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We consider a supply chain, which consists of several retailers and one supplier. The retailers, who possibly differ in their cost and
demand parameters, may be coordinated through replenishment strategies and transshipments, that is, movement of a product among
the locations at the same echelon level. We prove that in order to minimize the expected long-run average cost for this system, an
optimal replenishment policy is for each retailer to follow an order-up-to S policy. Furthermore, we demonstrate how the values of
the order-up-to quantities can be calculated using a sample-path-based optimization procedure. Given an order-up-to S policy, we
show how to determine an optimal transshipment policy, using a linear programming/network flow framework. Such a combined
numerical approach allows us to study complex and large systems.

1. Introduction

Physical pooling of inventories (Eppen, 1979) has been
widely used in practice to reduce costs and improve cus-
tomer service. For example, Xerox has consolidated all
of its country-based warehouses in Europe into a single
European Logistics Center in the Netherlands. Alternately,
the practice of transshipment, the monitored movement of
material between locations at the same echelon (e.g., among
retailers), may entail the sharing of stock through enhanced
visibility, but without the need to put the stock physically in
the same location. To emphasize the requirement for sup-
ply chain transparency at the same echelon, we will refer
to this practice as information pooling. Such information
pooling through transshipments has been less frequent.
Transshipments provide an effective mechanism for correct-
ing discrepancies between the locations’ observed demand
and their available inventory. As a result, transshipments
may lead to cost reductions and improved service with-
out increasing system-wide inventories. In this paper, we
study transshipments as an effective materials management
policy.

Consider the following examples. Suppose that you go
shopping at Foot Locker in Hamburg, Germany. You find
a pair of Avanti Leather shoes, but, to your disappointment,
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they do not have your size. Knowing that it would take at
least a few weeks to get the shoes that you desire from the
Italian manufacturer, you prepare to leave the store dis-
appointed. However, a sales representative quickly deter-
mines, through a simple check on the store’s computer, that
the Foot Locker in Antwerp, Belgium, has the shoes in your
size. As she arranges to have the shoes sent overnight, she
suggests that you come back the next day to try them on.

FNAC is the leading retailer of cultural and leisure prod-
ucts in France. The company has recently opened an on-line
channel, fnac.com, in addition to its vast network of retail
shops. Upon the receipt of an order from the Internet, there
are several options for order fulfillment: fnac.com’s own
stock, stock kept at a central distribution center, and stock
from nearby FNAC stores. The last option represents one-
way transshipments since the physical inventory held at a
store is used to satisfy the demand at fnac.com instead of or-
dering the item from the central distribution center or from
its supplier. Although fulfilling customer demand through
transshipments has a higher short-term operational cost,
the supply chain manager of the company asserts that ex-
ercising the transshipment option expands the portfolio of
items they can offer through the Internet threefold without
having to carry the associated stock (Yücesan, 2003).

In the above examples, transshipments are sometimes
used in a reactive mode (in response to an actual stock-
out). Alternatively, companies may realize that increased
benefits can be achieved by proactively incorporating the
transshipment option into the planning phase. Planned and
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systematic transshipments represent a relatively novel idea.
They replace physical consolidation with virtual integration
through information sharing. In this paper, we propose a
model that allows the exploitation of the advantages of de-
ploying transshipments in a proactive fashion.

There are two key reasons why information pooling has
not yet been widely adopted in practice: the inadequacy of
the IT infrastructure and the lack of realistic models to ex-
ploit the benefits of this policy. Whereas the past decade has
seen significant investment in IT infrastructure (e.g., imple-
mentation of Enterprise Resource Planning (ERP) systems
and other web-based technologies) enabling transparency
within supply chains, new business models of transship-
ments have not been developed as rapidly. The literature
on transshipments has generally addressed either problems
with two retailers, e.g., Tagaras (1989), Robinson (1990),
Tagaras and Cohen (1992), and Herer and Tzur (2001)
or problems with multiple, mainly identical retailers, e.g.,
Krishnan and Rao (1965) and Robinson (1990). Herer and
Tzur (2003) considered nonidentical multiretailers in a de-
terministic setting. In contrast, we consider multiple retail-
ers, who are allowed to differ from one another both in
their cost structure and in their demand parameters, in a
stationary infinite-horizon setting. In addition we allow de-
mand to be dependent across retailers within any particu-
lar period. Other recent work on transshipments includes
Archibald et al. (1997), Herer and Rashit (1999), Tagaras
(1999), Rudi et al. (2001) and Dong and Rudi (2004).

The paper most closely related to ours is that of Robinson
(1990). For the model considered, it provides an analyti-
cal solution when there are two nonidentical locations and
when there are multiple identical (in cost) locations. Addi-
tionally, it contains a heuristic for the multilocation non-
identical case, which contains a stochastic integration based
on Monte Carlo sampling. Robinson also contains a math-
ematical program that is close to the mathematical pro-
gram presented here in Section 3.2. Despite these similari-
ties there are important differences both in our models and
approaches. The cost parameters that we allow are more
general. Also, Robinson considers minimizing expected dis-
counted cost and we consider expected long-run average
cost, where cost includes holding, shortage, transshipment,
and replenishment costs. Most importantly, our approach
is guaranteed to converge to the optimal values, whereas
Robinson’s heuristic, although it performs very well, pro-
vides no such guarantees.

Some of the recent papers have incorporated high levels
of complexity into transshipment models. Unfortunately,
such models become intractable rather quickly, leaving sim-
ulation as the only tool to investigate interesting policies.
Crude simulation, however, can be very time consuming.
We therefore propose to combine the modeling flexibil-
ity of simulation with stochastic optimization approaches.
Simulation-based optimization techniques help the search
for an improved policy while allowing for complex features
that are typically outside of the scope of analytical models.

In particular, we show that an optimal policy for the sys-
tem we consider is for each retailer to follow an order-up-to
policy. The optimality of the order-up-to policy takes into
consideration the use of transshipments among retailers, to
be performed once demand is observed. While we also show
how to find optimal transshipment quantities, an order-
up-to policy remains optimal under any (even nonoptimal)
stationary transshipment policy. This result is useful when
considering what-if scenarios, for example, when transship-
ments are performed only within clusters of locations. We
also demonstrate how the values of the order-up-to quan-
tities can be calculated using a procedure that is based on
Infinitesimal Perturbation Analysis, IPA (Ho et al., 1979).
Whereas an optimal order-up-to quantity has to be found
only once for the entire system, an optimal transshipment
strategy has to be determined on a period-by-period basis,
given the period’s demand realization. We also show how
these transshipment quantities can be found using a linear
programming (LP)/network flow framework.

The contribution of this paper is twofold. First is the
development of an integrated IPA/LP algorithm for a sys-
tem that allows transshipments. The system we consider
differs from many previously studied systems with trans-
shipments in that we consider multiple retailers, who differ
both in their cost structure and in their demand parameters.
Moreover, we show that we can find an optimal inventory
replenishment policy for any stationary transshipment pol-
icy that may arise from practical considerations. This en-
ables the comparison of several such alternatives, as well as
a comparison of each alternative with the optimal solution.
Second is a methodological contribution obtained by for-
mulating and validating IPA derivative estimators for the
transshipment problem. The estimators are based solely on
data from the operation of a system at a single set of pa-
rameter values. Therefore, they are easily computed from
the sample path generated by a simulation run. Formulating
these estimates means introducing appropriate algorithms;
validating them calls for showing that they converge to the
correct values, where convergence is over the number of in-
dependent simulation replications (obtained, in our case,
over regenerative cycles) used to estimate the derivative in-
formation.

The paper is organized as follows. In Section 2 we describe
the multilocation transshipment problem and introduce no-
tation. In Section 3 we present the form of a combined
optimal policy for the replenishment and transshipment
strategies, together with our solution technique. In Section
4 we discuss the numerical study, which illustrates the solu-
tion technique. Section 5 concludes the paper.

2. Problem description

2.1. The model

In the system being investigated, there is one supplier and
also N nonidentical retailers, associated with N distinct
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stocking locations, facing customer demand. The demand
distribution at each retailer in a period is assumed to be
known and stationary over time. The system inventory is
reviewed periodically, and replenishment orders are placed
with the supplier. In any period, transshipments provide a
means to reconcile demand-supply mismatches.

Within each period, events occur in the following order:
first, replenishment orders placed with the supplier in the
previous period arrive. These orders are used to satisfy any
outstanding backlog and to increase the inventory level.
Next in the period is the occurrence of demand. Since de-
mand realization represents the only uncertain event of the
period, once it is observed all the decisions of the period,
i.e., transshipment and replenishment quantities, are made
and paid for. The transshipments are then made immedi-
ately, and subsequently the demand is satisfied. Unsatisfied
demand is backlogged. At this point, backlogs and inven-
tories are observed, and penalty and holding costs, respec-
tively, are incurred. The inventory is carried, as usual, to
the next period.

The goal is to find the transshipment and replenishment
quantities that minimize the expected long-run average cost
over an infinite horizon. The cost is the sum of the replen-
ishment, transshipment, holding, and penalty costs. Note
that items, which are supplied through transshipments, sat-
isfy demand immediately whereas backlogged items have
to wait until the beginning of the next period. Thus, the
advantage of using transshipments is in gaining a source
of supply whose reaction time is shorter than that of the
regular supply.

To describe the operation of the system, we use the fol-
lowing notation.

N = number of retailers;
Di = random variable associated with the periodic de-

mand at retailer i with E[Di] < ∞;
f (D) = joint probability density function for the demand

vector D;
di = actual demand at retailer i in an arbitrary period;
hi = holding cost incurred at retailer i per unit held per

period;
pi = penalty cost incurred at retailer i per unit back-

logged per period;
ci = replenishment cost per unit at retailer i;
ĉij = direct transshipment cost per unit transshipped

from retailer i to retailer j;
cij = effective transshipment cost, or simply the trans-

shipment cost, per unit transshipped from retailer
i to retailer j, cij = ĉij + ci − cj.

We will represent the vector of quantities described above,
as well as the ones that we will introduce later in the paper,
by dropping the subscripts, thus, d = (d1, . . . , dN).

Note that cij is considered as the effective transshipment
cost because when a unit is transshipped from retailer i to re-
tailer j we pay, in addition to the direct transshipment cost,
a cost of ci instead of cj to replenish the unit. We restrict

our attention to situations where cij ≥ 0. If this condition
were violated it would mean that the replenishment costs
at the two locations would differ by more than the direct
transshipment cost; in fact, we would expect that in most sit-
uations ci = cj is satisfied, that is, cij = ĉij. In this case the
differences, if any, between various hi values result solely
from the retailers’ physical and geographical characteris-
tics. For example, the size of the warehouse and its material-
handling efficiency, or whether the retailer is in an expensive
business area or in a rural suburb, may affect the cost struc-
ture. We consider base stock policies, where Si represents
the order-up-to level at retailer i and S = (S1, S2, . . . , SN).
Given di, the actual demand at retailer i in a given period,
the dynamic behavior of the system is captured through the
following auxiliary variable:

Ii = inventory level at retailer i immediately after
transshipments and demand satisfaction

= Si − ∑N
j=1 FBiMj + ∑N

j=1 FBjMi − di, where FBiMj

represents the transshipment quantity from
retailer i to retailer j.

The motivation for this notation will become apparent
below and a concise definition will be given in Table 1 later
in this paper. Note that Ii may be either positive or negative,
and we denote:

I+
i = max{Ii, 0}, I−

i = max{−Ii, 0} .

Thus, the realized cost of the system in a given period is
equal to:

TC =
N∑

i=1

N∑

j=1

cijFBiMj +
N∑

i=1

hiI+
i +

N∑

i=1

piI−
i +

N∑

i=1

cidi .

(1)
We show, in Section 3.1, that base stock policies mini-

mize the expected long-run average cost. Since the optimal
policy is to order up to Si units at each retailer i, the begin-
ning of each period, after orders arrive and backorders are
satisfied, is a regeneration point. That is, the system returns
to the same state (Si units at each retailer). Thus, we can
view the multiperiod problem as a series of single-period
problems. In particular, minimizing the expected cost in an
arbitrary period will also minimize our objective function,
the expected long-run average cost. Furthermore, this re-
generative structure enables the construction of an efficient
algorithm to compute the optimal order-up-to values. The
algorithm is introduced in Section 3.3.

In Equation (1), the term
∑N

i=1 cidi is needed to fully
account for the replenishment costs. Since we are using an
“order-up-to S” replenishment policy at each retailer, the
total amount replenished system-wide will be exactly equal
to the system-wide demand. Since this term is independent
of our decision variables, it is omitted below. Recall that
the replenishment cost differentials were included in the
definition of cij.
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2.2. Modeling assumptions

We will make mild assumptions, one regarding the replen-
ishment policy and two regarding the transshipment policy,
but first we need three definitions.

Definition 1. A replenishment policy is shortage inducing
if and only if the beginning inventory, after orders arrive
and backorders are satisfied, at some retailer can be strictly
negative. Moreover, a replenishment policy, which is not
shortage inducing, is termed nonshortage inducing.

Definition 2. A transshipment policy is stationary if and only
if the transshipment quantities decision is independent of
the period in which it is made. That is, it depends only on
the pre-transshipment inventory and the observed demand.
Similarly, a replenishment policy is stationary if and only if
the replenishment decision is independent of the period in
which it is made.

Definition 3. A transshipment policy is a no-buildup trans-
shipment policy if and only if transshipments are never
made to buildup inventory at the receiving location, that
is, transshipments are only made to satisfy actual current
demand.

We consider only replenishment policies that are non-
shortage inducing and transshipment policies that are both
stationary and no-buildup. The nonshortage inducing as-
sumption is needed to eliminate some pathological situa-
tions where the order-up-to quantity is negative; moreover
this assumption is easily justified from a service-level stand-
point. A customer may accept a shortage from time to time,
but not ordering enough to satisfy an existing shortage (as
a shortage inducing policy may do) would not be a sustain-
able business decision. The stationary assumption is made
without loss of generality since our planning horizon is
infinite and both demand and the cost parameters are sta-
tionary, implying that we need only consider replenishment
and transshipment policies that are stationary. The no-
buildup property is guaranteed (see Corollary 1 to Theorem
1 below) if we assume (as was assumed in Tagaras (1989),
Robinson (1990), and Herer and Rashit (1999) as well as
others) the following relationship regarding the problem
parameters:

hi ≤ cij + hj for all i and j . (2)

Intuitively, this inequality means that it is not economic
to transfer a unit from retailer i to retailer j, so that it would
be held in inventory at retailer j rather than at retailer i.
Several other assumptions that are often made in the liter-
ature on transshipments and/or appear to be natural are
not required here; see Section 3.4.

3. Optimal policies

Two decisions need to be made each and every period: re-
plenishment and transshipment quantities. Those are dis-
cussed, respectively, in Section 3.1, where an order-up-to
policy is proven to be optimal for the replenishment deci-
sion, and in Section 3.2, where an LP/network flow for-
mulation is developed for the transshipment decision. In
Section 3.3 we discuss how the optimal values of the order-
up-to policy may be found. Finally, in Section 3.4 we discuss
some relaxations of restrictions on the parameters.

3.1. Optimality of an order-up-to policy

The optimal form of the replenishment policy is based on
the following definition.

Definition 4. A replenishment policy is an order-up-to S
= (S1, S2, . . . , SN) replenishment policy if at retailer i the
beginning inventory, after orders arrive and backorders are
satisfied, is Si in every period.

Note that due to the no-buildup assumption of the trans-
shipment policy, an order-up-to S replenishment policy
is regenerative whenever the replenishment policy is non-
shortage inducing. On the other hand, if for some i, Si < 0,
then, at the end of the period, another retailer may make
a transshipment to retailer i causing the prereplenishment
inventory level at retailer i to be strictly greater than Si.
Since reducing inventory levels during the replenishment
stage in our model is not allowed, and in fact, reducing in-
ventory levels below zero has no obvious physical meaning,
we cannot guarantee that a shortage inducing order-up-to
S replenishment policy is regenerative.

Theorem 1. There exists an order-up-to S = (S1, S2, . . . , SN)
replenishment policy which is optimal within the class of non-
shortage inducing replenishment policies for any stationary
no-buildup transshipment policy.

Proof. We begin the proof by defining and then analyzing a
system, which is virtually identical to the system described
above. In fact, the new system differs in only two aspects:

1. At the end of the period, after holding and shortage costs
are incurred, a retailer can either purchase or sell stock
back to the supplier for the same price the stock can
purchased at the beginning of the period.

2. The stock level at each retailer at the end of the period
is constrained to be zero, i.e., no inventory and no back-
orders are allowed.

In all other aspects the two systems are identical in every
way.

Claim 1. Every replenishment policy in the original system
has a corresponding replenishment policy in the new system
with identical cost.
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If, in the original system, the end-of-period inventory
level at retailer i is Ii and the replenishment quantity is ri
(thus incurring a replenishment cost of ciri), then in the new
system retailer i would, at the end of the previous period, sell
back to the supplier Ii units (or, if Ii < 0, purchase −Ii units)
and order ri + Ii units during the replenishment stage of the
current period, thus incurring a cost of ci(−Ii + ri + Ii) =
ciri. The other aspects of the two systems are identical in
every way.

Note that the converse of the claim is not true. In par-
ticular, using the supplier to reduce inventories in the new
system is possible, whereas using the supplier to reduce in-
ventories in the original system is impossible.

Now let us examine the replenishment policy in the new
system. In this newly defined system, since demands are sta-
tionary and independent across time periods and because
the transshipment policy is stationary, the end of each pe-
riod is a regeneration point. This means that, even though
the planning horizon is infinite, the optimal replenishment
decision in each and every time period is the same. In par-
ticular, we let Si be the optimal order quantity at retailer i
in the new system and we also note that this replenishment
policy is an order-up-to S = (S1, S2, . . . , SN) replenishment
policy.

Recall that any order-up-to S replenishment policy is also
feasible in the original system. Moreover, since the new sys-
tem has strictly more feasible solutions this replenishment
policy is also optimal in the original system, which com-
pletes the proof of the theorem. �

Corollary 1. If Equation (2) holds for all retailers i and j, then
the optimal transshipment policy has the no-buildup property.

Building up inventory in the new system when Equation
(2) holds is clearly suboptimal. Since every no-buildup
transshipment policy is feasible in the original system, we
know that the optimal transshipment policy has the no-
buildup property.

Note that the transshipment policy need not be optimal
(or even reasonable) for Theorem 1 to hold. In the next sec-
tion, we show how to compute the optimal transshipment
policy. However, if for some reason another transshipment
policy is desired, e.g., grouping retailers into (possibly over-
lapping) pooling groups such that retailers only transship
to other retailers in the same group, then Theorem 1 still
holds.

3.2. Determining the optimal transshipment quantities

Given an order-up-to S policy for the replenishment quan-
tities, the optimal transshipment quantities need to be de-
termined each period between every pair of retailers. To this
end, we develop a linear-cost network flow model of an ar-
bitrary single period. The network flow model we develop
is not the only one possible; indeed there exists a network
flow representation with N fewer nodes and N fewer arcs

than the one we present1. We choose to present this partic-
ular representation because it clearly reflects the events and
actions in a period, implicitly showing the flow of time.

Let us recall the events in this arbitrary period; in par-
ticular, let us examine the movement of material. At the
beginning of the period, after orders arrive and backorders
are satisfied, there are Si units in stock at each retailer i.
These units can be used in one of three different ways: (i)
satisfy demand at retailer i; (ii) satisfy demand at retailer j
(i.e., a transshipment from retailer i to j), and (iii) hold in
inventory at retailer i. Whereas it is true that it is physically
possible to move stock from retailer i to another retailer,
e.g., j, for storage, this is precluded by the no-buildup as-
sumption.

At the end of the period units are on order from the
supplier. These units will be used in two different ways: (i) to
satisfy a backorder at a retailer; or (ii) to buildup inventory
at a retailer so that the retailer will start the next period, after
the order arrives and backorders are satisfied, with Si units
in stock. The stock at the beginning of the period, after the
order from the previous period arrives and backorders are
satisfied, and the replenishment made during the current
period are the only two sources of material.

Let us now examine the material flow from the demand
side (i.e., the sinks). The demand at retailer i, di, can be sat-
isfied in one of three different ways: (i) from the inventory
at retailer i; (ii) from the inventory at another retailer j (i.e.,
through a transshipment from retailer j to retailer i); or (iii)
from replenishment during the current period (that arrives
at the start of the next period). Another sink for material
is the requirement that each retailer i begins the next pe-
riod, after orders arrive and backorders are satisfied, with
Si units. These units can come from one of two sources: (i)
the inventory at retailer i; or (ii) replenishment during the
period. As discussed above, inventory from another retailer
will not be used to buildup inventory levels at retailer i.

Using the observations above, we model the movement of
stock during a period as a network flow problem. In partic-
ular, we have a source node, Bi, to represent the beginning,
i.e., initial inventory at retailer i, after orders arrive and
backorders are satisfied, and a source node, R, to represent
the replenishment that occurs in the period that arrives at
the start of the next period. The sink node associated with
the demand at retailer i will be denoted Mi. Similarly, we
will denote by Ei the ending inventory at retailer i, includ-
ing units on order from the supplier. Note that this is equal
to the inventory at the beginning of the next period, after
orders arrive and backorders are satisfied. The arcs in the
network flow problem are exactly those activities described
above and are summarized (with their associated cost per
unit flow) in Table 1. We use the letter “F” to denote the
flow in the network and subscripts to indicate the starting

1We would like to thank the anonymous referee for pointing out
the existence of the alternative network flow representation.
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Table 1. The definition of the arcs in the network flow problem

Cost per
Arc Variable unit flow Meaning

(Bi, Ei) FBiEi hi Inventory is held at retailer i
(Bi, Mi) FBiMi 0 Stock at retailer i is used to

satisfy demand at retailer i
(Bi, Mj) FBiMj cij Stock at retailer i is used to

satisfy demand at retailer j, i.e.,
(cii = 0) Transshipment from retailer i to

retailer j
(R, Mi) FRMi pi Shortage at retailer i is satisfied

through replenishment
(R, Ei) FREi 0 Inventory at retailer i is increased

through replenishment

and ending nodes of the flow, thus FBiMj is the flow in the
network from node Bi to Mj.

The complete network flow representation of the problem
can be found in Fig. 1 for four retailers. Note that the graph
is bipartite, although our representation of the graph, which
was chosen to show the connection to the underlying inven-
tory problem, does not emphasize this characteristic. The
LP formulation associated with this network flow problem
is as follows:

Problem (P)

Z(S, d) = min
N∑

i=1

hiFBiEi +
N∑

i=1

N∑

j=1

cijFBiMj +
N∑

i=1

piFRMi ,

Fig. 1. Network flow representation of a single period.

subject to

Si = FBiMi +
N∑

j=1
j �=i

FBiMj + FBiEi i = 1, . . . , N, (3)

FBiMi +
N∑

j=1
j �=i

FBjMi + FRMi = di i = 1, . . . , N, (4)

N∑

i=1

di =
N∑

i=1

FRMi +
N∑

i=1

FREi , (5)

FBiEi + FREi = Si i = 1, . . . , N, (6)
FBiEi , FBiMj , FRMi , FREi ≥ 0 i = 1, . . . , N, (7)

j = 1, . . . , N.

Equations (3), (4), (5), and (6), respectively, represent the
inventory balance constraint at the Bi, Mi, R, and Ei nodes.

3.3. Finding the optimal order-up-to levels

In the most general setting, exact computation of optimal
order-up-to levels by analytical methods is difficult. We
therefore use an approach based on Monte Carlo simu-
lation: a set of demand realizations are sampled at random.
For each demand realization, optimal transshipment quan-
tities are computed along with gradient values. These values
are then averaged across all samples and the sample aver-
age of the gradient value is used in the optimization. In
particular, we deploy a stochastic approximation technique
to compute the optimal order-up-to levels.
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Glasserman (1991) established the general conditions
for the unbiasedness of the IPA estimator. Applications
of perturbation analysis have been reported in simu-
lations of Markov chains (Glasserman, 1992), inven-
tory models (Fu, 1994), manufacturing systems (Glasser-
man, 1994), finance (Fu and Hu, 1997), and control
charts for statistical process control (Fu and Hu, 1999).
IPA-based methods have also been introduced to an-
alyze supply chain problems (Glasserman and Tayur,
1995).

The idea is to use the expected value of the sample
path derivative obtained via simulation instead of using the
derivative of the expected cost in a gradient search method.
In other words, the gradient of interest is dE[TC]/dS
whereas our numerical procedure computes E[dTC/dS].
To validate this approach, that is, to justify the interchange
of the derivative and the integral, we need to show that the
objective function is jointly convex and “smooth” in the S
variables.

To show that the expected cost is jointly convex in the
decision variables, we first show that for a given demand,
d, Z(S,d) is jointly convex in S. This is done by rewriting
problem (P) such that all the Si variables appear on the
“right-hand side”. We then apply the result that the objec-
tive functions of linear programs are convex piecewise linear
functions of their right-hand sides (see, e.g., Bradley et al.
(1977, p. 697)). Since the convolution of a convex function
is itself convex we know that the expected cost in a single
period, is itself jointly convex in S.

It remains to show that the objective function is
“smooth”, i.e., the derivatives are both continuous and
bounded to validate our IPA estimators (which we formu-
late below). As illustrated in Lemma 3.2 of Glasserman
and Tayur (1995), continuity and boundedness can be ver-
ified by establishing that inventories are, with a probabil-
ity of one, Lipschitz functions of the order-up-to levels,
which is clearly the case here. Since the Lipschitz prop-
erty is preserved by min/max and addition operators, the
derivatives of the total cost are also both bounded and
continuous functions of the order-up-to levels. To sum-
marize, since we established the smoothness of the ob-
jective function, our IPA estimators are guaranteed to be
unbiased.

3.3.1. Description of the IPA procedure
The procedure starts with an arbitrary value for the order-
up-to levels, S. An instance of the demand is generated at
each retailer. Note that any covariance structure is allowed
in f (D). Once the demand is observed, problem (P) is solved
in a deterministic fashion to compute the minimum-cost
solution. The gradient of the total cost (derivatives with
respect to the order-up-to levels) is estimated and accumu-
lated over regenerative cycles; the average gradient value
is then used to update the values of S. A thorough review
of simulation-based stochastic optimization techniques can
be found in Shapiro (2001).

The procedure is summarized in a pseudo-code format,
where K denotes the number of steps taken in a path search,
U represents the number of regenerative cycles, ak rep-
resents the step size at iteration k, and Sk

i represents the
order-up-to level for retailer i at the kth iteration:

Algorithm 1
Initialize K
Initialize U
Set k ← 1
For each retailer, set initial order-up-to levels, S0

i ,
possibly based on demand distribution

Repeat
Set dTC ← 0
Set u ←0

Repeat
i. Generate an instance of the demand at

each retailer, d, from f (D)
ii. Solve problem (P) to determine optimal

transshipment quantities
iii. Accumulate the desired gradients

(derivatives) of the total cost, dTC
iv. u ← u + 1
Until u = U

v. Calculate the desired gradient(s),
dTC/U

vi. Update the order-up-to levels, Si:
Sk

i ← Sk−1
i − ak(dTCi/U)

vii. k ← k + 1
Until k = K

In Step (iii) of the algorithm, we use IPA to com-
pute the gradient. To illustrate the sample-path derivative
idea, suppose that we end a period with inventory at re-
tailer i. In this case, raising Si by one unit would result
in increasing the total cost by hi. In the computer im-
plementation, for each retailer i, we could partially code
Step (iii) as:

dTCi = dTCi + hi, if inventory at retailer i is positive, at
the end of Step (ii).

Starting with dTCi = 0 for all i at the beginning of the
simulation and dividing dTCi by U in Step (v) yields the
derivative estimates.

Our network flow formulation greatly simplifies compu-
tations. Increasing Si corresponds to increasing the supply
at source node Bi and the demand at sink node Ei. From a
network flow perspective, dTC/dSi = hi, if the arc (Bi, Ei)
is basic or, equivalently, the flow FBiEi is positive. If the arc
is nonbasic, then since any basic solution corresponds to a
tree in the network, there exists a unique augmenting path
from Bi to Ei whose total cost yields the gradient value.
For example, the augmenting path may go from Bi to Mj
to R to Ei, with an associated cost of cij − pj. Such a path
represents a transshipment from retailer i to retailer j (with
a cost of cij), a reduction in backorders at retailer j (with
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a savings of pj) and a purchase of another unit at retailer i
(cost of zero).

Furthermore, our implementation of the derivative com-
putation in Step (iii) is very efficient. Since the value of the
gradient is equal to the total cost along the unique path
from Bi to Ei for each retailer i, this quantity can be calcu-
lated directly as the difference between the holding cost at
retailer i and the reduced cost of the arc (Bi, Ei), which is
readily available from the LP solution in Step (ii).

In Step (vi) of the algorithm, one typically imposes con-
ditions on the step size ak such that:

∞∑

k=1

ak = ∞ and
∞∑

k=1

a2
k < ∞ .

For instance, ak = 1/k satisfies these requirements. The first
condition facilitates convergence by ensuring that the steps
do not become too small too fast. However, if the algorithm
is to converge, the step sizes must eventually become small,
as ensured by the second condition. Note that when the gra-
dient estimator is unbiased (as is the case here), Step (vi) rep-
resents a Robbins-Monro algorithm (Robbins and Monro,
1951) for stochastic search.

3.3.2. Sensitivity analysis
In a similar fashion, we can compute the derivative of the
total cost with respect to other model parameters such as
holding cost, penalty cost, transshipment cost, and replen-
ishment cost. Furthermore, we can conduct performance
analysis for service levels, expressed in terms of fill rate both
at a single retailer and system-wide. Some of these gradient
estimators are illustrated in Table 2.

The derivative estimators are quite intuitive. For example,
suppose that in the optimal solution to the network flow
problem retailer i holds inventory at the end of a period
(FBiEi > 0). An increase in the holding cost would therefore
increase the total cost by the amount of excess stock being
held. Similarly, if no excess inventory is held at retailer i at
the end of a period, an increase in holding cost would have
no impact on the total cost.

Finally, we should point out that as long as the trans-
shipment policy preserves the smoothness of the cost func-
tion with respect to the order-up-to levels, Algorithm 1
(with an appropriately defined method of obtaining the per-
period gradient information) can be used without modifi-
cation. That is, the transshipment policy need not be op-
timal (as was also the case with the correctness of Theo-

Table 2. Other gradient estimators

Derivative Estimator

dTC/dhi FBiEi

dTC/dpi FRMi

dTC/dĉij FBiMj

dTC/dci FBiMi + ∑
j �=i FBiMj − ∑

j �=i FBjMi

rem 1) if for some reason another transshipment policy is
desired.

3.4. Relaxing the restrictions on the parameters

Several assumptions that are often made in the literature
on transshipments and/or appear to be natural are not re-
quired for our model and analysis. These assumptions, some
of which are typically referred to as triangle inequalities,
are:

1. cij ≤ hi + pj : Not requiring this inequality, i.e., allowing
cij > hi + pj, means that when one retailer has an inven-
tory surplus and the other has backlog before transship-
ments, it is not necessarily economic to transfer a unit
from the former to the latter. With two-location models,
as well as with identical-location models, this inequality
is needed to ensure that transshipments are economic
(otherwise, no transshipments will ever occur). How-
ever, since we have a multilocation model with possibly
nonidentical costs this restriction is no longer natural.
(Clearly, if this inequality is not satisfied for all pairs of
i and j, no transshipment will occur.)

2. pj ≤ cij + pi : Not requiring this inequality, i.e., allowing
pj > cij + pi, means that it may be economic to transship
a unit from retailer i to retailer j even when retailer i her-
self has a shortage. Such a cost structure may occur when
different retailers have different priorities, and therefore
a retailer with a higher priority might have a (possibly
significant) higher unit shortage cost. We would expect
this inequality to hold in most practical situations.

3. cik ≤ cij + cjk : Not requiring this inequality, i.e., al-
lowing cik > cij + cjk, means that it may be economic
to use retailer j as an intermediary point between re-
tailer i and retailer k, rather than to transship it di-
rectly from retailer i to retailer k. We envision such a
situation when transshipments have to be accomplished
within a limited time. Then, retailers i and j may be close
enough to allow transshipments, and similarly retailers
j and k. However, the time to transfer goods between
retailers i and k may be so large that cik is in essence
infinite.

When retailer j is used as an intermediary point the
amount transshipped through it is limited to Sj. Thus, it
is incorrect to set cik = cij + cjk. This point is illustrated
in our computational study where this is the only dif-
ference between systems 3 and 4 (which are defined in
Section 4.2 below).

4. Demands at different retailers in the same period are
independent of one another. Not requiring this assump-
tion means that in our model the demands among retail-
ers in a given period may be correlated. Some of the ex-
isting transshipment literature could easily be extended
to incorporate correlated demand, but the subject, in
general, is not considered.
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As mentioned, our model and analysis can handle all
the above relaxations and generalizations without any
modification.

4. Computational study

In this section, we report on our numerical study. We first
report in Section 4.1 on a study conducted to validate our
results and to fine-tune our algorithm. In Section 4.2, we
describe the experimental design, which serves as the base
case for all our experiments. In Section 4.3, we describe
and analyze the results obtained for this basic experiment.
In Sections 4.4 and 4.5, we describe two other experiments,
for correlated demand and nonidentical costs, respectively,
and describe and analyze their results.

4.1. Validation and fine-tuning

Recall that, in Step (v) of the algorithm, we incorporate our
derivative estimates in a stochastic version of a gradient
search technique. More specifically, for each retailer i we
compute Sk

i ← Sk−1
i − ak (dTCi/U), where Sk

i is the order-
up-to level for retailer i at the kth iteration, ak is the step
size, and (dTCi/U) is the estimate of the gradient of the
average cost when Sk−1

i is the order-up-to level at retailer i.
Finding effective values for the algorithm parameters,

that is, starting values for the order-up-to levels, S0
i , the step

sizes, ak, and the termination criteria, is generally a difficult
problem. We conducted a thorough search, experimenting
with different strategies using the illustrative examples from
Krishnan and Rao (1965) and Tagaras (1989), where opti-
mal solutions are available.

Based on this experimentation, we set the total number
of steps for the path search K = 10 000, the number of inde-
pendent replications at each step U = 50 000, and the step
size ak = 1000/k for the validation examples. As a stopping
criterion, we compared the order-up-to levels over 1000 it-
erations and required that these values do not differ by
more than one. In all of our experiments, the convergence
criterion was satisfied long before 10 000 iterations. Each
experiment has also been replicated. The reported results
reflect the averages across ten independent replications.

During the execution of the algorithm, the path search
may push the order-up-to levels, Sk

i , below zero. This is due
to the step size, ak, being too large. Since a negative order-
up-to level is not allowed by our assumption that the re-

Table 3. Example 1 from Krishnan and Rao (1965)

Retailer 1 2 3 4 5 6 7

Normal demand (µ, σ ) 100,20 200,50 150,30 170,50 180,40 170,30 170,50
S∗

i 106.7 216.7 160.0 186.7 193.4 180.0 186.7
Computed avg S∗

i 106.72 216.21 160.14 186.81 193.42 180.11 186.82
Half width of a 95% confidence interval 0.065 0.058 0.073 0.064 0.066 0.064 0.046

plenishment policy is nonshortage inducing, our algorithm
simply resets their value to zero. We now illustrate our al-
gorithm through example 1 in Krishnan and Rao (1965)
with seven retailers. The characteristics of the retailers are
summarized in Table 3 along with the optimal order-up-to
levels calculated in Krishnan and Rao (1965). Recall that all
retailers have identical cost structures with a holding cost
of $1 per unit, shortage cost of $4 per unit, and a transship-
ment cost of $0.10 per unit.

The last two rows of Table 3 depict the order-up-to levels
computed by our algorithm. The half-width of a 95% confi-
dence interval based on ten independent replications is also
reported to show the low variability of the IPA estimators.
The initial values for the order-up-to levels were S0

i = 100
for all retailers. The experiments were conducted on a per-
sonal computer with a 3-GHz Pentium IV microprocessor.
Figure 2(a) shows the convergence of the algorithm for the
seven-retailer network. Figure 2(b) illustrates the conver-
gence of the order-up-to level for retailer 7, to depict the
convergence rate more clearly. Figure 3 shows the run times
(expressed in terms of the wall clock time) for networks
ranging from two to seven retailers.

Note, from Fig. 2(a), that convergence to the correct
order-up-to levels is very rapid. Quick convergence was also
observed in all network configurations with two to seven
retailers. Also, note that the results computed by the al-
gorithm never deviate by more than 0.5% from the values
reported in Krishnan and Rao (1965). Similar convergence
behavior was observed with the test problem taken from
Tagaras (1989). We should point out that the computational
time, between 2 to 7 minutes for different numbers of retail-
ers, is quite reasonable for a planning problem. Moreover,
to obtain a rough estimate of the results even faster, e.g.,
for the purpose of a “what-if” type of analysis, a limited
number of iterations may be conducted (see Fig. 2(b)).

4.2. Experimental design

To show the flexibility afforded by our modeling and anal-
ysis framework, we have experimented with large networks,
with retailers whose demand is correlated, and with an ar-
bitrary cost structure. We consider systems with N + 1 re-
tailers, where N ∈ {7, 9, . . . , 21}. An illustrative example of
the system with four retailers is shown in Fig. 4. Let us
call retailer 0 the central retailer and all the other N retail-
ers the remote retailers. We begin by considering the case
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Fig. 2. (a) Convergence of the algorithm for a seven-retailer configuration; and (b) computation of the order-up-to level for retailer 7.

of identical retailers, the cost parameters are as follows:
hi ≡ h = $1 per unit, pi ≡ p = $4 per unit, and the basic
direct transshipment cost, ct = $0.5 per unit, when trans-
shipments are allowed. Each retailer faces an independent
demand stream distributed uniformly over (0, 200).

Note that c0i, i = 1, 2, . . . , N, represents the transship-
ment cost from the central retailer to remote retailers,
ci0, i = 1, 2, . . . , N, represents the transshipment cost from
the remote retailers to the central retailer, and cij, 1, j =
1, 2, . . . , N, denotes the transshipment cost from remote

Fig. 3. Run time of the algorithm.

retailer i to remote retailer j. As summarized in Ta-
ble 4, we consider five alternative system configurations
and we denote by Ss

i the order-up-to level for retailer i
under system s, s = 1, . . . , 5. Note that cij = ∞ implies
that transshipments are not allowed between retailers i
and j.

System 1, where no material movement is allowed among
retailers, represents N + 1 independent newsvendor prob-
lems. It thus serves as a benchmark. In system 2, trans-
shipments are allowed only from the central retailer to the
remote retailers. System 3 extends the scenario in system
2 by also allowing transshipments from the remote retail-
ers to the central retailer as well. In system 4, all material
movement is possible. However, transshipments between

Table 4. System configurations

System c0i ci0 cij

1 ∞ ∞ ∞
2 ct ∞ ∞
3 ct ct ∞
4 ct ct 2ct

5 ct ct ct
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Fig. 4. Configuration with four retailers.

any two remote retailers are twice as expensive as the trans-
shipments from/to the central retailer. Finally, all trans-
shipment costs are identical in system 5.

4.3. Results and analysis for the base case

The first set of experiments consists of configurations where
the N remote retailers have identical cost parameters, and
all retailers have independent and identically distributed de-
mand. The order-up-to levels computed by our algorithm
for the ten-retailer configuration are listed in Table 5 and
are depicted in Fig. 5. As locations with identical char-
acteristics are converging to the same number, we present
the base stock level of the central retailer and the aver-
age base stock level of the remote retailers. The average
total cost for the optimal configuration is also shown in
Table 5.

Table 5. Optimal order-up-to levels in a ten-retailer configuration

Average Total
System S0 S1 − S9 Inv. Cost

1 159.9 160.0 1600 800.64
2 481.7 87.1 1266 486.95
3 319.2 100.3 1222 410.67
4 172.8 113.3 1193 383.81
5 117.1 117.1 1171 334.66

The results of this set of experiments confirm the intu-
ition about the behavior of the systems, as follows: in system
2, the central retailer carries considerably more inventory
than the other retailers, since this stock can be transshipped
to other retailers to meet the demand they face. Given the
possibility of transshipments to/from the central retailer
in system 3, we observe a reduction in inventory in the
central retailer together with an increase in inventory at
the other retailers. In system 4, this phenomenon is fur-
ther accentuated. System 5, where transshipments are al-
lowed among all retailers, distributes the inventory evenly
throughout the system as in system 1, but at a lower cost
than the newsvendor benchmark of system 1. Comparing
system 1, where we have ten independent newsvendors,
with system 5, where transshipments are allowed among
all retailers at the basic cost, we note that system-wide in-
ventory is significantly reduced. For the ten-retailer con-
figuration, this reduction in inventory leads to a 58% re-
duction in total costs, as shown in Fig. 6. Note, however,
that a large part of this benefit, a 39% reduction in total
cost, is obtained when moving from system 1 to system 2,
thus demonstrating that a little bit of flexibility goes a long
way.

Jordan and Graves (1995) showed results which are qual-
itatively similar to ours in the context of process flexibility,
defined as the ability to build different types of products in
the same plant at the same time. In particular, they showed
that limited flexibility, configured as a chain that connects
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Fig. 5. Optimal order-up-to levels in a ten-retailer configuration.

products and plants, yields most of the benefits of total
flexibility.

Figure 7 depicts the value of transshipments: for varying
number of retailers considered, we observe that the expected
total system cost decreases significantly as transshipments
become more flexible and less expensive.

4.4. Correlated demand

To study the impact of correlated demand, we consider a
ten-retailer configuration, with the same cost structure as
described in the previous section. We experiment with sce-
narios of high (± 0.9), medium (± 0.5), and low (± 0.2) val-
ues of the demand correlation coefficient. A case with zero
correlation is also added for reference. Unlike the previ-
ous section, the demand faced by the retailers is modeled
as a multivariate normal random variable with a mean of
100 and a standard deviation of 20. The (i,j)th entry of the
variance-covariance matrix is given by σiσjρij, where ρij de-
notes the demand correlation coefficient being investigated
when i �= j and one when i = j. Thus, for example, when
we investigate medium negative correlation the diagonal

Fig. 6. Average total cost under different systems for the ten-retailer configuration.

elements of the variance-covariance matrix are all 400 and
the off-diagonal elements are all –200.

Correlated demand can be found in many real situations.
For example, positive correlation can be caused by some
event common to all locations, e.g., rain causes demand for
umbrellas to increase at all locations. Negative correlation,
on the other hand, can be due to the fact that sometimes
there is only one winner. Thus, the demand for alcohol in
the hometown of two competing football teams is negatively
correlated, as only one of the team’s supporters will have
something to celebrate.2

For system 1, where no transshipments take place, pos-
itively or negatively correlated demand has no impact on
base stock levels or total cost as each retailer solves his own
newsvendor problem, the solution of which is to order-up-
to 116.8 units. When transshipments are allowed, however,
correlated demand does have a sizeable impact. In general,
positive correlation reduces the effectiveness of transship-
ments whereas negative correlation enhances it. In partic-
ular, with a high positive correlation, the difference among
the five systems under consideration is relatively small. In
particular, every system behaves similarly to system 1, in

2We thank an anonymous referee for suggesting this example.
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Fig. 7. Average total cost under different systems for varying numbers of retailers.

which transshipments are not allowed, and the objective
function values of all systems are practically indistinguish-
able. The base stock and the average inventory levels in
systems 2 through 5 are shown in Fig. 8(a–d).

Fig. 8. Optimal order-up-to and average inventory levels for ten retailers with correlated demand: (a) system 2; (b) system 3; (c) system
4; and (d) system (5).

In system 2, positive correlation limits the role of the
central retailer as a clearinghouse for the remote re-
tailers. Any level of negative correlation, on the other
hand, reinforces the central retailer’s clearinghouse role.
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Fig. 9. Average total cost for ten retailers with correlated demand.

Fig. 10. Optimal order-up-to levels for ten nonidentical retailers.

Fig. 11. Average total cost for ten retailers with nonidentical costs.
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This type of behavior is also observed in systems 3
and 4. The graph for system 5 is the most dras-
tic illustration of how positive the correlation reduces
effectiveness of transshipments. When demand has a high
positive correlation then the average inventory is 116.1
units, which is very close to the system 1 level of 116.8 units.
As the demand becomes negatively correlated, however, the
ability to match demand with supply through transship-
ments is further enhanced.

Figure 9 illustrates the impact of demand correlation on
the average total cost for a ten-retailer configuration. High
levels of positive correlation eliminate the value of trans-
shipments making all five systems quite costly to operate.
As demand correlation gets smaller (or negative), the effec-
tiveness of transshipments in matching demand and supply
is enhanced, which is reflected by the significantly lower
average total cost of system 5.

4.5. Nonidentical costs

In all configurations considered thus far, all remote retailers
have had identical cost parameters. These cost parameters
differ from the central retailer’s cost parameters with re-
spect to the transshipment cost, as our solution technique
can handle nonidentical cost parameters. To further em-
phasize this ability, we consider a ten-retailer configura-
tion, where we modify the cost parameters without violat-
ing Equation (1), hi ≤ cij + hj for all i,j. In particular, we set
h0 = $1 as before, and hi = hi−1 + 0.05, i = 1, . . . , 9. Simi-
larly, p0 = $4 as before, and pj = pj−1 + 0.20, j = 1, . . . , 9.
For system 1, where no transshipments are allowed, cij =
+∞. For system 2, c01 = $0.5 and c0j = c0,j−1 + 0.1, for
j = 2, . . . , 9, and cij = +∞ otherwise. For system 3, cj0 =
c0j of system 2, and cij = +∞ otherwise. For system 4, cj0
and c0j as in system 3 and c12 = c21 = $1.2, cij = ci−1,j−1 +
0.2, i, j = 2, . . . , 9, i �= j. Finally, for system 5, cij = $0.5 for
all i,j.

We observe that transshipments maintain their positive
impact on the overall performance, as systems 1, . . . , 5 lead
gradually to lower stock levels (Fig. 10) and lower total cost
(Fig. 11). The magnitude of this improvement, however, is
heavily dependent on the relative cost parameters.

5. Summary

In this paper, we considered the multilocation dynamic
transshipment problem. First, an arbitrary number of non-
identical retailers was considered with possibly dependent
stochastic demand. Second, we modeled the dynamic be-
havior of the system in an arbitrary period as a network flow
problem. Finally, we employed a simulation-based method
using IPA for optimization. Our simulation-based opti-
mization approach therefore provides a flexible platform
to analyze transshipment problems of arbitrary complex-
ity. An interesting generalization to the problem addressed
in this paper is the case of positive replenishment lead times.

In this case, it is not immediately clear how to find the op-
timal transshipment policy, since it may be beneficial for
a retailer to hold back some of her own inventory rather
than transship it. As a result, it is also not clear whether an
order-up-to policy remains optimal. These will be interest-
ing issues for future research.
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