Sci. 16 118-138.

Pochet, Y., L. A. Wolsey. 1993. Lot-sizing with constant batches:
Formulation and valid inequalities. Math. Oper. Res. 18 767-785.

Pryor, K., C. C. White, R. Kapuscinski. 2000. Multi-item inven-
tory policies with capacitated delivery vehicles and determin-
istic demand. Working paper, University of Michigan, Ann
Arbor, MI.

Van Hoesel, S. S., A. Wagelmans. 1996. An O(T?) algorithm for the
economic lot-sizing problem with constant capacities. Manage-
ment Sci. 42 142-150.

Yano, C. A., A. M. Newman. 2001. Scheduling trains and containers
with due dates and dynamic arrivals. Transportation Sci. 35(2)
181-191.

