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In this paper we develop an optimal and a heuristic algorithm for the problem of designing a ¯exible assembly line when several
equipment alternatives are available. The design problem addresses the questions of selecting the equipment and assigning tasks to
workstations, when precedence constraints exist among tasks. The objective is to minimize total equipment costs, given a pre-
determined cycle time (derived from the required production rate). We develop an exact branch and bound algorithm which is
capable of solving practical problems of moderate size. The algorithm's e�ciency is enhanced due to the development of good
lower bounds, as well as the use of some dominance rules to reduce the size of the branch and bound tree. We also suggest the use
of a branch-and-bound-based heuristic procedure for large problems, and analyze the design and performance of this heuristic.

1. Introduction and literature review

Assembly lines are often used in the last step of produc-
tion, when the ®nal assembly of the product from previ-
ously made parts is performed. An assembly line typically
consists of several workstations, each of them being
responsible for performing a speci®c set of tasks. The
product moves through the line, from one workstation to
the next, according to their order.
The separation of the entire set of tasks into subsets,

each performed in a speci®c workstation, allows for
specialization at each workstation. The tasks may be
performed manually, or by a dedicated equipment, to
achieve high e�ciency. Recently, the use of Flexible
Assembly Systems (FAS) has been developed, that is, the
use of ¯exible (and usually automated) equipment such as
robots or ¯exible machines, to perform assembly tasks.
This development is a particular result of the fast-
changing demands of customers which leads to a shorter
life cycle of products.
When ¯exible equipment is used for assembly tasks, the

issue of designing an assembly line becomes very impor-
tant. The design in this context consists of selecting the
equipment for the workstations, and addressing the re-
lated question of which tasks should be performed in
which of the workstations. Due to the ¯exibility of the
equipment, there are usually several equipment alterna-
tives for each task, and it may be the case that a particular
piece of equipment is e�cient for some tasks, but not for
others. This has to be taken into consideration when
grouping several tasks to be performed at the same
workstation, using the same equipment.

In this paper we address the questions of selecting the
equipment (¯exible assembly machines) and assigning
tasks to workstations, when precedence constraints exist
among tasks. The solution consists of a series of work-
stations, where a single speci®c piece of equipment is
placed in each station, and a set of tasks assigned to this
station is to be performed by the selected equipment. The
objective is to minimize total equipment costs, given a
pre-determined cycle time (derived from the required
production rate). We develop an exact branch and bound
algorithm which is capable of solving practical problems
of moderate size. The algorithm's e�ciency is enhanced
due to the good lower bounds that we develop, and due
to the dominance rules that we use to reduce the size of
the branch and bound tree. We also suggest the use of a
branch-and-bound-based heuristic procedure for large
problems, and analyze the design and performance of this
heuristic.
As mentioned above, the design problem is to choose

the equipment type and set of tasks to be performed in
each workstation, and this in turn determines the amount
of time it will take to complete all tasks in all the work-
stations. However, the balance amongst all the worksta-
tions is very important in the determination of the line's
e�ciency, and is the subject of a large stream of research.
Most of the research performed on the balancing problem
deals with Simple Assembly Line Balancing (SALB), [1±4]
in which no alternative equipment types are considered.
That is, every task's time is ®xed, and the remaining
problem is to determine the sets of tasks to be performed
at each workstation. This is clearly a special case of our
problem, in which all equipment types are identical. The
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SALB is proven to be an NP-Hard problem [5], and re-
sulting from this is the conclusion that our problem is
also NP-Hard.
There are relatively few studies that address the prob-

lem in which there is more than one type of equipment.
Graves and Holmes Red®eld [6] consider the design
problem with several equipment alternatives, when multi
products are assembled on the same line. They assume a
complete ordering of tasks of the same product and large
similarities among di�erent products. These assumptions
result in a relatively small number of candidate work-
stations (a number which is proportional to N k where N is
the total number of tasks and k is close to, but greater
than two), which therefore simpli®es the problem con-
siderably. Their algorithm indeed enumerates all feasible
workstations, selects the best equipment for each, and
then chooses the best set of workstations. Previous work
on the single product design problem with equipment
selection includes Graves and Whitney [7] and Graves
and Lamar [8], but in both articles the sequence of tasks is
also assumed to be ®xed.
Pinto et al. [9] discuss processing alternatives in a

manual assembly line as an extension of SALB. Each
processing alternative is related to a given set of tasks i.e.,
represents a limited equipment selection which may be
added to the existing equipment in the station, and the
decision is whether to use each such alternative in order
to shorten the tasks duration, at a given cost. Since the
line is manual, each task may be performed at each sta-
tion. Their solution procedure consists of a branch and
bound algorithm in which a SALB problem is solved in
every node of the branch and bound tree, therefore this
algorithm may be used only for a small number of pos-
sible processing alternatives.
Rubinovitz and Bukchin [10] present a branch and

bound algorithm for the problem of designing and bal-
ancing a robotic assembly line when several robot types
are available and the objective is to minimize the number
of workstations. Their model is a special case of ours, in
which all of the equipment alternatives have identical
purchasing costs. Tsai and Yao [11] proposed a heuristic
approach for the design of a ¯exible robotic assembly line
which produces a family of products. Given the work to
be done in each station, the demand of each product and
a budget constraint, the heuristic determines the robot
type and number of robots required in each workstation.
Their objective is to minimize the standard deviation of
output rates of all workstations, which is their measure-
ment for a balanced line.
The remainder of the paper is organized as follows: in

Section 2 we introduce the notation and a formulation of
the problem and illustrate it with an example. In Section 3
we develop two types of lower bounds, that are used later
in our algorithm. In Section 4 we describe our exact
branch and bound algorithm and present some qualita-
tive insights with respect to the problem's parameters,

based on an empirical study that we performed. We also
examine the quality of the lower bound that we developed
for the problem. In Section 5 we discuss how a heuristic
procedure, based on the branch and bound algorithm,
may be designed for the very large problems. Finally,
Section 6 contains our conclusions.

2. Problem formulation

In this section we introduce the notation as well as our
precise assumptions, and present an integer programming
formulation of the problem. Based on this formulation
we develop, in the next section, lower bounds for the
problem. To illustrate the model's assumptions and help
the reader follow our analysis, we provide at the end of
this section an example problem.
The problem is de®ned by the following parameters:

tij =duration of task i when performed by equipment
j �i � 1; . . . ; n; j � 1; . . . ; r�;

ECj = cost of equipment type j �j � 1; . . . ; r�; (We use
interchangeably equipment and equipment type,
this should cause no confusion.)

C= required cycle time;
Pi = set of immediate predecessors of task

i �i � 1; . . . ; n�:
The following assumptions are stated to clarify the

setting in which the problem arises:

(i) There is a given set of equipment types, each type
is associated with a speci®c cost. The equipment
cost is assumed to include the purchasing and
operational cost of using the equipment.

(ii) The precedence relation between assembly tasks is
known.

(iii) The assembly tasks cannot be further subdivided.
(iv) The duration of a task is deterministic, but de-

pends on the equipment selected to perform the
task.

(v) A task can be performed at any station of the
assembly line, provided that the equipment se-
lected for this station is capable of performing the
task, and that precedence relations are satis®ed.

(vi) The total duration time of tasks that are assigned
to a given station should not exceed the pre-
determined cycle time.

(vii) A single equipment is assigned to each station on
the line.

(viii) A single product is assembled on the line.
(ix) Material handling, loading and unloading times

are negligible or included in the tasks duration.
(x) Set up and tool changing times are negligible or

included in the task's duration.

The decisions that have to be made address two issues:
(i) the design issue, where the equipment has to be se-
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lected and assigned to stations; and (ii) the assignment of
all tasks to the stations, such that the precedence as well
as the cycle time constraints are satis®ed. The following
two sets of binary decision variables correspond to each
of these two issues, respectively. In the Appendix we
summarize all the notation used throughout the paper.
We de®ne for every equipment j and every station

number k:

yjk � 1 if equipment j is assigned to station k;
0 otherwise:

�
In addition, we de®ne for every task i, every equipment

j and station number k:

xijk � 1 if task i is performed by equipment j at station k;
0 otherwise:

�
The following is the resulting integer programming

formulation of the problem, denoted as (P1):

Min
Xr

j�1

Xn

k�1
ECjyjk; �1�

subject to Xr

j�1

Xn

k�1
k � xgjk �

Xr

j�1

Xn

l�1
l � xhjl

8 g; h subject to g 2 Ph; �2�Xr

j�1

Xn

k�1
xijk � 1 8 i; �3�

Xn

i�1
tijxijk � C � yjk 8 j; k; �4�

Xr

j�1
yjk � 1 8 k; �5�

xijk � 0;1 8 i; j; k; �6�
yjk � 0;1 8 j; k: �7�

The objective function (1) represents the total design cost
to be minimized. Note that the number of tasks, n, serves
as an upper bound for the number of stations. Constraint
set (2) ensures that if task g is an immediate predecessor
of task h, then it cannot be assigned to a station with a
higher index than the station to which task h is assigned.
Constraint set (3) ensures that each task is performed
exactly once. Constraint set (4) represents the relationship
between the xijk and the yjk variables by not allowing any
task to be performed on a given piece of equipment in a
given station, if this equipment is not assigned to that
station. Also, if a given piece of equipment is assigned to
a given station, constraint set (4) speci®es the cycle time
requirement. Constraint set (5) represents the require-
ment of at most one piece of equipment at any station
and constraint sets (6) and (7) de®ne the decision vari-

ables to be binary. Since this is the ®rst time that this
problem has been considered, the formulation is new, al-
though elements of it have appeared previously in the lit-
erature. The formulation consists of O�n2r� variables and
O�n�n� r�� constraints, but the main importance of this
formulation is the relaxation resulting from it, which en-
ables us to obtain good bounds, as explained in Section 3.

2.1. An example problem

Our example problem is based on the example analyzed
in Pinto et al. [9]. In particular, we adopted the prece-
dence diagram of their 10 tasks problem, shown in Fig. 1.
In our example, a product is assembled on an automated
assembly line, using three di�erent types of equipment
(machines). The cost of each equipment type and the time
required to perform every assembly task by each of the
selected equipment types are shown in Fig. 1. Empty el-
ements in the duration table imply that the task cannot be
performed by the associated equipment type.
We can compare among di�erent equipment types

along three dimensions: cost, speed and ¯exibility (num-
ber of tasks that can be performed by the equipment).
When no equipment type is dominated by the others, a
trade o� exists between di�erent types, with respect to at
least two of the above-mentioned properties. For exam-
ple: a fast and ¯exible equipment type is likely to be more
expensive. In our example, one can observe that each
equipment type has an advantage over the others in one
of the three dimensions:

(i) E1 ± a highly ¯exible equipment type, namely, a
piece of equipment which is capable of performing
a large number of assembly tasks (all tasks, in this
example).

(ii) E2 ± a fast assembly equipment type characterized
by short task duration.

(iii) E3 ± the least expensive assembly equipment.

The IP formulation of this example, based on formula-
tion (P1) presented in Section 2, consists of 330 binary
variables and 61 constraints.
We solved this problem by our optimal algorithm (de-

scribed in Section 4), determining task assignments and
equipment selection, while minimizing the total equip-
ment cost (1), subject to a cycle time constraint of 50. The
optimal con®guration was obtained in 0.05 seconds and is
shown in Fig. 2. The minimal equipment cost required
for a cycle time of 50 is $360 000 (three machines of
$100 000 each plus one machine of $60 000). The trade
o� between the di�erent types is demonstrated in the
optimal solution, by the fact that all three types of
equipment are used. An important conclusion drawn
from this example is that as long as a given equipment
type is not dominated by another type along all three
dimensions, it may be included in the optimal con®gura-
tion.
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3. Lower bounds

In this section we develop lower bounds for the problem,
as well as for subproblems of it. As we show below, the
bounds are obtained by relaxing some of the constraints
of the formulation (P1) and solving the relaxed problem;
the bounds are used in our branch and bound algorithm
that will be discussed in the next section.
Consider problem (P1), and make the following re-

laxations to it:

(i) Eliminate the precedence constraints (2).
(ii) Sum the constraints in (4) over all stations, for

each equipment type j. The resulting set of
constraints, denoted by (40) is the following:Xn

k�1

Xn

i�1
tijxijk � C

Xn

k�1
yjk 8 j: �40�

As a result of these relaxations, constraint set (5) is no
longer meaningful since all the stations are now consid-
ered together in the formulation. Equation (40) implies
that it is not required to keep the cycle time constraint in
every station, only the aggregate cycle time constraint,

representing a capacity constraint for each equipment
type. Therefore we de®ne the following new decision
variables, which are independent of the stations:

yj �
Xn

k�1
yjk � total number of type j equipment:

xij �
Xn

k�1
xijk �

1 if task i is performed by equipment j;

0 otherwise:

�

The relaxed formulation, denoted as (P2), is now de-
scribed as follows:

Min
Xr

j�1
ECjyj �8�

subject to Xr

j�1
xij � 1 8 i; �9�

Xn

i�1
tijxij � C � yj 8 j; �10�

Fig. 1. Precedence diagram, task times and equipment costs.

Fig. 2. Optimal con®guration of the example problem (total cost = 360 000).
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xij � 0; 1 8 i; j; �11�
yj integer 8 j: �12�

Here, (8) is equivalent to (1), representing the total
equipment cost to be minimized; (9) replaces (3), ensuring
that each task is performed exactly once, and (10) is in
fact constraint (40) discussed above. To simplify the
problem further, we relax the integrality constraints re-
garding the yj variables (12) and obtain problem (P3).
Therefore, problem (P3) is de®ned by (8)±(11) and:

yj � 0 8 j; �120�
and we prove the following:

Theorem 1. The following solution is optimal for problem
(P3):

xij � 1 if ECj � tij � min
l
fECl � tilg

0 otherwise

�
8 i �13�

(If more than one index j achieves the minimum, choose one
of them, arbitrarily.)

yj �
Xn

i�1
tijxij=C 8 j: �14�

Before proving the theorem formally, let us ®rst ex-
plain it intuitively. Note ®rst that each unit of an
equipment type may be assigned as much work as the
cycle time, C. Therefore, the number of units (which
may be fractional) to be purchased from each equipment
type is the sum of the duration of all tasks assigned to
this type, divided by the cycle time, resulting in (14).
This means that in order to perform a certain task, say i,
by a certain equipment type, say j, a fraction of the
equipment needs to be purchased, which equals to the
fraction of cycle time required to perform it, i.e., tij=C.
The cost of this fraction of equipment is: ECj � �tij=C�.
Comparing the costs of all equipment alternatives for a
given task i, and choosing the type whose cost is mini-
mal, one obtains Equation (13). We now provide a more
formal proof.

Proof of Theorem 1.Note ®rst that the solution de®ned by
(13) and (14) is feasible. Note also that given any solution
to the xij variables, the solution to the yj variables as
de®ned by (14) is optimal. Therefore it remains to prove
that the solution of the xij variables as de®ned by (13) is
optimal.
Assume, by contradiction, that this solution is not

optimal, therefore there exists a variable xim in the opti-
mal solution s.t. xim � 1 but

ECm � tim > min
l
fECl � tilg:

This variable, associated with task i, contributes tim=C
units to the variable ym and therefore ECm � tim=C to the

objective value of (P3). If instead we choose for task i
xij � 1 for j that satis®es

ECj � tij � min
l
fECl � tilg;

then the contribution to the yj variable is tij=C units and
therefore ECj � tij=C (< ECmtim=C, by de®nition) to the
objective value of (P3), a contradiction to the optimality
of the former solution. j

We de®ne:

LB1 �
Xr

j�1
ECjyj; �15�

where yj is determined by (13) and (14).

Corollary 1. LB1 is a lower bound to the value of (P1).

The Corollary is true since LB1 is the optimal objective
value of problem (P3) which is a relaxation of problem
(P1). In conclusion, we have shown how to obtain a lower
bound to the problem, which is easy to compute. The
deviation of this bound from the optimal solution value
results from ignoring the precedence constraints, from
considering the cycle time requirement in aggregation to all
stations (i.e., a task may be performed in more than one
station), and from the ability to use a fraction of a piece of
equipment. In the next section a branch and bound algo-
rithm is developed, which uses the proposed lower bound.
In the process of solving problem (P1) via the branch

and bound algorithm, a node in the branch and bound
tree represents a partial solution, in which some of the
tasks have already been assigned to speci®c equipment
types. For this node, the calculation of a lower bound is
required. This leads us to consider a subproblem of the
relaxed problem (P3), in which it is given that a subset of
the original set of tasks is performed by an already de-
termined set of equipment types. In addition, a given
number of time units, say S, are still available on the last
selected equipment type, say type m. Since this equipment
has already been purchased, no cost is associated with
these S time units. The subproblem has to determine the
number and type of additional equipment to be purchased
(at minimal cost) in order to perform the remaining subset
of tasks, say r, and to assign the tasks in r to the new
equipment while satisfying the aggregate (and possibly
fractional) cycle time constraint.
We denote this subproblem as (P4) and state its exact

formulation:

Min
Xr

j�1
ECjyj;

subject to Xr

j�1
xij � 1 8 i 2 r;
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X
i2r

tijxij � C � yj 8 j 6� m; �10a�
X
i2r

timxim � S � C � ym; �10b�

xij � 0;1 8 i 2 r;8 j;

yj � 0 8 j:

As discussed, this formulation is identical to (P3), ex-
cept that only tasks in the set r are considered, and the
original constraint (10) is replaced by (10a) and (10b).
Constraint (10b) is a modi®cation of the original con-
straint (10) for equipment type m, which re¯ects the S free
time units on this equipment type. Ideally, all S (free)
time units of equipment m should be used, in which case
the desired value for the xij variables may be fractional.
Therefore we denote by (P5) a subproblem which is a
relaxation of problem (P4), obtained by allowing the xij
variables to be fractional. This relaxation enables us to
solve problem (P5) to optimality, providing us with a
lower bound to the value of problem (P4). (As becomes
clear from the algorithm below, at most two xij variables,
which refer to the same task, will be fractional).
We use the following algorithm, denoted as Algorithm

TES (Task Equipment Selection), to solve problem (P5):

Step 1. Let j�i� be the equipment type for which tij�i� �
ECj�i� � minlftil � EClg � ai 8 i 2 r

Step 2. Let i� be the task for which ai�=ti�m �
maxi2rfai=timg

Step 3. If ti�m < S then: set xi�m � 1, S � S ÿ ti�m and
r � rnfi�g. If r � U, go to (Step 5); otherwise,
go back to (Step 2).

Otherwise: if m� j�i�� then xij�i�� � 1;

if m 6� j�i�� then xi�m � S=ti�m;

xi�j�i�� � 1ÿ xi�m

r� rnfi�g
Step 4. For every i 2 r set xij�i� � 1.
Step 5. yj �

P
i2r tijxij=C:

The basic idea of this algorithm is to ®rst assign tasks to
the S free time units of equipment type m. Recall that
when no free time units are available (as in problem (P3)),
every task i is assigned to the equipment which has the
minimal value of tij � ECj which we de®ne here (Step (1) of
Algorithm TES) as equipment type j�i�. This is also the
solution for problem (P5), once the S free time units of
equipment m have been exhausted. Therefore, the tasks
that are assigned to the S free time units of equipment m
are those for which the ``alternative cost'' per unit time of
usage of equipment m, de®ned in Step (2) of the algo-
rithm, is maximal. The optimality of Algorithm TES is
stated in the next theorem.

Theorem 2. Algorithm TES produces the optimal solution
for subproblem (P5).

Proof. Note ®rst that the solution produced by the al-
gorithm is feasible. It is also clear that an optimal solu-
tion will necessarily use all S free time units of equipment
m. Moreover, once these units are used up, the rest of the
problem is of the type of problem (P3) (only with less
tasks), and therefore the solution is as de®ned in Steps
(1), (4) and (5) of Algorithm TES. It remains to prove
that the choice of tasks to be assigned to equipment m, as
described in Steps 2 and 3, is optimal.
Assume that the suggested solution (the solution pro-

duced by Algorithm TES) assigns to the free time units of
equipment m the tasks in the set M � fi1; . . . ; ikg subject
to xi1 � . . . � xikÿ1 � 1 and xik � f where 0 < f � 1. Now
assume by contradiction that in the optimal solution
xim � 1=tim for some i =2 M , i.e., at least one time unit of
the free units of equipmentm is allocated to a task which is
not inM, and consider the ®rst such unit. (We discuss here
only the usage of the free units of equipment type m, as if
they are marked; the assignment of tasks to additional
equipment of that type are not relevant here). As a result,
one (maybe additional) time unit of a task in M (say task
ik) has to be assigned to other equipment (instead of
equipment m); as discussed earlier, the best alternative is
the equipment identi®ed in Step (1) of Algorithm TES. If
we consider the contribution to the objective value of
problem (P5) of the time unit whose assignment di�ers
between the suggested solution and the optimal solution,
we obtain that in the suggested solution the contribution is

�1=tim� � min
l
ftil � ECl=Cg;

and in the optimal solution the contribution is
�1=tikm��minlftikl � ECl=Cg. By de®nition (Step (2) of
Algorithm TES), the latter is higher than the former, a
contradiction to the optimality of the latter solution. j

We de®ne:

LB2 �
Xr

j�1
ECjyj; �16�

where yj is obtained from Algorithm TES.

Corollary 2. LB2 is a lower bound to the value of (P4).

4. The branch and bound algorithm

Branch and bound algorithms have been extensively used
for solving complex combinatorial problems, including
assembly line design and balancing problems [10,12]. In
this study, a frontier search branch and bound algorithm
is developed for minimizing the total equipment cost. The
advantage of a frontier search branch and bound algo-
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rithm is that the number of nodes investigated in the
branch and bound tree, is minimal. In addition, the use of
subproblems and lower bounds at each node of the
branch and bound tree, which are speci®c to the problem
investigated, considerably improve the e�ectiveness of the
algorithm. They were developed in the previous section,
and their use will be illustrated in this section.
Throughout the algorithm, workstations are opened

(established) sequentially, equipment is selected and
placed in the newly opened workstation, and tasks to be
performed by the selected equipment are assigned to
this workstation. Therefore, throughout the algorithm,
partial solutions to the problem exist, which describe
partial assignments of tasks to equipment and stations.
In addition, for each partial solution a lower bound
may be computed based on the solution of subproblem
(P5), as described below. The algorithm ends when all
tasks are assigned to equipment and workstations, and
the obtained solution value is no larger than the lower
bound of all partial solutions. In Sections 4.1±4.3 we
describe the details of the algorithm:

4.1. A node in the branch and bound tree

Each branch and bound node X represents one partial
solution of the original problem. A partial solution is
characterized by a set of tasks, r0, which have already
been assigned to stations, along with the equipment se-
lected to perform these tasks, i.e., the equipment selected
for these stations. Among the stations that were used thus
far in the partial solution, the last opened station is the
only one to which tasks may still be assigned. Finally,
such a partial solution is associated with an accumulated
cost, TCX , representing the cost of purchasing the
equipment decided upon thus far.
We de®ne the slack of the last opened station at node

X, SX , as the di�erence between the required cycle time
and the time already assigned to that station by some of
the tasks in r0. Any task i, is a candidate to be assigned to
the last station opened if the following conditions hold:

(i) The task has no predecessors, or its predecessors
are already assigned.

(ii) The time to perform task i by the already selected
equipment type j (at the last opened station), tij, is
no larger than the remaining slack, SX .

If the set of candidate tasks is not empty, the station is
de®ned as an open station. Otherwise, if the set of can-
didate tasks is empty, the station is de®ned as a closed
station.

4.2. The lower bound

The lower bound which is calculated for each node of the
branch and bound tree, consists of two elements. The ®rst
element, associated with past decisions, is the (exact) cost

of the already selected equipment in the partial solution
associated with node X, a known value which we denoted
as TCX . The second element, associated with future deci-
sions, is a lower bound on the cost of the equipment
which is yet to be selected for the set of yet unassigned
tasks, r (where r is the complement of r0 in the original
set of tasks). This second element is computed in one of
two ways, according to whether the last opened station is
closed or open:

(i) If node X represents a closed station, the re-
maining decisions concern the assignment of the
tasks in r to new stations that need to be opened,
whose equipment types have not yet been chosen.
Note that this is exactly problem (P1) (see Section
2), only limited to the set of tasks in r. Therefore
the lower bound for the element associated with
future costs of node X when X is a closed station
is LB1�r�, where LB1�r� is obtained by calculating
the value of (15) to the set of tasks in r (see
Section 3).

(ii) If node X represents an open station, the relax-
ation which is equivalent to LB1 but in addition
takes into consideration the last opened station, is
represented by a problem which is in the form of
(P4). Equipment m in (P4) represents the equip-
ment type of the last opened station in the partial
solution of node X, and S in (P4) represents the
remaining slack of that station, SX . Therefore the
lower bound for the element associated with future
costs of node X when X is an open station is
LB2�r�, where LB2�r� is the solution of (P5) (the
relaxation of (P4)), obtained by solving Algorithm
TES.

Summing up the two elements discussed above of the
lower bound of a given node X, we conclude that the
lower bound of X is LBX � TCX � LB1�r� when X is a
closed station, and LBX � TCX � LB2�r� when X is an
open station. In both cases, the lower bound is easily
calculated.

4.3. Stages of the algorithm

The main stages of the proposed algorithm are as fol-
lows:

Stage 1. Creation of the ®rst level of the branch and bound
tree. At this level each node contains a task which does
not have precedence requirements, along with an equip-
ment type that is capable of performing this task. Such a
node is generated for every feasible equipment±task
combination.

Stage 2. Selection of a node to be extended. As described
above, a lower bound of the optimal cost is calculated for
each node of the tree. The open node (node without
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descendants) with the lowest lower bound is selected for
further extension, representing our choice of a frontier
search algorithm.

Stage 3. Node extension. Each descendant of the extended
node contains an assignment of a new single task. If the
extended node represents an open station, an extension is
performed for each candidate task. If the extended node
represents a closed station, a new station is opened, and
the extension is performed for every feasible equipment±
task combination.

Stage 4. Elimination of dominated nodes. Each time a
station becomes closed, a comparison between the current
node and all other open nodes that are associated with
closed stations, is performed in order to eliminate domi-
nated nodes. The dominated node could be either the new
one, or a previously created node. The dominance rule is
described as follows: assume that at node Y, a set of tasks
G has already been assigned, with an associated equip-
ment cost, TCY . At another node, X, a set of tasks H has
already been assigned, with an associated equipment cost
TCX . Node Y is dominated by node X if H � G and
TCX � TCY , and therefore can be eliminated.

Stage 5. End condition. If an extended node contains all
tasks, and its solution value is no larger than the lower
bound of all open nodes, an optimal solution has been
found. Otherwise, the algorithm proceeds as in Stage 2
above.

4.4. Experimental study for the optimal algorithm

We have coded our branch and bound algorithm and
conducted an experimental study. As can be concluded
from the running time reported in the next section, the
optimal branch and bound algorithm is capable of solv-
ing moderate problem sizes in a reasonable amount of
time, i.e., problems with a few dozen of tasks and with
®ve to ten equipment types. This is only an approxima-
tion, since the variability of the run time for di�erent
instances of the same size is quite large. The purpose of
the experimental study presented in this section is to ex-
amine the impact of various problem parameters on the
algorithms performance, and to investigate the e�ective-
ness of the initial lower bound (LB1), measured by its
distance from the optimal solution value.
We report on three performance measures in this study:

(i) The size of the branch and bound tree (the total
number of nodes generated).

(ii) The maximum number of open nodes in the
branch and bound tree.

(iii) The running time of the algorithm.

In fact, the complexity of the algorithm (a measure of its
running time) is approximately the number of nodes gen-

erated, multiplied by the complexity of the work to be done
at each node. The latter is O�log2 T � n � r�, where T is the
maximum number of open nodes in the branch and bound
tree, since calculating LB1 or LB2 is O�n � r�, and for each
new node its lower bound has to be placed in a sorted list of
length O�T �. While the running time performance measure
implies the current capabilities of the algorithm, the other
two performance measures have the advantage of being
independent of the coding e�ciency and the computer
type. The maximal number of nodes opened simulta-
neously during a run is a measure of the memory space
required (in addition to its impact on the complexity of the
algorithm), see the next sections for more details.
We examined the impact of ®ve parameters of the

problem on the ®rst two performance measures men-
tioned above. A two level full factorial experimental de-
sign has been performed, examining the signi®cance level
of each factor. The parameters and the values that were
examined are described next.

(i) The number of tasks. The number of tasks was set
to 15 and 30.

(ii) Equipment alternatives. The number of equipment
alternatives was set to three and ®ve.

(iii) Variability of task duration. The duration of every
task was generated from a uniform distribution.
We examined a distribution with a small variance,
U(0:8l; 1:2l), and a distribution with a high vari-
ance U(0:4l; 1:6l), where l is the expected value of
the task duration.

(iv) F-ratio. The F-ratio is ameasure for the ¯exibility in
creating assembly sequences, developed by Mans-
oor andYadin [13], and de®ned as follows: Let pij be
an element of a precedence matrix P, such that:

pij � 1 if task i precedes task j;
0 otherwise:

�
Then, F-ratio� 2Z=n�nÿ 1�, where Z is the num-
ber of zeroes in P, and n is the number of assembly
tasks. The F-ratio value is therefore between zero,
when there are no precedence constraints between
tasks (any sequence is feasible), and one, when
only a single assembly sequence is feasible. As-
sembly tasks are often characterized by relatively
low F-ratios. Hence, precedence diagrams with F-
ratios of 0.1 and 0.4 were generated in this study.

(v) E-ratio. The E-ratio is a measure for the ¯exibility
of the assembly equipment, developed by Rub-
inovitz and Bukchin [10], and de®ned as follows:

Let tij an element in a matrix T, represent the
time to perform task i by equipment type j. If task i
cannot be performed by equipment type j, tij is set
equal to in®nity. Let M represent the number of
elements set to in®nity, n be the number of tasks,
and r be the number of equipment types, then
E-ratio = 1ÿM=n�r ÿ 1�. The E-ratio value is
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therefore between zero, when each task can be
performed by only a single equipment type, and
one, when each task can be performed by any one
of the equipment alternatives. The value of the
E-ratio in this study was set to 0.3 and 0.6.

In addition to these parameter settings, we note that the
cost of each equipment type was determined as a decreas-
ing function of the value of l. This latter choice ensures
that no equipment type may dominate any other along the
two dimensions of expected task duration and cost. The
third desired property of an equipment type which was
discussed in Section 2, namely its ¯exibility, was generated
arbitrarily according to the speci®ed E-ratio, in order to
preserve generality of possible equipment characteristics.
The total number of experiments in a two-level, ®ve-

factors full-factorial experimental study is 25 � 32. We
generated 10 instances for each experiment, resulting in a
total of 320 algorithm runs.
The results of the experiments are analyzed with re-

spect to the impact that each factor has on each of the
following three values of interest: (i) the total number of
nodes visited; (ii) the maximal number of open nodes; and
(iii) the di�erence between the initial lower bound and the
optimal solution value. The results are presented in the
form of standard ANOVA (Analysis of Variance) tables
(Tables 1±3), including the values of the main e�ects, as
well as their signi®cance levels. Following each table, we
discuss the results, and provide additional insight.
In Table 1, the values of the main e�ects represent the

di�erences in the average number of nodes between the
experiments with high and low value of each factor. We

can see that all main e�ects are highly signi®cant, with
very small p-values. Even the least signi®cant factor, the
duration variability, has a p-value of less than 2%. Not
surprisingly we discover that the ®rst two main e�ects are
positive, that is, increasing the number of tasks or the
number of alternative equipment types leads to a larger
branch and bound tree. The tree size is also highly and
positively a�ected by the value of the F-ratio, which can
be explained by the increase in the number of assembly
alternatives (sequences) for higher F-ratio values. A
similar phenomenon occurs for the E-ratio, where high
values of this measure mean that there are many alter-
natives for the equipment assignments, leading to a larger
tree. The less predictable result is the negative sign of the
duration variability e�ect. Here we see that a smaller
variability leads to a larger tree size. We believe that the
reason for this is that small variability among tasks'
duration increases the number of candidate tasks to be
assigned at each stage of the branch and bound procedure
since more tasks have similar duration.
The results with respect to the maximum number of

open nodes, which is our measure for the memory space
required, are summarized in Table 2. We can see that
there is a similarity between the results of Tables 1 and 2,
and that the main e�ects in both have the same signs.
This implies that both the running time and the memory
requirements are a�ected by these factors in the same
way. The similarity can also be noticed when looking at
the p-value column, though the p-values in Table 2 are
generally higher. Four out of the ®ve factors are highly
signi®cant, while the duration variability factor has a high
p-value (0.17), and cannot be identi®ed as signi®cant.

Table 1. The impact of factors on the total number of nodes

Factor E�ect SS df MS F p

(1) No. of tasks 11 240 101.07E8 1 101.07E8 50.73 7.693E-12
(2) No. of Eq. Types 7 978 509.18E7 1 509.18E7 25.56 7.433E-07
(3) Duration variability )3 790 114.89E7 1 114.89E7 5.77 0.0169359
(4) F-ratio 11 217 100.66E8 1 100.66E8 50.52 8.434E-12
(5) E-ratio 9 019 650.76E7 1 650.76E7 32.66 2.615E-08

Error 951.69E8 314 303.09E6
Total SS 128.09E9 319

Table 2. The impact of factors on the maximal number of open nodes

Factor E�ect SS df MS F p

(1) No. of tasks 1022 834.80E5 1 834.80E5 36.96 3.603E-09
(2) No. of Eq. types 859 589.94E5 1 589.94E5 26.12 5.676E-07
(3) Duration variability )230 423.91E4 1 423.91E4 1.88 0.1716794
(4) F-ratio 1048 878.30E5 1 878.30E5 38.89 1.498E-09
(5) E-ratio 929 690.18E5 1 690.18E5 30.56 6.97E-08

Error 102.61E7 314 326.78E4
Total SS 132.50E7 319
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Finally, we examined the impact of the main factors on
the lower bound e�ectiveness, measured as the di�erence
between the initial lower bound and the optimal solution
value. It is interesting to discover (see Table 3) the sign of
each e�ect and to note that all ®ve main e�ects are highly
signi®cant. We observe that the gap between the lower
bound and the optimal solution value is an increasing
function of the number of equipment types and the dura-
tion variability; it is a decreasing function of the number of
tasks, as well as the F-ratio and E-ratio. The average gap
between the initial lower bound and the optimal solution
value was 33.9%, which is reasonable considering the re-
laxation that we have made. The minimal gap was ob-
tained for problems with 30 tasks, three equipment types,
small variability of task duration, an F-ratio of 0.4 and an
E-ratio of 0.6, with an average gap of 14.1% for these
characteristics. The average largest gap, which was ob-
tained for the opposite factor values, was equal to 51.7%.
This information is useful for assessing the distance of a
heuristic solution's value from the optimal solution's val-
ue, when a heuristic algorithm is employed. A suggested
heuristic for the problem is described in the next section.

5. Heuristic algorithm ± description and experiments

The frontier search branch and bound algorithm requires
large computer resources in order to solve very large
problems, and therefore a heuristic is required for most
real world problems. In this section we present a heuristic
procedure whose control parameter may be chosen ac-
cording to the problem size. This control parameter de-
termines how many nodes of the tree may be skipped, and
therefore is responsible for the running time, for the
memory requirements, as well as for the distance from
optimality of the resulting solution.
According to the rules of the frontier search branch

and bound procedure, the node with the smallest lower
bound is extended at each iteration. However, some of
these nodes have a very small probability of eventually
providing the optimal solution, and their extension is
essential only for proving the optimality of the solution.
In the proposed heuristic, we modi®ed the node selection
rule, in order to avoid the extension of such nodes.

Let X be an open node at the tree level NX , with a lower
bound, LBX . Let Y be another open node at the tree level
NY , with a lower bound LBY . De®ne LB0 to be the initial
lower bound of the problem (before doing any assign-
ment). Note that the levels of the tree are numbered such
that the root of the tree is level 0 and the highest index
level is level n, where all tasks are already assigned. The
node selection rule is modi®ed as follows:

Step 1. If NX � NY , and LBX � LBY , select node X.
Step 2. If NX � NY , and LBX > LBY ,
Step 2.1. If

LBX ÿ LBY

NX ÿ NY
� K

LBX ÿ LB0

NX
;

select node X, otherwise, select node Y.

The parameter K in step 2.1 is the heuristic's control
parameter; the selection of the value of K is discussed
below.
Note that in Step 1 above, the usual node selection rule

is applied, while in Step 2 this rule is sometimes reversed.
According to Step 2, we prefer high indexed over low
indexed nodes if their lower bounds are only slightly
larger. The reasoning for this is that by the time the lower
indexed node will become a higher indexed node, it may
accumulate higher costs than the di�erence in their lower
bounds. The left-hand side in Step 2.1 of the selection
process represents the average cost per level for the levels
between nodes X and Y, and this is compared with the
average cost per level that was accumulated along
the branch that reached the higher indexed node, X. If the
former is smaller than the latter, it may be an indication
that the branch that emanates from node X has better
chances of providing the optimal solution. This is
weighted by the control parameter, K, which represents
the trade o� between the tree size and the solutions
quality. When K � 0, the inequality in Step 2.1 never
holds, so that the node with the lowest lower bound is
always selected, and the optimal solution is achieved. On
the other hand, if K is very large, nodes with high indexed
levels are always preferable over nodes with low indexed
levels, and a heuristic solution is quickly obtained.
However, such a solution is not likely to be a good one.

Table 3. The impact of factors on the di�erence between the initial lower bound and the optimal solution value

Factor E�ect SS df MS F p

(1) No. of tasks )0.053 0.221 1 0.221 58.57 2.52E-13
(2) No. of Eq. types 0.054 0.229 1 0.229 60.53 8.60E-14
(3) Duration variability 0.109 0.955 1 0.955 252.72 0.00E+00
(4) F-ratio )0.078 0.485 1 0.485 128.18 4.33E-25
(5) E-ratio )0.143 1.631 1 1.631 431.43 0.00E+00

Error 1.303 314 0.0041
Total SS 4.824 319
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In order to choose a good value for K, namely, a value in
which the problem is solvable in a reasonable time and
the solution is close enough to the optimum, a sensitivity
analysis on the value of K was performed.
We selected the eight problems that required the longest

time to be solved by the optimal algorithm, all from the
category of 30 tasks, ®ve equipment alternatives, small
variance of task duration, high F-ratio and high E-ratio.
We examined those problems for 10 di�erent values of K,
between zero to 10. The results are presented in Table 4,
where we can see that for each K and each of the eight
problems the solution value, the size of the branch and
bound tree, the maximal number of open nodes created
during the algorithm run and the CPU time. The CPU
time reported is in seconds, using a Pentium II 266 MHz
processor. The memory requirement for each node of the
branch and bound tree is approximately 150 Bytes, im-
plying that the largest memory requirement, among the
eight problems, was about 2.5MB (for Problem 4).
The results marked with an asterisk are optimal. It is

apparent from the table that for each problem there is a
point in which the tree size, along with the CPU time,
increases dramatically, and then almost immediately the
optimal solution is obtained. For all problems, the opti-
mal solution was obtained for a relatively small number
of nodes, compared with the optimal algorithm. The
stochastic nature of the heuristic is also recognized, where
in some cases a lower value of K caused an increase in the
objective value (see for example Problem 1, K � 1 and
K � 0:7). To identify the recommended value of K for
this set of problems, two graphs were created and are
presented in Fig. 3 (a and b). Figure 3 (a) shows the
di�erence between the heuristic's and the optimal solu-
tion's values, where each point associated with a speci®c
value of K is an average of the eight results. Figure 3 (b)
shows the ratio between the average size of the branch
and bound tree for the heuristic algorithm and the av-
erage size required by the optimal solution. We can see a
clear similarity and dependency between the two graphs,
which can be divided into three ranges. In the ®rst range
where K has high values, the heuristic solution value is
much larger than the optimal solution value (a di�erence
of 32% for K � 10), and the ratio between the two
branch and bound trees is very small. When K � 1:5,
the di�erence in the values becomes much smaller
(8.2%) and the average size of the heuristic's branch and
bound tree increases signi®cantly. Finally, when K � 1,
the graph becomes sharper with a higher rate of in-
crease; at that point, a relatively good solution is ob-
tained, with an average di�erence of 1.7% from the
optimal solution, and with only 5.3% of the average tree
size of the optimal solution. Beyond that point, when K
is smaller than one, the tree size is increasing dramati-
cally while the solution value is only slightly improving.
For this set of problems, the value of K � 1 provides a
relatively good solution where the size of the tree is

relatively small. While the ``best'' value of K may be
dependent on the parameters' characteristics, we expect
that in general small values of K will provide good and
fast solutions for the most di�cult problems that cannot
be solved to optimality.
Due to the large variability in solution time, a solution

may not be obtained as fast as expected for certain
problems. In these cases our recommendation is to ®rst
run the algorithm with a large value of K, in order to
obtain a fast heuristic solution; then by decreasing its
value gradually, we expect that the solution obtained will
be improved, This process may be repeated as long as a
solution is obtained in a reasonable amount of time.

6. Conclusions

In this paper we proposed a new method for the design
of a ¯exible assembly line which may consist of several
types of assembly equipment. The purpose of the design
process is to choose the type of equipment to place in
every station of the line and to determine the assign-
ment of tasks to each equipment type, where the ob-
jective is minimizing total equipment cost. This design
problem is NP-hard since a special case of it is the
simple assembly line balancing problem, which is known
to be NP-hard.
We present a formulation of the problem, based on

which we develop lower bounds for both the complete
and also for partial problems. These lower bounds are
then used in a branch and bound algorithm. Our branch
and bound algorithm also uses a dominance rule for
cutting branches of the branch and bound tree, therefore
reducing its running time. Although the algorithm has an
exponential complexity, it is capable of solving problems
of moderate size. Since it is a design problem which has to
be solved only every once in a while and not frequently
during operation, we are able to devote to it relatively
large computational resources.
Finally, we developed a heuristic procedure which may

be used for large problems that cannot be solved by the
optimal algorithm. The heuristic is very ¯exible in de-
termining its accuracy on one hand, and its computa-
tional time on the other hand. The trade-o� between the
accuracy and the computational time is controlled by the
heuristics control parameter. An experimental study
demonstrated the sensitivity of the accuracy and the
computational time of the heuristic as a function of the
control parameter, and implied on its preferred value for
the examined set of problems.
We note that by solving our problem a few times, for

di�erent values of the cycle time parameter, we are able to
address the higher level problem, in which the cycle time
is a decision variable. In particular, an alternative to the
design of a single line with a cycle time of C, is a design of
m lines, with a cycle time of mC each, therefore providing
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the same throughput. Since m, the number of separate
lines, is not likely to be high, it is still reasonable to solve
the problem for every resulting value of cycle time.
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Appendix ± Summary of notation

Parameters
tij = duration of task i when performed by equipment

j �i � 1; . . . ; n; j � 1; . . . ; r�;
ECj = cost of equipment type j �j � 1; . . . ; r�;
C = required cycle time;
Pi = set of immediate predecessors of task

i �i � 1; . . . ; n�:

Decision variables

yjk =
1 if equipment j is assigned to station k;
0 otherwise.

n
xijk =

1 if task i is performed by equipment j at
station k;

0 otherwise.

(
yj =

Pn
k�1 yjk � total number of type j equipment;

xij =
Pn

k�1 xijk �
1 if task i is performed by

equipment j;
0 otherwise.

(

Lower bounds
LB1 =the solution of problem (P3) and a lower bound

for problem (P1);
LB2 =the solution of problem (P5) and a lower bound

for problem (P4).

Optimal branch and bound related values
X = a node n the branch and bound tree;

TCX = the cost of purchasing the equipment decided
upon thus far in the partial solution associated
with node X;

SX = slack of the last opened station at node X;
r0 = a set of tasks which have already been assigned

to stations in the partial solution associated
with node X;

r = the complement of r0 in the original set of
tasks, i.e., the set of tasks which have not been
assigned yet to stations in the partial solution
associated with node X;

Fig. 3. (a) A comparison between the heuristic and the optimal
solution, and (b) the ratio for the tree size of the heuristic and
that of the optimal solution.
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LB1 r� � = the value of LB1 when only the set of tasks r is
considered;

LB2 r� � = the value of LB2, given the set of tasks r;
ZX = the lower bound of node X.

Parameters used in the experimental study
l = the expectation of the task duration;

F -ratio = 2Z=n�nÿ 1�, where Z is the number of zeroes
in the matrix P whose elements are:

pij =
1 if task i precedes task j,
0 otherwise:

n
E-ratio = 1ÿM=n�r ÿ 1� where M = the number of tij

elements that equal to in®nity.

Heuristic branch and bound related values
NX = tree level of node X;

LBX = lower bound of node X in the branch and bound
tree;

LB0= the initial lower bound of the problem;
K= the heuristic's control parameter.
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