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We consider two allocation problems in this paper, namely, allocation of bandwidth and storage. In these problems, we face a
number of independent requests, respectively, for reservation of bandwidth of a communication channel of fixed capacity and for
storage of items into a space of fixed size. In both problems, a request is characterized by: (i) its required period of allocation; (ii) its
required bandwidth (item width, respectively); and (iii) the profit of accepting the request. The problem is to decide which requests
to accept so as to maximize the total profit. These problems in general are NP-hard. In this paper we provide polynomial-time
algorithms for solving various special cases, and develop polynomial-time approximation algorithms for very general NP-hard
cases with good performance guarantees.

1. Introduction

We are given a set N ¼ f1; . . . ; ng of independent requests
for reservation of bandwidth of a communication channel
of capacity K. Request i ði 2 NÞ is characterized by a
quadruple ðsi; ti; di;wiÞ, where si, ti 2 ½0; T � are the start
and finish time, respectively, of the required reservation
period, di ð1 	 di 	 KÞ the requested bandwidth for res-
ervation, or its size, and wi 
 0 the profit for accepting the
request or its weight. We assume without loss of generality
that all the aforementioned numbers are integer.
The Bandwidth Allocation Problem (BAP) is to decide

which requests to accept (or to satisfy) so as to maximize
the total weight of accepted (satisfied) requests subject to
the condition that the total size of accepted requests at
any time must not exceed capacity K. An important
special case of the BAP is that of proportional weights, in
which the weight of request i is ðti � siÞdi for all i 2 N .
The mathematical model for the Storage Allocation

Problem (SAP) is the same as that for the BAP except that
an accepted request i should be allocated a spatial interval
½yi þ 1; yi þ di�, where yi is integer and 0 	 yi < K, and the
two spatial intervals allocated to any two accepted re-
quests should be disjoint, if the reservation periods of the
two requests intersect in their interior. A geometric in-
terpretation of SAP is to choose from a given set of
rectangles, each of which has a fixed orientation, a given
weight and size, and is only allowed to move vertically
along its two parallel edges, and then pack without
overlap the chosen rectangles into a rectangular frame of

given size, so as to maximize the total weight of the
chosen rectangles.
Note that the two allocation problems are fundamen-

tally different from each other. Figure 1 illustrates a
feasible bandwidth allocation of seven requests with sizes
of one or two, where the horizontal and vertical axes
represent respectively time and space. It is evident that no
feasible storage allocation exists for the corresponding
instance of packing seven rectangles, where the seventh
rectangle is the vertical concatenation of the two smaller
squares.
Bandwidth allocation is a fundamental problem in the

design of networks where bandwidth has to be reserved
for connections in advance. When the requested total
bandwidth exceeds the capacity, the problem is intensi-
fied, about which extensive research has been conducted,
see, for example, the paper of Harms and Wong (1995)
and Bar-Noy et al. (1999). A special case of the BAP,
where all requests have the same size, has been studied in
the context of scheduling jobs with fixed start and end
times by Arkin and Silverberg (1987). The special case
with proportional weights is considered by Bar-Noy et al.
(1999) in an on-line setting, where the requests arrive over
time and one has to make a decision as to whether the
arriving request should be accepted and if accepted,
which requests that are currently being processed should
be abandoned to make room for the new request. They
provide two heuristic algorithms with a performance
guarantee of ð1� 2rÞ=2 and ð1� rÞ=4, respectively, where
r ¼ maxj dj=K, i.e., they guarantee that the value of a
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heuristic solution will be at least ð1� 2rÞ=2 and ð1� rÞ=4,
respectively, times that of a corresponding off-line opti-
mal solution.
Storage allocation can arise from a similar situation

(Bar-Noy et al., 1999). A sequence of stations are con-
nected on a line by communication links of unit capacity.
There are a number of calls, each ofwhich, of its own value,
is a request i for connection between two stations si and ti
on the line for a time interval of specified length di. Due to
the capacity constraint, one cannot accept two requests
that share a common link on the line. The objective is to
accept those requests so that the total value is maximized.
Closely related to SAP is the following Dynamic Stor-

age Allocation (DSA) problem, which first arose in com-
puter science. Given a positive storage size K and a
collection of blocks (or memory requests) fðsi; ti; diÞg for
i 2 N , where si, ti and di describe respectively the arrival
and departure time and the size of the ith block. The
question arises as to whether there exists a feasible allo-
cation in the memory of size K for the blocks. In terms of
the SAP, the question becomes whether accepting all
these requests is feasible. The optimization version of the
DSA problem is to find the minimum memory capacity K
sufficient to accommodate all memory requests. This
problem has been studied extensively in the literature.
See, for example, the papers of Robson (1974), Coffman
(1983), Ślusarek (1987a), Gergov (1999), Bar-Noy et al.,
(2000) and Phillips et al. (2000). Surprisingly little re-
search can be found on the SAP.
Both of our allocation problems can also be viewed as

rental problems. In such a problem, a firm owns K
identical units of a given item, and faces a set of requests
from customers who wish to rent the units. Each request
is specified by the start and finish time of the rental pe-
riod, the number of units requested and the profit ob-
tained from satisfying the rental request. The rental
problem is to decide which of these rental requests have
to be rejected due to the limited number of units, so that

the total profit is maximized. In this context, the SAP
arises when adjacency of the units is required.
In Bar-Noy et al. (2000) and Phillips et al. (2000) ap-

proximation algorithms with performance guarantees of
1=3 and 1=35 are developed for the BAP and the SAP,
respectively.
The main results in this paper are as follows: (i) an

OðnKþ1Þ time dynamic programming algorithm for the
BAP and an OðnðKnÞKÞ time dynamic programming al-
gorithm for the SAP; (ii) a polynomial-time approxima-
tion algorithm for the BAP with proportional weights
that has a performance guarantee of maxf1=3� �;
1=2� r; ð1� rÞ=3g for any � > 0, where r ¼ maxj dj=K as
defined above; and (iii) a polynomial-time approximation
algorithm for the SAP with bounded request sizes that
has a performance guarantee of 0:632ð1� �Þ for any
0 < � < 1. We shall derive these results in the following
three sections respectively.

2. Preliminaries and solvable cases

Let us first make a straightforward observation.

Observation 1

In the BAP, if a set of requests can be satisfied, then it can
be satisfied in such a way that each satisfied request is
allocated with the same set of bandwidth units through-
out its whole reservation period. In the SAP, if the spatial
interval allocated to each request (item) is not necessarily
required to be the same during its entire occupation pe-
riod, then the problem is equivalent to the BAP.
The BAP is a special case of the multi-dimensional bi-

nary knapsack problem: maximizing f cx jAx 	 b; x 2
f0; 1gng, where A 2 Rm�n

þ , c 2 Rn
þ and b 2 Rm

þ. In fact, a
BAP is readily obtained by setting bi ¼ K for all i and, for
all j, by setting aij ¼ dj for i: sj 	 i 	 tj and aij ¼ 0 for
other i. For the m-dimensional knapsack problem, if m is a
fixed constant, then there are known polynomial-time
approximation schemes (Chandra et al., 1976; Frieze and
Clarke, 1984), which implies that, if the time horizon is
fixed, our BAP can be well-approximated even when each
request consists of several non-consecutive time intervals.
However, in our consideration here in this paper, we allow
the length of the time horizon be part of the input.
On the other hand, we also observe that the one-di-

mensional binary knapsack problem is a special case of
both allocation problems. In fact, any instance of the
one-dimensional binary knapsack problem, maximizingPn

i¼1cixi subject to
Pn

i¼1 aixi 	 b and xi 2 f0; 1g for all i,
can be regarded as a simple BAP as well as a simple SAP
with capacity K ¼ b, weights wi ¼ ci, sizes of requests
di ¼ ai, time horizon [0, 1] where si ¼ 0 and ti ¼ 1 for all i.
Since the Subset Sum problem, a special one-dimensional
binary knapsack problem with ci ¼ ai for all i, is NP-
hard, we conclude that:

Fig. 1. A feasible bandwidth allocation of seven requests, for
which there is no feasible storage allocation of the corre-
sponding seven items.
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Observation 2

Both the BAP and SAP are NP-hard even for a very
restricted special case, where all si are equal to zero, all ti
are equal to one and wi ¼ di.
Note that the observation implies that the BAP with

proportional weights is NP-hard. On the other hand, the
SAP is even strongly NP-hard, even with bounded request
sizes, since its decision version the DSA problem is
strongly NP-complete (Garey and Johnson, 1979), and it
remains so with only sizes of one and two (Ślusarek,
1987b). In what follows we first identify some polynomi-
ally solvable cases of the problems, and then we consider
an approximation for the BAP with proportional weights
and also the SAP with bounded request sizes, both of
which are still NP-hard as we have mentioned above.
Let us start with the observation that, without loss of

generality, we can assume that the values s1; . . . ; sn, t1;
. . . ; tn are distinct. Otherwise, we can perturb the data to
achieve this property without affecting the feasibility or
infeasibility of any subset of requests. On the other hand,
it is easy to see that, while the actual values of si and ti are
immaterial, it is their relative orders on the time horizon
that determine the feasibility of accepting a subset of
requests. Therefore, unless otherwise stated (e.g., in the
case of proportional weights), we will assume that
fs1; . . . ; sn; t1; . . . ; tng ¼ f0; 1; . . . ; 2n � 1g. In particular,
T ¼ 2n � 1.
The uniform case where di ¼ 1 for all i 2 N is a special

case of both allocation problems. It can be formulated as
a problem of coloring interval graphs or as that of finding
a minimum cost flow (Arkin and Silverberg, 1987).
Therefore, it is polynomially solvable (Papadimitriou and
Steiglitz, 1982).
The more restricted uniform case where K ¼ 1 reduces

to the problem of max-weight interval packing. It can be
solved in linear time once the endpoints of the intervals
are ordered.
Actually, for each of the two problems in their general

forms, we can provide a dynamic programming algo-
rithm, which shows that they are polynomially solvable
once the capacity K is a constant. More generally, in
Sections 2.1 and 2.2, we shall show the following:

Theorem 1. For the generalized BAP and SAP where, in
addition to the capacity constraint, there is a cardinality
one, i.e., the number of accepted requests should be no more
than L ð0 < L 	 þ1Þ at any time, there are algorithms
that run in Oðncþ1Þ and OðnðKnÞcÞ time, respectively, where
c ¼ minfK;Lg. In particular, if in the original BAP and
SAP the capacity is not part of the input, i.e., if K is a
constant, then both problems are polynomially solvable.

2.1. The DP algorithm for the generalized BAP

Renumber the requests so that s1 < s2 < � � � < sn. For
notational simplicity, let snþ1 ¼ T þ 1 ¼ 2n. For i 2 N

define Si ¼ fj 2 N : si 2 ðsj; tjÞg andSi ¼ fS � Si :
P

j2S dj
	 K and jSj 	 Lg. For any S 2Si, let fiðSÞ be the weight
of an optimal solution if the available time period for
allocation is restricted to the subinterval ½si;T � given that
the requests j 2 S are accepted but their weights are not
added. Hence fnþ1ðSÞ ¼ 0 for any S � N by definition.
Given any S 2Si, if

P
j2S dj > K � di then fiðSÞ ¼ fiþ1ðS0Þ

where S0 is obtained from S by removing those requests
whose termination occurs before siþ1. If

P
j2S dj 	 K � di

and ti < siþ1 then fiðSÞ ¼ wi þ fiþ1ðS0Þ. Otherwise,
fiðSÞ ¼ max fiþ1ðS0Þ;wi þ fiþ1ðS0 [ figÞf g:

Since there are OðncÞ ways to choose a set of c requests
from N , we have jSij ¼ OðncÞ, where c ¼ minfK; Lg. The
time complexity of the algorithm is thus Oðncþ1Þ.

2.2. The DP algorithm for the generalized SAP

In the case of storage allocation, our dynamic program
uses a more detailed description of the states. A state
describes now not only the set of accepted requests at the
relevant time point but also their physical positions. It
indicates whether and which request occupies each posi-
tion ðsi; yÞ for all i ¼ 1; . . . ; n and all y ¼ 1; . . . ;K. The
feasibility rule for accepting the ith request is also dif-
ferent, as it not only compares the unused capacity with
di, but also verifies that there is an unused (vertical)
spatial interval of length di.
Assume s1 < � � � < sn and let snþ1 and Si be defined as

in Section 2.1. Define Pi ¼ fðj; yÞ : j 2 Si and 1 	 y
	 K � dj þ 1g, where a pair ðj; yÞ 2 Pi indicates that the
lower side of item j is placed in position y. DefinePi to be
the set of subsets P � Pi such that pairs in P indicate a
feasible allocation (with respect to capacity, cardinality
and spatial constraints). For P 2 Pi, let YiðPÞ be the set of
co-ordinates y 2 f1; . . . ;K � di þ 1g such that no item
involved in placements P occupies any of the positions
ðsi; yÞ; . . . ; ðsi; y þ di � 1Þ. Thus, ðsi; yÞ for any y 2 YiðPÞ is
a candidate position for placing the lower side of item i if
accepted.
For any P 2 Pi, define giðPÞ to be the weight of an op-

timal solution if the available time period for allocation is
restricted to the subinterval ½si; T � given that allocations
indicated by P are accepted but the weights of allocated
items are not added. Hence gnþ1ðPÞ ¼ 0 for any P by defi-
nition.Given any P 2 Pi, if YiðPÞ ¼ ; then giðP Þ ¼ giþ1ðP 0Þ
where P 0 is obtained from P by removing those requests
whose termination occurs before siþ1. If YiðPÞ 6¼ ; and
ti < siþ1 then giðPÞ ¼ wi þ giþ1ðP 0Þ. Otherwise,

giðPÞ ¼ max giþ1ðP 0Þ;wi þ max
y2YiðP Þ

fgiþ1ðP 0 [ fði; yÞgg
� �

:

Since there are OððKnÞcÞ ways to choose c pairs from at
most nK, we have jPij ¼ OððKnÞcÞ, where c ¼ minfK;Lg.
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The complexity of solving the dynamic program is thus
OðnðKnÞcÞ.

3. The BAP approximation

We move to considering polynomial approximations in
solving problems of bandwidth and storage allocation in
their general forms. We first suggest an approximation
framework for the BAP. Denote r ¼ maxj2N dj=K. Sup-
pose that we are given an approximation algorithm that
has a performance guarantee of a � br for some constants
a and b. Such algorithms have been developed in Bar-
Noy et al. (1999) for an on-line setting of BAP, and can
be used, of course, also in the off-line setting. However,
we will use the additional information available in our
off-line environment to improve such bounds and obtain
bounds independent of r.

Approximation framework

For a fixed r0 > 0, a request i is called big if di 
 r0K.
Otherwise it is called small. Since any feasible solution
can accommodate at most 1=r0 big requests at a time, we
apply the dynamic programming algorithm of Section 2.1
with L ¼ 1=r0 according to Theorem 1 to find a feasible
solution that is of maximum weight among those con-
sisting of only big requests. Such a procedure takes
polynomial-time. (In fact, Oðn1þ1=r0Þ.) We also apply an
approximation algorithm with performance guarantee of
a � br0 to the set of small requests. We output the better
of the two solutions as our approximate solution.
Let a denote the proportion of weight that is contrib-

uted by big requests in some optimal solution. Then our
algorithm has a performance guarantee of at least max
fa; ð1� aÞða � br0Þg 
 ða � br0Þ=ð1þ a � br0Þ, which is
independent of a. By selecting r0 arbitrarily small we can
approach a=ð1þ aÞ arbitrarily closely.
In the rest of this section, we assume proportional

weights. Therefore, all the si’s and ti’s assume general
non-negative integer values.
Applying our approximation framework to the algo-

rithm of Bar-Noy et al. (1999) with a performance
guarantee of 1=2� r, we obtain a polynomial-time ap-
proximation algorithm with a performance guarantee of
ð1=3� �Þ, for any � > 0, which is independent of r. This in
turn gives rise to a polynomial-time approximation al-
gorithm A1 with an improved performance guarantee of
max f1=2� r; 1=3� �g. Nevertheless, we now investigate
a much simpler and faster algorithm.

Algorithm A2

Arrange all the requests in a priority list in order of non-
increasing lengths ti � si. Then in turn remove the first
request in the current list and accept it if and only if it can
be accommodated into the current system.

Now consider the performance of algorithm A2. For a
set N 0 � N of requests and integer time point t 2 ½1; T �, let
the total size of requests in N 0 at time t be

mtðN 0Þ ¼
X
j2N 0
t2ðsj ;tj �

dj:

Let m̂mtðN 0Þ ¼ minfmtðN 0Þ;Kg and let the coverage of a
request set N 0 be

cðN 0Þ ¼
XT

t¼1
m̂mtðN 0Þ:

Note that cðN 0Þ 	 wðN 0Þ, where wðN 0Þ denotes the total
weight of requests in N 0, and the coverage of a request set
N 0 is an upper bound on the total weight of any feasible
solution for N 0, and it is the total weight of all requests in
N 0 if N 0 itself is feasible. Let A2ðNÞ denote the set of re-
quests accepted by Algorithm A2.

Lemma 1. cðA2ðNÞÞ=cðNÞ 
 ð1� rÞ=3.

Proof. Let E ¼ A2ðNÞ. We introduce a set E0 of shadow
requests, and show that:

cðEÞ 
 1� r
3

cðE0Þ; ðiÞ

and

cðE0Þ 
 cðNÞ; ðiiÞ
which then imply the theorem.
For each request e 2 E, we define a corresponding

shadow request e0 with start time 2se � te, finish time
2te � se and size de=ð1� rÞ. For a set F � E of requests,
let F 0 ¼ fe0 : e 2 F g. Note that the newly defined start
times may be negative and the finish times may exceed T ,
but this does not affect our following discussion. Also
note that shadow request e0 is a combined result of
stretching request e uniformly along its two sides to triple
its length and stretching its size by a factor of ð1� rÞ�1.
Consequently, the weight of e0 is 3ð1� rÞ�1 times that of
e. Hence

cðEÞ ¼ wðEÞ ¼ 1� r
3

wðE0Þ 
 1� r
3

cðE0Þ:

In the following, it suffices to validate inequality (ii) by
showing that m̂mtðE0Þ 
 m̂mtðNÞ for all t ¼ 1; . . . ; T . We
distinguish two cases.

Case 1. Time t is not contained in the reservation period
of any request rejected by Algorithm A2, i.e.,
t 62 ðsj; tj� for all j 2 N n E. In this case, it is evi-
dent that m̂mtðE0Þ 
 m̂mtðEÞ ¼ m̂mtðNÞ.

Case 2. Time t is contained in the reservation period of a
rejected request. Let j 2 N n E be a request such
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that t 2 ðsj; tj�. Since request j is rejected, there
exists a time t0 2 ðsj; tj� and a subset F � E of
accepted requests, each of which has a reserva-
tion period containing t0 and has a length of
at least as large as request j, such that
mt0 ðF Þ > K � dj 
 ð1� rÞK. Clearly, for each
e 2 F , its corresponding shadow request e0 has a
reservation period that entirely covers the reser-
vation period ðsj; tj� of request j and hence con-
tains time t 2 ðsj; tj�. Therefore,

m̂mtðE0Þ 
 m̂mtðF 0Þ ¼ m̂mt0 ðF 0Þ ¼ minfmt0 ðF 0Þ;Kg;
¼ minfð1� rÞ�1mt0 ðF Þ;Kg ¼ K 
 m̂mtðNÞ:

j

Theorem 2. For a BAP with proportional weights, greedy
algorithm A2 runs in Oðn2Þ time and has a performance
guarantee of ð1� rÞ=3. The bound is tight.

Proof. A subset N 0 of N is a set of accepted requests in a
feasible solution for N if and only if mtðN 0Þ 	 K for all
t 2 ½1; T �. Since A2ðNÞ is feasible, its value is cðA2ðNÞÞ.
On the other hand, since the coverage of request set N is
an upper bound on the total weight of any feasible so-
lution for N , it follows from Lemma 1 that the perfor-
mance guarantee of the algorithm is as claimed.
We now consider the running time. Sort all si’s and ti’s in

a single list in non-decreasing order. Let the resulting list
be u1 	 u2 	 � � � 	 u2n. Sort all requests in a priority list in
order of non-increasing lengths. After these two sortings,
which takes Oðn log nÞ time, Algorithm A2 updates the
solution by checking the accommodation for each request
in the priority list. To check whether a request can
be accommodated into an existing partial feasible solu-
tion, it suffices to keep an updated 2n-dimensional vector
ðmu1ðEÞ; . . . ;mu2nðEÞÞ, where E � N is the set of requests
accepted to date. In other words, AlgorithmA2 builds a set
of accepted requests step-by-step through recording the
total size of accepted requests at each start and end point.
Therefore, the process of updating takes Oðn2Þ time.
To see that the bound is tight, consider the following

set of n ¼ 4ðð1� rÞK þ 1Þ requests. The first ð1� rÞK þ 1
requests, each having a size of one unit, all start at

1

3
T � 1;

and finish at

2

3
T þ 1:

The remaining 3ðð1� rÞK þ 1Þ requests are equally di-
vided into three groups, each having ð1� rÞK requests of
unit size and one request of size rK, have two endpoints

0;
1

3
T

� �
;
1

3
T ;
2

3
T

� �
;

and

2

3
T ; T

� �
;

respectively. Clearly, the greedy algorithm A2 accepts the
first ð1� rÞK þ 1 requests with a total value of

1

3
T þ 2

� �
ðð1� rÞK þ 1Þ;

while the optimal solution is to accept the last 3ðð1�
rÞK þ 1Þ requests with a total value of TK. Therefore, the
ratio goes to ð1� rÞ=3 when K and T become large. j

Combining Algorithms A1 and A2, we obtain the fol-
lowing.

Corollary 1. For a BAP with proportional weights, there is
a polynomial-time approximation algorithm with a per-
formance guarantee of maxf1=3� �; 1=2� r; ð1� rÞ=3g
for any � > 0.

4. The SAP approximation

In this section we present a polynomial-time approxi-
mation algorithm for the SAP of general weights, as-
suming that q ¼ maxj2N dj ¼ rK is bounded. Since we can
assume without loss of generality that K <

P
i di 	 nq, we

have K ¼ OðnÞ. For an integer k > 0, define the k-re-
striction of the SAP as the problem of packing a subset of
rectangles in N into m ¼ K=ðkqÞ identical rectangular
frames, each having a width of kq and a length of T , with
the objective of maximizing the total weight of packed
rectangles. (For simplicity we assume that m is an inte-
ger.) Clearly the total weight of an optimal solution to the
k-restriction is no more than that of an optimal solution
to the original SAP. However, we show that the difference
of the two is relatively small. On the other hand, we es-
tablish that k-restriction can be formulated as a problem
that can be approximated efficiently.

Lemma 2. Let OPT and OPTk be the optimal values of
SAP and its k-restriction, respectively. Then

OPTk 
 ð1� 2=kÞOPT :

Proof. Consider an optimal solution to the original SAP
and let E � N be the set of rectangles that are packed in
the optimal solution. Divide the storage frame horizon-
tally into subframes, each having a width of kq. We show
that, in the optimal solution, it is possible to give up some
rectangles whose total weight is at most 2OPT=k and then
to rearrange the others in such a way that none intersect
the division lines.
A rectangle in E is said to be in a subframe, if it in-

tersects the interior of the subframe but not the subframe
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above it. Note that any rectangle in E is in exactly one
subframe. Let us divide each subframe horizontally into k
bands of width q each. Define the weight of a band of a
subframe to be the sum of weights of the rectangles that
are in the subframe and intersect the interior of the band.
Since each item intersects at most two bands, the total
weight of all bands in a given subframe is at most twice
the total weight of the rectangles that are in the subframe.
From each subframe find a band of minimum weight,
then discard from the subframe all those items that
contribute to the weight of the band and insert in the
freed area those rectangles whose interior intersect the
bottom line of the subframe. Thus, we obtain a feasible
solution to the k-restriction problem by giving up weight
at most 2OPT=k. j

We have seen that k-restriction is a good approximation
to the SAP. Now we further show that k-restriction itself
can be well-approximated. To this end, let us reformulate
it into another problem. For a given constant k 
 1, a
subset I of the set N of requests is said to be k-independent
if accepting the requests in I is a feasible solution to the
SAP with capacity k. For example, in the uniform case, I is
1-independent if and only if, for each pair of requests i,
j 2 I , the (discrete) time intervals ½si; ti� and ½sj; tj� are
disjoint. As before, let wðIÞ ¼

P
i2I wi be the total weight

of requests in I . Given any collectionS of k-independent
sets, let f ðSÞ be the total weight of all the requests that are
in at least one k-independent set of S. Then

f ðSÞ ¼ wð[I2SIÞ ¼
X
I2S

wðIÞ �
X
i2N

ðniðSÞ � 1Þþwi;

where niðSÞ is the total number of appearances of request
i in all sets ofS and xþ ¼ maxfx; 0g. Let us now consider
the following problem.

ðPÞ: Maximize f ðSÞ subject to jSj 	 m:

It is easy to see that the k-restriction of SAP is equiv-
alent to Problem (P) with m ¼ K=ðkqÞ and k ¼ kq.
We claim that in Problem (P) f is a submodular set

function, i.e., it satisfies the following condition: For any
k-independent sets S and T,

f ðS [TÞ þ f ðS \TÞ 	 f ðSÞ þ f ðTÞ:
In fact, for any i 2 N , if we let giðSÞ ¼ ðniðSÞ � 1Þþwi,
then it is easy to check that gi is supermodular, i.e., it
satisfies the above displayed condition with f replaced by
gi and 	 replaced by 
. Therefore, Problem (P) is to
maximize a non-decreasing (with respect to the order of
set containment) submodular function subject to a card-
inality constraint, which is NP-hard if f is a general
submodular function (Corneujols et al., 1977; Nemhauser
and Wolsey, 1988). It is proved in Corneujols et al. (1977)
that a greedy algorithm is guaranteed to deliver a solution
of value at least 1� e�1 times the optimum. Actually, this

approximation result can be established significantly
more easily for Problem (P) as follows.

The greedy algorithm
Suppose we have accepted j disjoint k-independent sets
I1; . . . ; Ij, 0 	 j < m. Apply the dynamic programming
method of Section 2.2 to the set N � [j

i¼1Ii of remaining
requests and to the capacity k, we obtain a k-independent
set Ijþ1. A feasible solution is obtained by accepting the
requests in [m

i¼1Ii.
The running time of the greedy algorithm is OðmnðknÞkÞ.

Let pi ¼ wðIiÞ, i ¼ 1; . . . ;m. Let p̂p and p� be the values of
the greedy solution and of an optimal solution to Prob-
lem (P), respectively. Then we have the following lemma.

Lemma 3. p̂p 
 1� 1� 1=mð Þmð Þp� > ð1� e�1Þp�:
Proof. Assume that the best solution consists ofm disjoint
k-independent sets I�1 ; . . . ; I

�
m. According to the greedy

algorithm, we have

wðIjÞ 
 max
1	i	m

w I�i
[

1	l	j�1
Il

- !

 1

m

X
1	i	m

w I�i
[

1	l	j�1
Il

- !
;

  

or equivalently, using the fact that the sets I�i are k-
independent and thus contain each element of [Il at most
once,

pj þ
1

m

Xj�1
l¼1

pl 

1

m
p�;

for j ¼ 1; . . . ;m. Let kj ¼ ððm � 1Þ=mÞm�j, j ¼ 1; . . . ;m.
Multiply the above inequality by kj and then sum up over
all j ¼ 1; . . . ;m, to get

p̂p ¼
Xm
i¼1

pi 

1

m

Xm
j¼1

kj

 !
p� ¼ 1� m � 1

m

� �m� �
p�: j

Now we are ready to state the following main result.

Theorem 3. For a SAP with bounded request sizes and for
any fixed � ð0 < � < 1Þ, there is a polynomial-time ap-
proximation algorithm with performance guarantee of
ð1� e�1Þð1� �Þ.

Proof. Assume the sizes of requests are bounded by
constant q. Our approximation algorithm works accord-
ing to the magnitude of capacity K. If K 	 4q=�, then we
use the dynamic programming algorithm in Section 2.2 to
find an optimal solution in OðnðKnÞKÞ ¼ Oðn4q=�þ1Þ time.
Now assume K > 4q=� or 2r < �=2, where r ¼ q=K. We
consider the k-restriction of the problem with k ¼
K=ðmqÞ, where m ¼ 1þ �=ð4rÞ. Note that for simplicity
we assume without loss of generality that both k and m
are integers. As we have seen, this problem is equivalent
to Problem (P) with k ¼ K=m. We use the greedy algo-
rithm to approximate an optimal solution to (P) and
accept the greedy solution A as an approximate solution
to the original SAP. It is evident that the running time is
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O Kn
K
m

n
� �K=m

 !
;

which is bounded by Oðn4q=�þ2Þ since K=m < 4q=� ¼ Oð1Þ
and K ¼ OðnÞ, as we mentioned at the beginning of this
section. According to Lemmas 2 and 3, the ratio between
the value of the approximate solution and the optimal
value is at least ð1� e�1Þð1� ð2mqÞ=KÞ ¼ ð1� e�1Þ
ð1� 2r � �=2Þ > ð1� e�1Þ ð1� �Þ. Therefore, whatever
the value of K is, we are guaranteed to get in Oðn4q=�þ2Þ
time a solution that is at least as big as ð1� e�1Þð1� �Þ
times the optimal. j
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