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We introduce a new assignment and scheduling problem in a distribution system, which we refer to as
the ASTV problem: Assigning and Scheduling transportation Tasks to Vehicles. In this problem, commod-
ities need to be delivered directly from their origins to their destinations within specified time windows,
using a fleet of homogenous capacitated vehicles. A set of routes, each of which performs one or several
direct deliveries, need to be constructed such that the operational costs, including vehicle fixed cost, var-
iable traveling and variable waiting costs, are minimized. The problem arises, for example, when deliv-
ering food products from several factories, where they are manufactured, to several distribution
centers, from which they are delivered to the final customers. We define the problem and describe its
relationship to existing problems studied in the literature, in particular pickup and delivery, assignment
and scheduling problems. Subsequently we develop a solution method which is based on decomposing
(partitioning) the ASTV problem into two interdependent sub-problems. The first consists of Assignment
of Tasks to origin–destination full-load Trips (ATT), while the second determines assignment and Sched-
uling of these Trips to Vehicle routes (STV). We use a bi-criterion objective function in the first problem,
whose purpose is to connect the two problems by looking ahead to the rest of the decisions, determined
in the second problem. Thus, the solution method is referred to as lookahead partitioning. In this way,
decisions of the first problem determine a favorable input for the second problem, which is solved last.
An extensive numerical study was conducted to evaluate the performance of the overall heuristic
method. The results indicate that our heuristic method is quite efficient.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

About 40–50% of the logistic costs in a distribution system can
be attributed to transportation costs. Therefore, the financial po-
tential of improving transportation-related decisions in a distribu-
tion system can be significant. This paper addresses these decisions
in a distribution system with a set of characteristics that has not
been studied together in previous research.

The problem is described by the following sets and parameters:
a set of factories and a set of distribution centers; a fleet of homog-
enous capacitated vehicles, each located at one of the distribution
centers; a set of tasks, each characterized by an origin (a specific
factory), a destination (a specific distribution center), weight, vol-
ume, and a time window for its execution; parameters for the
operational costs: vehicles fixed cost and vehicles variable travel-
ing and waiting costs. The objective is: construct a set of vehicle
routes such that each vehicle delivers immediately and directly
one or several tasks from their origin to their destination within
their ascribed time window, such that the vehicles weight and vol-
ll rights reserved.
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ume capacities are not exceeded and the total operational costs are
minimized.

We denote this new problem as the Assignment and Scheduling
of transportation Tasks to Vehicles (ASTV) problem. It has two
important characteristics whose combination has not been studied
before: first, the requirement for a direct delivery of each task from
its origin to its destination, i.e., no transshipment is allowed
through any other facility, and second, delivering less-than-
truck-load (LTL) tasks, i.e., goods that are small relative to the
capacity of the vehicle. The requirement for a direct delivery is
aligned with the goal of delivering the tasks quickly, as required
for certain food products. As opposed to the situation in classical
pickup and delivery problems, it means that once a vehicle visited
a certain pickup location, it must continue directly to the delivery
location of the tasks picked up, see below a detailed comparison
between the problems. Direct deliveries also exclude the common
practice of LTL carriers which use sorting facilities (breakbulks)
and smaller terminals (end-of-lines), see Jarrah et al. (2009). Thus,
the ASTV problem involves decisions concerning assignment (of
goods to vehicles), routing (sequence of points visited by each
vehicle) and scheduling (time in which vehicles need to leave
and arrive to various points). The problem is NP-hard in the strong
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Fig. 2. The connection between existing research streams and the ASTV problem.
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sense as several special cases of it are NP-hard in the strong sense.
Although it is similar in some dimensions to routing and/or trans-
portation problems discussed in the literature, existing solution
methods cannot be used to solve it due to its unique characteristics
and since it involves all three problem dimensions mentioned
above. Moreover, while the objective in most existing problems
is to minimize traveling costs only, our objective is to minimize to-
tal costs which includes additional components related to fixed
costs and waiting times. Hence, new formulation and solution
method need to be developed.

The ASTV problem is mostly related to two other problems ad-
dressed in the literature: the pickup and delivery problem with time
windows (PDPTW) and the multi depot vehicle scheduling problem
(MDVSPTW). These and other related problems are discussed in
the Literature Review section. However, to complete the descrip-
tion of the ASTV problem, we demonstrate here the connection
and differences between ASTV and each of these problems, see
Figs. 1 and 2. In Fig. 1a, a typical vehicle route in LTL pickup and
delivery applications, such as the PDPTW (or the more general
GPDPTW, see Savelsbergh and Sol, 1995), is illustrated. In this
route the vehicle leaves the depot, continues in the pickup of sev-
eral LTL tasks, delivers the tasks in a certain order to their delivery
locations, and returns to the depot. However, in applications where
a task must be delivered directly from its origin to its destination,
as in the case of certain food products deliveries, such routes are
forbidden. Direct deliveries are also obligated in vehicle scheduling
and in FTL pickup and delivery applications. In those cases, the
vehicle starts from the depot, travels to pickup a full load task from
its origin and delivers it to its destination. After performing one or
several such trips, the vehicle returns to its depot, as illustrated in
Fig. 1b.

In the ASTV problem, the vehicles are housed at the destinations
(DCs) of the tasks and a large number of LTL tasks need to be deliv-
ered between each origin–destination pair. Then, most vehicle
trips are round-trips, i.e., they start at the DC, continue in commod-
ity pickup at the factory, and finish in commodity delivery to the
DC. Several such trips are combined into a vehicle route, see
Fig. 1c. Exceptions may be made when trips destined to different
DCs are combined together in the same vehicle route in order to re-
duce the fixed cost component, in which case the routes involve
more than just one DC. This is described in the second phase of
the algorithm that solves the second sub-problem (Section 4.3).
Note that in this case too, the deliveries are still direct. Since it is
a LTL setting, the assignment of tasks to vehicle trips has to be
determined on top of the routing and scheduling decisions, thus
enlarging the solution space of the problem even further. The con-
nection between the three problems discussed above, in terms of
the solution space, is illustrated in Fig. 2. As mentioned earlier,
the objective function of the ASTV problem is also generalized,
since it includes fixed and waiting costs in addition to the typical
traveling distance.
Origin Destination

(a) (b)

Fig. 1. (a) A typical vehicle route in less-than-full-truck-load pickup and delivery applic
delivery applications. (c) A typical vehicle route in a less-than-full-truck-load and direc
This paper makes the following contributions. First, it intro-
duces the above described new problem and associated applica-
tion, and demonstrates its relationship to two research streams
in the literature. The second contribution is the design of a heuris-
tic solution method to solve the problem, including detailed proce-
dures for two sub-problems of it. Our method is based on a new
decomposition idea which we refer to as lookahead partitioning.
The partitioning is along decision types, such that when solving
for one type, subsequent decisions and their associated costs are
also accounted for. This helps reducing the sub-optimality caused
by the decomposition. It may be applicable to other problems in
which decisions naturally decompose into two (or more) types,
and where the associated problems may be solved sequentially
(in a heuristic manner). Our third contribution is related to the re-
sults obtained by our solution method, based on a comprehensive
numerical study. The study demonstrates the efficiency of our
solution method by comparing its cost to a lower bound on the to-
tal cost of the problem, and reveals insights on properties of the
solutions obtained. Finally, our problem definition is inspired by
a real application. Unfortunately, our results could not be applied
to that application due to administrative difficulties. Nevertheless
it has a great potential to be applicable to problems with similar
settings.

The rest of the paper is organized as follows. In Section 2 we re-
view related literature. Notation and description of the general
solution approach are given in Section 3. In Section 4 the detailed
solution method for the ASTV problem is presented. In Section 5
we derive a lower bound on the total operational cost of an ASTV
feasible solution. Numerical results for evaluating our proposed
solution method and for gaining insights are presented in Section 6.
Conclusions are provided in Section 7.
2. Literature review

In this section we review related literature and its evolution
from basic problems to the one discussed in this paper. The ASTV
problem extends and connects previous work from two research
streams: vehicle routing and vehicle scheduling. A vehicle route re-
fers to a sequence of pickup and/or delivery points which the vehi-
cle traverses, while a vehicle schedule is a sequence of pickup and/
or delivery points together with associated arrival and departure
times, see Bodin and Golden (1981). Combined vehicle routing
and scheduling problems include both routing and scheduling
Depot Empty vehicle movement

(c)

ations. (b) A typical vehicle route in vehicle scheduling and in full load pickup and
t delivery applications.
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decisions, and arise in many real-world applications which include,
for example, time windows and/or precedence relationships. In
these problems routes are designed to minimize total transporta-
tion costs, while assuring feasibility of their schedule. We show
that the ASTV problem extends general forms of two well known
and important problems: the pickup and delivery problem, and
the vehicle scheduling problem.

The pickup and delivery problem (PDP) can be described as fol-
lows (Savelsbergh and Sol, 1995): a set of known transportation re-
quests has to be satisfied by a given fleet of vehicles. Each request
is characterized by its pickup location (origin), its delivery location
(destination) and the size of the load that has to be transported be-
tween them. The load capacity, the maximum route length, a start
location and an end location are given for each vehicle. To fulfill all
requests, a set of routes has to be planned such that each request is
transported from its origin to its destination by exactly one vehicle,
although not necessarily directly. Typical objective functions are
minimum number of vehicles employed, total distance traveled,
total schedule duration or combination thereof. The PDP with time
windows (PDPTW) is a PDP in which a time window is specified for
each pickup and delivery location. Integer programming (IP) for-
mulations of the PDPTW have been presented by Dumas et al.
(1991) and by Savelsbergh and Sol (1995). Two different branch
and cut methods for the problem were recently developed by Lu
and Dessouky (2004) and by Ropke et al. (2007). Recent heuristic
methods include, for example, the work of Pankratz (2005) and
Bent and Van Hentenryck (2006). Recent surveys on the PDP and
its applications include, for example, Toth and Vigo (2002), Berbe-
glia et al. (2007) and Cordeau et al. (2008). The full-truck-load (FTL)
PDP arises when the load of the vehicle is given and it has to be
transported directly from its origin to its destination. Similarly,
FTL PDPTW (when time windows exist) and multi depot FTL
PDPTW may be defined. A detailed description of various versions
of the problem can be found in Desrosiers et al. (1988).

The other related well known problem is the vehicle scheduling
problem (VSP), which can be described as follows: given a depot
housing a set of vehicles, a set of trips characterized by an origin,
a destination and fixed starting and ending times, and given the
traveling times between all pairs of locations, find a feasible min-
imum-cost schedule such that each trip is assigned to exactly
one vehicle, and each vehicle performs a feasible sequence of trips,
starting from and ending at the depot. The duration of a trip may
include not only the travel time but also loading, unloading and
any idle time that may occur between them. When there are sev-
eral depots, each housing a set of vehicles, the problem is referred
to as the multi depot VSP (MDVSP), which is known to be NP-hard
(Bertossi et al., 1987). In the presence of time windows the prob-
lem is referred to as the MDVSP with time windows (MDVSPTW),
see Desaulniers et al. (1998). In the MDVSPTW the starting time
of service is defined by a time window rather than a single point
in time, which introduces the element of routing into the pure
scheduling problem. No fast and efficient exact method exists in
the literature for this problem. Heuristic algorithms include, for
example, Potvin and Rousseau (1993), Brãndao and Mercer
(1997), Tung and Pinnoi (2000) and Dondo and Cerdá (2007). A
survey of vehicle scheduling problems including numerous addi-
tional references can be found in Desrosiers et al. (1995).

We observe here, that the MDVSPTW and the multi depot FTL
PDPTW are identical problems, an observation which has not been
made before. This may be due to the distinction that exists be-
tween the problems when there are no time windows, namely, that
associated starting and ending times of each trip are given in the
MDVSP but not in the FTL PDP. As shown in Fig. 2, the ASTV prob-
lem is related to these problems by incorporating both LTL and di-
rect delivery requirements, a framework that has not been
discussed in the literature.
Finally, we briefly mention decomposition methods that are of-
ten used for solving NP-hard problems heuristically. General
decomposition methods for large-scale mathematical program-
ming problems include, e.g., Lagrangean relaxation or Danzig–Wolf
and Benders decompositions. Despite their generality, a consider-
able effort still has to be invested in applying them to a specific
application, see Sandhu and Klabjan (2007). Other decomposition
methods may be ad hoc for a specific application, for example,
the well known partitioning (of the plane) algorithm for the TSP
by Karp (1977) or the partitioning (of time) algorithm of
Federgruen and Tzur (1999) for multi-echelon dynamic lot-sizing
problems. Our method is new and is based on a lookahead princi-
ple, while decomposing the problem along decision types.
3. Problem description

An ASTV problem instance is characterized by the following sets
and parameters:

Sets and general parameters:
D
 set of destinations of tasks (DCs)

R
 set of origin–destination (of tasks) pairs

Sr
 set of transportation tasks to be delivered between origin–

destination pair r 2 R

S
 Set of transportation tasks to be delivered between all

origin–destinations pairs in R i.e., S = [r2RSr
Note that we refer to origins and destinations (factories and dis-
tribution centers (DCs), respectively) as they relate to tasks. Vehi-
cles, on the other hand, start their trip from a DC and return to it.
The latter determination is not crucial for the solution method and
was chosen according to the practice in the application that moti-
vated this research.
T
 length of the planning period, in time slots
Task parameters:
ws
 weight of the commodity delivered in task s 2 S

vs
 volume of the commodity delivered in task s 2 S

ls
 earliest pickup time of task s 2 S at the origin

us
 latest delivery time of task s 2 S at the destination

[ls,us]
 is referred to as the time window for executing task

s 2 S
Vehicle parameters: (all vehicles are identical).
QW
 vehicle weight capacity

QV
 vehicle volume capacity

Vi
 number of vehicles available in DC i 2 D

tr
 vehicle traveling time between the origin–destination

pair r 2 R

tij
 vehicle traveling time between DCs i and j (i, j 2 D)

s
 Commodity loading plus unloading time (identical for

each vehicle trip)
Cost parameters:
f
 fixed vehicle cost incurred for performing a route

ka
 traveling cost incurred per time slot in which the vehicle

is in movement

kw
 waiting cost incurred per time slot in which the vehicle is

waiting for and during loading and unloading
commodities
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We note that both weight and volume constraints are impor-
tant. For example, in the food industry, the weight constraint is
likely to be effective when dairy products are concerned, while
the volume constraint is likely to be effective when dry food prod-
ucts are concerned.

The following assumptions are used:

1. The triangle inequality holds for all traveling times.
2. All traveling times are symmetric.
3. Time parameters are specified in units of a basic time slot and

therefore are integers.
4. A task has to be delivered directly from its origin to its destina-

tion, that is, commodity transfers between factories or between
DCs (transshipments) are forbidden.

5. A task may not be split, that is, it should be loaded on one vehi-
cle only.

We define a vehicle trip as a delivery of one or several tasks
from their origin to their destination in the same vehicle. All tasks
in a trip are required to have identical origins and destinations, due
to the direct delivery requirement. We further define a vehicle
route as a sequence of trips, along with the segments between
the trips, which the vehicle performs, starting and ending at the
same DC. The ASTV problem consists of finding a set of vehicle
routes, each of which starts from and ends at the vehicle’s DC
and includes one or more trips. Commodities (one or more tasks)
need to be assigned to each trip such that they do not exceed the
vehicle’s weight and volume capacities, all tasks are delivered from
their origin to their destination within their ascribed time win-
dows, and the sum of fixed, traveling and waiting costs of all routes
is minimized.

While it is possible to formulate the ASTV problem as a mixed
integer linear program, the resulting formulation is extremely
large and cumbersome and we did not find it useful to solving
the problem. We use, however, formulations of sub-problems of
the problem in various parts of the solution method or as part of
the lower bound development.

The ASTV problem is NP-hard in the strong sense, as special
cases of it are NP-hard in the strong sense. Consider, for example,
the special case with a single DC, only fixed costs and where it is
already determined which commodities (tasks) are loaded on each
vehicle. In this case it only remains to determine the vehicles’
routes and schedule so that the number of vehicles used is mini-
mized. This problem can be shown to be equivalent to the known
NP-hard scheduling problem referred to as Scheduling with Release
times and Deadlines on Minimum number of Machines (SRDM),
which was studied, for example, by Chuzhoy and Naor (2004).
The objective in the SRDM problem is to schedule a given set of
jobs which have release and deadline times on a minimum number
of parallel machines. Another way to establish the complexity of
the ASTV problem is by considering the special case with a single
DC, a single factory and only traveling costs. The problem reduces
to deciding on the set of tasks to be loaded on each vehicle since
this determines the trips of the vehicles, which determines the to-
tal traveling costs. It can be shown that minimizing the number of
trips is equivalent to the well known NP-hard bin packing problem
(Garey and Johnson, 1979).

Indeed, while the problem consists of three types of decisions:
assignment, routing and scheduling, the last two are closely related
since the routing decisions have to obey the scheduling con-
straints. Hence, our solution approach initially separates the two
types of decisions, namely: assigning tasks to vehicles and creating
vehicle routes with associated schedules. Even though each of the
resulting problems is still NP-hard, the complexity of the decom-
posed problem is reduced, which motivates this approach. It still
remains a major challenge to solve the separate problems in syn-
ergy and overcome the sub-optimality caused by the decomposi-
tion action. Our solution method is designed to do exactly that.
The two resulting problems and the interaction between them
are described in the next section.
4. Solution approach

In Section 4.1 we outline our overall solution approach. In Sec-
tions 4.2 and 4.3 we specify our detailed solution method to each
of the resulting problems, and discuss their integration.
4.1. Overall solution approach

Recall that a trip is a delivery of one or several tasks from their
origin to their destination in the same vehicle, and a route is a se-
quence of trips, along with the segments between the trips which
the vehicle performs, starting and ending at the same DC. Thus, the
ASTV problem is to arrange all tasks into a set of trips and to inte-
grate them into a set of routes. These problems are referred to as:

1. Assignment of Tasks to vehicle Trips (ATT).
2. Scheduling of Trips to Vehicle routes (STV).

The ATT problem is stated as follows: assuming an unlimited
number of vehicles at each DC (this assumption is removed when
solving the STV problem), and given a set of tasks, each character-
ized by an origin, a destination, weight, volume, and a time win-
dow for its execution, assign tasks to vehicle trips such that the
vehicles’ weight and volume capacities are not exceeded, each task
is delivered directly from its origin to its destination within its as-
cribed time window, and the total assignment cost is minimized.

However, it is unclear how to account for the assignment cost
term. In the ATT problem, the assignment of tasks to trips deter-
mines directly only the traveling cost component. Minimizing the
traveling costs is achieved by minimizing the number of trips,
which is equivalent to maximizing the vehicles’ capacity utilization
(see Lemma 1 in Section 4.2). However, the assignment of tasks to
trips also determines the time window of each trip (derived from
the time windows of all tasks assigned to it), and consequently
the ability to combine the trips into routes (in the STV problem).
This, in turn, determines the fixed and waiting costs of the prob-
lem. Hence it is required to account for the indirect effect of the
assignment decisions on the latter cost components, but we are
not aware of a way to compute it precisely without actually solving
the STV problem. Moreover, it is expected that some assignment
solutions that are attractive in terms of minimizing the number
of trips, (i.e., highly utilized trips), are quite unattractive in terms
of minimizing the fixed and waiting costs determined subse-
quently, because those trips may have tight time window con-
straints. Therefore we take the approach of including in the ATT
objective function two expressions which attempt to balance be-
tween all cost components, namely, those that are incurred imme-
diately, and those that are likely to be incurred subsequently. In
this way, the lookahead partitioning approach is implemented.

Specifically, in the ATT problem we define a multi-objective
function, where the two objective terms which we aim to minimize
are: non-utilized capacities of trips and reduction in time window
flexibility (as a result of task assignments) of trips. High trips utili-
zations lead to fewer number of trips, and therefore to low travel-
ing costs; high time window flexibilities enable a more efficient
construction of routes in the STV problem, and therefore to lower
fixed and waiting costs. The utilization and flexibility terms are
presented and discussed in Section 4.2 where the solution method
for the ATT problem is described.
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Based on the set of vehicle trips determined by the ATT prob-
lem, the STV problem is stated as follows: given a set of trips, each
characterized by an origin, a destination and a time window for its
execution, arrange the trips in vehicle routes and determine their
schedule such that each vehicle starts and ends in its housing DC
and the sum of fixed and waiting costs is minimized. Solving the
STV problem is discussed in Section 4.3.
4.2. Solving the ATT problem

In this section we describe our solution method to the ATT
problem. We first claim that it may be further decomposed by ori-
gin–destination pairs, and develop in detail the bi-criterion objec-
tive function for a given pair. Subsequently we describe a Tabu
Search (TS) procedure to solve each of the resulting problems.

As mentioned in the problem description, tasks can only be
combined in the same vehicle trip if they share the same origin
and destination (the direct delivery requirement). In addition, gi-
ven the triangle inequality assumption with respect to the travel-
ing times between all locations involved, and the requirement
that a vehicle returns to its housing DC, the traveling cost associ-
ated with a set of tasks delivered between a given origin–destina-
tion pair is minimized when it is delivered by a vehicle located at
the destination of those tasks. Thus, given that enough vehicles are
available at each DC, solutions of the ATT problem are separable by
origin–destination pairs, without loss of optimality. In cases where
the vehicle availability assumption is violated in the ASTV problem,
this constraint is treated in the STV problem by adjusting the vehi-
cle routes accordingly.

Therefore we denote the problem for a given origin–destination
pair r 2 R by ATTr and develop a solution method to solve the prob-
lem for a given r. We start with a few definitions which describe
the parameters of each trip based on the parameters of the tasks
assigned to it.

Recall that Sr denotes the set of tasks to be delivered between
origin–destination pair r 2 R. Let Sr

j # Sr denote the set of tasks as-
signed (in the solution) to trip j 2 Jr where Jr is the set of trips gen-
erated in the solution to ATTr, r 2 R, and j 2 Jr is a trip in this set.
Similar to the definitions of the earliest pickup and latest delivery
times of tasks, we define those terms for trips. For a given r 2 R, let
(we omit the dependency on r when no ambiguity occurs):

Lj = Earliest pickup time at the origin of tasks assigned to trip
j 2 Jr;
Uj = Latest delivery time at the destination of tasks assigned to
trip j 2 Jr, where:
Lj ¼maxfls : s 2 Sr
j g; ð1Þ

Uj ¼ minfus : s 2 Sr
jg: ð2Þ
Let also,
Tj = tr + s for j 2 Jr denote the execution time of trip j, which con-

sists of the traveling time between the origin and the destination
(tr) plus the loading and unloading time of the vehicle (s). With
these definitions, a trip j is time-window feasible iff:

Lj þ Tj 6 Uj ð3Þ

that is, if after pickup from the origin of the tasks, there is enough
time for the vehicle to travel to the destination, load and unload
the commodities and meet the latest delivery time.

Similarly, we define the weight and volume associated with trip
j 2 Jr as follows:
Wj ¼
X
s2Sr

j

ws ¼ the weight of goods delivered in trip j;

Vj ¼
X
s2Sr

j

v s ¼ the volume of goods delivered in trip j:

The first objective function term of ATTr, associated with feasible
weight and volume capacity utilization of the vehicles, is denoted
by Futil

r and defined by:

Futil
r ¼

X
j2Jr jSr

j –U

QW �Wj

Q W þ QV � Vj

QV

 !
: ð4Þ

The above term expresses the sum of percentage unutilized weight
and volume capacities of all trips between origin–destination r (all
j 2 Jr) that are not empty ðSr

j – UÞ. Lemma 1 shows that minimizing
Futil

r also minimizes the number of trips and hence the traveling
costs. Note that when trips satisfy the capacity restrictions, each
term in Futil

r is non-negative.

Lemma 1. Minimizing Futil
r is equivalent to minimizing the number of

vehicle trips.
Proof.

Futil
r ¼

X
j2Jr jSr

j –U

QW �Wj

Q W þ QV � Vj

QV

 !

¼
X

j2Jr jSr
j –U

2� 1
Q W

X
j2Jr jSr

j –U

X
s2Sr

j

ws �
1

QV

X
j2Jr jSr

j –U

X
s2Sr

j

v s:

In the expression above the last two terms are constants since the
value of the summation terms are equal to the sum of all tasks’
weights and volumes, respectively, between origin–destination r.
Therefore, minimizing Futil

r is equivalent to minimizing the first term
which is twice the number of trips. h

Towards the derivation of our second objective function term,
we define for s 2 Sr:

ds ¼ the slack of task s; where ds ¼ us � ls � tr � s

and similarly for j 2 Jr:

Dj ¼ the slack of trip j; where Dj ¼ Uj � Lj � tr � s:

Our second objective function term, Fflex
r , is defined as follows:

Fflex
r ¼

X
j2Jr

X
s2Sr

j jds>0

ds � Dj

ds
: ð5Þ

Fflex
r is the sum of the reduction (in percentages) in the slack of

all tasks that belong to origin–destination pair r 2 R, as a conse-
quence of assigning the tasks together into trips as specified by
the solution Jr (and considering the slack of a trip as the new slack
of all tasks that belong to it). Note that by feasibility, when s 2 Sr

j it
is true that ds P Dj and hence each term in Fflex

r is non-negative.
Minimizing Fflex

r motivates assigning together tasks with similar
time window parameters, which may allow forming efficient trips
in the STV problem. Note, however, that minimizing this term by
itself is not desirable since its minimum occurs when each trip
consists of one task only, or when each trip consists of tasks that
all have the exact same time window parameters. Such solutions
are likely to incur high traveling costs and are not desirable as
far as the Futil

r term is concerned, hence the use of both objective
function terms balances all cost components.

Based on the above derivations we now present a mathematical
formulation of ATTr which clarifies the exact problem and is used
later in the description of the TS method. In the formulation we as-
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sign weights a and 1 � a to Futil
r and Fflex

r , respectively, for varying
values of a between zero and one. Ideally, the entire efficient
frontier of the multi-objective function should be constructed.
However, a separate efficient frontier exists for each origin–
destination pair and it is unclear how (or very expensive
computationally) to combine them when forming the input to
the STV problem.

We define binary decision variables xsj = 1 if task s 2 Sr is as-
signed to trip j 2 Jr, and 0 otherwise. Although the number of trips
is not known in advance, an upper bound on it (e.g., the number of
tasks) may be used. Note also that the number of terms in (4)
equals twice the number of trips, and the number of terms in (5)
equals the number of tasks, which is usually higher. Moreover,
the actual scale of these terms may not be the same, even though
they are all between zero and one. Thus, the weight coefficient a in
the multi objective cost function also serves as a normalizing fac-
tor. We formulate the problem as follows:
min aFutil
r þ ð1� aÞFflex

r ð6Þ

s:t:
X
j2Jr

xsj ¼ 1 8s 2 Sr ; ð7Þ

X
s2Sr

wsxsj 6 Q W 8j 2 Jr ; ð8Þ

X
s2Sr

v sxsj 6 Q V 8j 2 Jr ; ð9Þ

max
s2Sr
flsxsjg þ tr þ s 6 min

s2Sr
fusxsj þ Tð1� xsjÞg 8j 2 Jr; ð10Þ

xsj 2 f0;1g 8j 2 Jr 8s 2 Sr : ð11Þ

The objective function (6) aims at minimizing the criteria dis-
cussed above. Constraints (7) require each task to be assigned to
exactly one vehicle trip. Constraints (8) and (9) require that the
vehicle’s weight and volume capacities, respectively, are not ex-
ceeded. Constraints (10) ensure that the time window of each trip
is feasible. Finally, constraints (11) impose binary restrictions.
While the constraints in (10) may be linearized, the objective func-
tion (6) cannot be represented linearly using the xsj decision vari-
ables, therefore this formulation is not used for solving the
problem. However, a relaxed version of it, with an additional term
in the objective function, is used in the TS (Tabu Search) algorithm,
described next.

For given r and a values, we obtain an approximate solution to
the above problem through a TS method. The results of ATTr for all
r 2 R (each with a certain a value, as explained below) are consid-
ered in the STV problem. In addition to providing a good input to
the STV problem, this process is also useful in analyzing the impor-
tance of each of the two objective function terms considered, as
discussed in Section 6. Several TS algorithms have been proposed
in the literature for assignment problems, including algorithms
for the Generalized Assignment Problem (GAP), see, for example, Os-
man (1995). The GAP consists of assigning each of a given number
of tasks to agents, where each task requires a certain amount of a
resource from the agent, and each agent has a limited amount of
the resource. A TS algorithm presented by Glover (1977) for the
GAP was used by several authors, including Laguna et al.
(1995)and Díaz and Fernandez (2001). Problem ATTr, which in-
cludes time window constraints, can be viewed as an extension
of the GAP, where trips in the ATTr correspond to agents in the
GAP. Therefore, we modify existing TS algorithms proposed for
the GAP. The detailed description of the adapted implementation
is provided in Appendix A.

Finally, recall that the above TS algorithm for ATTr assumes a
certain a value in the bi-criterion objective function. Initially
the same a value is used for every origin–destination pair r and
the results of the associated ATTr problems are used as an input
to the STV problem. The process repeats itself for every a value,
so that the STV problem is solved once for every a value. To allow
for STV instances which use inputs from ATTr problems with a
possibly different a value for each, we also consider an optional
phase. In the optional phase we define a set of a values whose
associated ATTr solutions (when a was identical) produced good
results for the STV problem. Then, the STV problem is solved
for each alpha combination from the chosen set. Fig. 3 illustrates
this relationship between the ATT and STV problems. An evalua-
tion of the proposed TS algorithm is presented in Section 6, to-
gether with an evaluation of the entire solution method to the
ASTV problem.
4.3. Solving the STV problem

The trips created in the ATT problem by the tasks assignments
are treated as given full-load trips in the STV problem. Thus, the
STV problem is concerned with combining and scheduling full-load
trips into vehicle routes, given the number of available vehicles in
each DC. The problem is similar to the MDVSPTW (multi depot
vehicle scheduling problem with time windows) discussed in the
Introduction, however the objective in the STV problem is mini-
mizing total cost and not traveling distance. Thus, existing meth-
ods from the literature cannot be used to solve it. Accordingly,
our solution method consists of two phases:

Phase 1: For each DC i 2 D we define problem STVi which
considers trips destined to DC i. STVi is the problem
of combining and scheduling round-trips, which
originate and terminate at DC i, assuming that
enough vehicles are available there. In this phase
all STVi problems are solved separately.

Phase 2: In this phase we consider modifying or combining
routes constructed in phase 1. This may result in
routes which originate from DCs that are possibly
different than the destinations of some of the trips
included in those routes. This may occur: (a) if the
solution of STVi for some i is using more vehicles
than available there, in which case some routes
may be modified so that some vehicles change their
originating DCs; (b) if it is less costly to combine
routes that originate from different STVi problems,
than to keep them separate, in which case the com-
bined route is performed by a vehicle from one of
the involved DCs.

We now turn to solving phase 1 for a given i 2 D. We note that
an IP formulation may be adapted from Chuzhoy and Naor (2004)
for the special case in which the traveling and waiting costs are
zero, i.e., only fixed vehicle costs exist. This IP formulation to the
STVi is presented in Appendix B. This formulation is quite efficient,
and according to our experience could be solved using the Cplex
solver in most practical cases. However, since it includes only fixed
vehicle costs, it serves as an approximation to the original STVi

problem, which may produce good results only when the fixed
vehicle cost component is dominant. Otherwise, an alternative
method is desirable. Therefore, we develop a polynomial time heu-
ristic, denoted as algorithm Combine, which aims at minimizing the
number of routes as a primary goal, and minimizing the waiting
periods as a secondary goal. Our proposed heuristic is a greedy sin-
gle-pass algorithm, however, with a sophisticated and designated
pre-processing step and scheduling rules.

We use the following notation, some of which was defined in
Section 4.2, and become parameters in this section:



Fig. 3. The relationship between the ATT and STV problems.
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eJ i
 the set of trips sharing the same destination i 2 D
Ni

the number of trips sharing destination i 2 D; ðNi ¼ jeJ ijÞ
Lj
 earliest pickup time at the origin of tasks assigned to trip

j 2 eJ i
Uj
 latest delivery time at the destination of tasks assigned to

trip j 2 eJ i
Tj
 execution time of trip j 2 eJ i; ðTj ¼ tr þ s for j 2 eJ i \ JrÞ
Since in phase 1 all trips are round trips, we use the following
adjusted parameters.bLj ¼ Lj � tr = earliest time the vehicle can leave the destination
(DC i) before traveling to the origin of the trip (a certain factory) to
pick up tasks assigned to trip j 2 eJ i \ Jr .bT j ¼ Tj þ tr = extended execution time of trip j 2 eJ i \ Jr , where
the extension includes the traveling time of the first part of the
round trip, that is, from the destination to the origin.

Recall that Dj ¼ Uj � Lj � tr � s ¼ Uj � bLj � bT j denotes the slack
of trip j, which is also the length of time trip j can move within
its time window. A legitimate placement /j 2 {0, . . . ,Dj} needs to
be selected for each trip j 2 eJ i, corresponding to time slots
½bLj þ /j; . . . ; bLj þ /j þ bT jÞ that are assigned to that trip (we use the
convention that time slot t is associated with the interval [t, t + 1]).

In each iteration of phase 1 of algorithm Combine, one trip is
scheduled in an existing or in a new route. We first describe the
pre-processing step in which the order of trips to be scheduled is
determined. Then we describe the criteria by which the placement
(in time) of a trip is determined.

In the pre-processing step we define for each trip j 2 eJ i an index,
referred to as the extended flexibility index bIj which is computed by
ðUj � bLj � bT jÞ=bT j. The trips are considered and scheduled in ascend-
ing order of their extended flexibility indices, that is:bI1 6

bI2 6 . . . 6 bINi . Note that for trips with an equal slack, the above
order reduces to the well known Longest Processing Time (LPT)
heuristic in the scheduling literature. In case of equality in the flex-
ibility index, the trip with the smaller execution time is considered
first. Using the above order of trips, we specify next how the heu-
ristic chooses the placement, i.e., the time intervals, in which the
trips are scheduled.

In a given iteration, let Wi
t denote the number of trips from the

yet unscheduled trips of eJ i that can be performed during time slot t.
Wi

t represents the potential future use of time slot t and may be
interpreted as the potential demand for time slot t. Let ajt = 1 if trip
j 2 eJ i can be executed during time slot t, i.e., if bLj 6 t 6 Uj, and 0
otherwise. Wi

t is initially calculated for each t by (12) and then up-
dated after each placement decision for trip j 2 eJ i by (13).

Wi
t ¼

X
j2eJ i

ajt
bLj 6 t < Uj; ð12Þ
Wi
t ¼

Wi
t � 1 bLj 6 t 6 Uj;

Wi
t otherwise:

(
ð13Þ

Denote by Ki the already constructed set of routes performed by
vehicles housed in DC i. As explained above, the algorithm selects
the lowest extended flexibility indexed trip among the remaining
trips to be scheduled and attempts to schedule it, if feasible, in
an existing route k 2 Ki. Otherwise, if this is not feasible, it creates
a new route for the trip.

Denote by Xi
t the number of routes from set Ki in which time

slot t is unassigned. Xi
t can be interpreted as the supply of time slot

t in Ki and is initialized at zero for each time slot t. Then, Xi
t is up-

dated by (14) when trip j is scheduled in a new route in placement
/j, and by (15) when it is scheduled in an existing route in place-
ment /j.

Xi
t ¼

Xi
t þ 1 t < bLj þ /j; t P Lj þ /j þ bT j;

Xi
t otherwise;

(
ð14Þ

Xi
t ¼

Xi
t � 1 bLj þ /j 6 t < Lj þ /j þ bT j;

Xi
t otherwise:

(
ð15Þ

The idea of algorithm Combine is to attempt to schedule trips in
time slots with low demand and/or high supply. Thus, the selection
of placement /j in which trip j 2 eJ i is performed in an existing or in a
new route, depends on the supply and demand of time slots
½bLj þ /j; . . . ; bLj þ /j þ bT jÞ; /j 2 f0; . . . ;Djg. A preference function of
the demand and supply of those time slots can be represented by:

hð/jÞ ¼ b½f ðWibLjþ/j
; . . . ;WibLjþ/jþbT j�1

Þ��

ð1� bÞ½f ðXibLjþ/j
; . . . ;XibLjþ/jþbT j�1

Þ�; ð16Þ

where f (�) is a function of the relevant demands and supplies, as-
sumed to be increasing in its elements, and b and (1 � b) denote
the relative weights given to the demand and supply functions,
respectively. Function h(/j) in (16) represents a measure of the
attractiveness of placement /j, where a low h(/j) value is preferred.
Various f(�) functions may be used, including different functions for
supply and demand. We consider the following:

h1ð/jÞ ¼ b
XbT j�1

t¼0

WibLjþ/jþt

0@ 1A� ð1� bÞ
XbT j�1

t¼0

XibLjþ/jþt

0@ 1A; ð17Þ

and

h2ð/jÞ ¼ b½maxðWibLjþ/j
; . . . ;WibLjþ/jþbT j�1

Þ��

ð1� bÞ½maxðXibLjþ/j
; . . . ;XibLjþ/jþbT j�1

Þ�: ð18Þ
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Algorithm Combine solves the STVi problem for several values of b
between 0 and 1 for each of the objective functions (17) and (18).
The cost of each solution is calculated in terms of the original objec-
tive function (sum of fixed, traveling and waiting costs of all routes),
and the lowest cost solution for each DC is considered in the inte-
gration phase. Additional scheduling criterions were used in the
implementation of the algorithm to tie break alternative scheduling
options and an improvement stage was performed to further mini-
mize the possible vehicle idle time. The result of this phase is a set
of routes for each DC i 2 D separately. Recall that by solving the IP
formulation (referred to as the IP method) we obtain an additional
solution. At the end of phase 1 the solutions resulting from the two
methods (algorithm Combine and the IP method) are compared,
and the better result in terms of the original objective function is
chosen.

The algorithm continues to phase 2 of the STV problem, in
which we develop a saving based algorithm, inspired by the saving
algorithm of Clarke and Wright (1964) for the vehicle routing prob-
lem. Note that this is the first time in the entire solution method
for the ASTV problem where routing elements, i.e., the tij parame-
ters, are considered. Route integration may save a vehicle fixed
cost at the expense of possible higher traveling and waiting costs.
This phase consists of considering possible integration of routes
from different DCs, by computing their associated cost savings,
and selecting the integration with the highest cost saving, if it is
positive. Specifically, we consider a possible integration of routes
k 2 Ki and l 2 Kj when i, j 2 D, i – j, and possible execution of the
combined route by a vehicle from DC i or from DC j. Note that
routes from the same DC may not be combined since phase 1 con-
structed routes from the same DC in a way that they cannot be fur-
ther integrated.

Similarly, the integration phase addresses situations where the
number of vehicles housed in a certain DC is smaller than the num-
ber of routes constructed for that DC i.e., when Vi < jKij for a certain
DC i 2 D (recall that Vi denotes the number of vehicles located in DC
i). This case is handled by assigning an infinite operational cost to
the first jKij � Vi routes which results in a positive saving for any
feasible combined route. When a certain DC has extra vehicles, this
is represented by empty routes with zero operational costs which
are assigned to the unused vehicles in that DC. We omit the details
of the saving calculations, since they are relatively standard. At the
end of the integration phase, the resulting tours are the final solu-
tion of the ASTV problem.
5. Lower bounds

In this section we present a lower bound on the value of the
optimal solution to the ASTV problem which enables us to evaluate
the effectiveness of our heuristic solution method. We develop a
lower bound for each of the ASTV cost components, i.e., on the
traveling costs, the waiting costs, and the fixed cost. These lower
bounds are achieved by considering relaxed problems of the origi-
nal problem, which are formulated and solved as integer programs.
These formulations employ binary decision variables xst for each
task s 2 S and each time slot t 2 {0, . . . ,T � 1}, where xst = 1 if task
s is assigned to a trip that starts at time slot t, and 0 otherwise.
In addition, decision variables hrt denote the number of trips deliv-
ering tasks between origin–destination pair r, that start at time slot
t.
5.1. Traveling costs

As mentioned in Section 4, when assuming that enough vehicles
are available at each DC, the total traveling cost is minimized when
all trips are round-trips and their total number is minimized. Fur-
thermore, the problem of finding the minimum number of trips is
then separable by origin–destination pairs r 2 R. Thus, for each
r 2 R a lower bound on the traveling cost can be calculated by mul-
tiplying the traveling cost per time slot, ka, by a lower bound on the
number of round-trips between this pair, denoted zr, and by the
traveling time of a round trip between the DC and factory. There-
fore, the lower bound on the traveling cost for an ASTV instance
equals kaP

r2Rðzr � 2trÞ.
To find zr we formulate an integer program, LB1

r . Note that for-
mulation LB1

r considers a single origin–destination pair, therefore
the decision variables hrt can be represented with only a single in-
dex t. We nevertheless use the above variable representation for
consistency.

LB1
r

� �
zr ¼min

XT�ð2trþsÞ

t¼0

hrt

( )
; ð19Þ

s:t:
Xus�ð2trþsÞ

t¼ls�tr

xst ¼ 1 8s 2 Sr; ð20Þ

hrt P
P

s2Sr wsxst

Q W t ¼ 0; . . . ; T � ð2tr þ sÞ; ð21Þ

hrt P
P

s2Sr v sxst

QV t ¼ 0; . . . ; T � ð2tr þ sÞ; ð22Þ

xst 2 f0;1g 8s 2 Sr ; t ¼ ls � tr ; . . . ;us � ð2tr þ sÞ; ð23Þ
hrt P 0 integer t ¼ 0; . . . ; T � ð2tr þ sÞ: ð24Þ

Objective function (19) minimizes the total number of round-
trips starting at all time slots. Constraints (20) ensure that each
task s 2 Sr is assigned to exactly one round-trip that starts within
task s’s time window. Constraints (21) (and (22)) state that the
number of round-trips that start on time slot t must be greater
than or equal to the sum of weights (volumes) of all tasks assigned
to trips that start on time slot t divided by the vehicle weight (vol-
ume) capacity. Note that T � (2tr + s) is the latest possible round
trip starting time for trips that deliver tasks between origin–desti-
nation pair r. Finally, constraints (23) and (24) impose binary and
integrality restrictions on the xst and hrt variables, respectively.

Using the xst variables in LB1
r enables us to deal with the ‘‘diffi-

cult’’ time window constraints encountered in the ATTr problem by
defining the xst variables only for time slots t = ls � tr, . . . ,
us � (2tr + s), so that the time window constraints are ‘‘automati-
cally’’ satisfied. This approach is possible in the lower bound con-
text since the xst variables indicate the starting time t of the trip
to which task s is assigned, but they do not indicate the specific trip
to which it is assigned. Thus, the difficult ‘‘bin-packing’’ element is
not resolved in LB1

r .
In most cases, an optimal solution to LB1

r can be reached in a
reasonable amount of time for instances of practical size. As the
number of tasks between each origin–destination pair gets larger,
and as the flexibility of the tasks gets larger (both effects increase
the number of xst variables), it becomes harder to solve the prob-
lem optimally, in which case we remove the integrality require-
ment in (24), resulting in a weaker lower bound.

5.2. Waiting costs

The lower bound on the waiting costs uses the lower bound on
the minimum number of round-trips between each origin–destina-
tion pair, found by formulation LB1

r . There are two vehicle waiting
situations in the ASTV problem: waiting while loading and unload-
ing commodity (denoted by zw1) and idle time between trips (de-
noted by zw2). The loading plus unloading times are identical for
all trips, and equal s per trip. Thus, zw1 is minimized when the total
number of trips is minimal. Using the lower bound on the number
of trips from the previous section, zr, we evaluate zw1 by
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kw � s �
P

r2Rzr . Idle time between different trips in the same route
results from scheduling trips to routes. These waiting times can
be avoided by ordering a separate vehicle for each trip. Thus,
zw2 = 0, and the overall lower bound on the waiting cost is
kw � s �

P
r2Rzr .

5.3. Fixed costs

The total vehicle fixed cost is minimized when the number of
vehicle routes is minimal. Therefore, it may be evaluated by multi-
plying the vehicle fixed cost, f, by a lower bound on the minimum
number of routes in the ASTV problem. We first calculate this low-
er bound for a special case of the ASTV problem in which there ex-
ists a single DC, and denote this problem by ASTV1. Note that in
ASTV1, tasks destined to the DC are delivered by vehicles housed
in that DC, and thus all trips are round-trips (although each round
trip may involve a different factory). Let Z be a lower bound on the
minimum number of routes in ASTV1, which may be found by solv-
ing the integer program LB2 presented below. While LB2 is an
extension of LB1

r , it is no longer separable by origin–destination
pairs.

ðLB2Þ minfZg ð25Þ
s:t: Constraintsð20Þ � ð24Þ 8r 2 R;

Z P
X
r2R

Xt

t0¼t�ð2trþsÞþ1

hrt0 t ¼ 0; . . . ; T: ð26Þ

Objective function (25) minimizes the number of routes, while
constraints (26) ensure that for each time slot the number of routes
is at least as large as the sum of trips executed during that time
slot, since trips that are executed during the same time slot cannot
belong to the same route. Again, for larger instances, the integrality
requirement in (24) is removed.

However, formulation LB2 cannot be used to obtain a lower
bound on the number of routes for ASTV problem instances with
several DCs, since then some routes may no longer involve only
round-trips. In other words, trips of different origin–destination
pairs may be combined together, which may result in a lower trip
time than two separate round trips. Therefore, for instances with
more than one DC we find a lower bound on the minimum number
of routes by computing a lower bound on the total time required to
perform all trips, and dividing it by the length of the planning per-
iod T. A lower bound on the total time required to perform all trips
is obtained by summing two previously computed lower bounds:
the lower bound on the number of trips and the lower bound on
the waiting time. Thus, the minimum number of routes must be
greater than or equal to ð

P
r2Rðzr � 2trÞ þ zw1Þ=T ¼

P
r2Rðzr�

ð2tr þ sÞÞ=T and hence f � ð
P

r2Rðzr � 2trÞ þ zw1Þ=T is the lower bound
on the total fixed costs.

We expect this lower bound to be less tight than the lower
bound computed by formulation LB2, but it is computationally eas-
ier, since zr is solved for each r separately, and therefore, can be
estimated for relatively large problems. The performance of the
above lower bound is good for ASTV instances, in which most of
the planning period is occupied.
Fig. 4. TS algorithm evaluation with a = 1.
6. Numerical study

In this section we present a numerical study, designed to assess
the performance of the proposed heuristic solution method for the
ASTV problem as well as to obtain insights on properties of effi-
cient solutions. The heuristic was coded in C and executed on a
Pentium 4 computer with 3.6 GHz and 4 GB RAM. The performance
of the heuristic is evaluated by comparing the value of its solution
to the lower bound discussed in Section 5. We report in Sections
6.1, 6.2, 6.3 on problems of various sizes, and present a summary
of their performance in Section 6.4. An explanation on how the ba-
sic input parameters were generated is provided in Appendix C.
Other parameter values are specified within this section, as
needed.

6.1. Single DC and factory instances

First we consider instances with a single DC and a single factory
in which round-trips are performed. We first present results ob-
tained by the TS algorithm for the ATTr problem with a = 1. We
use a = 1 since a denotes the weight given to the utilization term
of the objective function, Futil, and minimizing Futil is equivalent
to minimizing the number of trips between the origin and the des-
tination (Lemma 1). Thus, the lower bound on the minimum num-
ber of trips, presented in Section 5.1, is also a lower bound on the
optimal value of ATTr, which enables us to evaluate the perfor-
mance of the TS algorithm. For other values of a it is unclear
how to obtain a lower bound on the solution value of ATTr.

The TS algorithm was tested on various problem sizes (number
of tasks), and for each size 10 instances were generated. Fig. 4 illus-
trates the average gap from the lower bound for each problem size.
The average gap over all instances was 1.96% with a variance of
0.02. Note that there is no clear trend in the results as the number
of tasks increases. The algorithm ran between two to four minutes,
depending on the problem size, thus providing good and fast
solutions.

Subsequently, the entire solution method for the problem was
tested on five problem sizes ranging from 50 to 250 tasks with
10 instances for each problem size. For each ASTV problem in-
stance, the ATTr problem was solved for 11 different values of al-
pha between zero and one and six different values of the fixed
cost parameter, f, ranging from 50 to 1,000. Thus, 3300 instances
of ATTr were solved in this experiment. The STV was solved twice
for each solution of ATTr, once by the IP method and once by the
heuristic method, and the better result was chosen. The traveling
cost parameter, ka, and the waiting cost parameter, kw, were set
to 15 and 10, respectively. We refer to ka and kw as the variable cost
parameters and to f/kw as the parameters cost ratio.

We observed that small values of alpha did not produce good
results for the entire problem, since the solution had a large num-
ber of poorly utilized trips, which resulted in a high number of
routes. This was the case across all problem sets considered and
therefore these a values are not shown in subsequent figures. In
fact, the results demonstrated that middle values of alpha gener-
ated the best heuristic solutions in most cases, implying that both
the utilization and the flexibility terms are important when consid-
ering the initial assignment decisions. In particular, it is not always
beneficial to utilize the capacity of the vehicles as much as
possible.

The optimality gap of the heuristic, as a function of the cost ra-
tio f/kw, is presented in Fig. 5. It is evident that the average gap de-
creases as the cost ratio decreases, i.e., when the variable costs
become more dominant. We believe that this is due to the better



Fig. 5. Average gap from the lower bound as a function of the cost ratio for single
DC and factory instances.
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quality of the travel cost lower bound, compared to the fixed cost
lower bound (as shown in subsequent figures) and the fact that the
travel costs become a dominant component in the total cost when
the cost ratio decreases. In all cases, the performance of the heuris-
tic is very good, with gaps ranging from 3.51% to 5.56% for the low-
est and highest cost ratio, respectively, and with an overall average
gap over all instances of 4.65%.

We further consider the performance of a restricted version of
the heuristic, when only a single value of a is used for all instances.
Fig. 6 presents the optimality gaps of the travel and the fixed cost
components from their respective lower bounds (the lower bound
on the waiting cost was zero), as well as the distance of the total
cost from its lower bound, as a function of alpha, for instances with
cost ratio of f/kw = 50. This cost ratio represents cases where none
of the fixed or variable cost components are dominant. We observe,
as expected, that the gap of the traveling cost component from its
lower bound increases as alpha decreases. The fixed cost graph is
not monotone and is always higher than the travel cost graph in
ranges of alpha where good solutions are obtained. The graph rep-
resenting the gap of the total cost from its lower bound is rather
flat for a values between 0.5 and 0.99. Note, however, that the
graph represents average results and different instances may
achieve their minimum at varying alpha values, and the graphs,
in general, are more variable. However, the gap rapidly increases
for a values lower than 0.5, as a result of poorly utilized trips.

Thus, for this set of experiments, even if a single alpha value is
used for all instances, the total costs are higher than their respec-
tive lower bound by 7.5–8% on average, provided that the chosen
alpha value is between 0.5 and 0.99. This is compared to 5.04%
when choosing the best alpha value for each instance. Overall,
these results demonstrate the efficiency of the general solution
method (even for a restricted version), as well as the added value
of solving for several alpha values and choosing the best.

For instances with dominating fixed or variable cost parameters
the results for the restricted version of the heuristic are similar,
with slight differences. For instances with dominating fixed (vari-
able) costs the minimum average gap was 7.96% (4.23%) for an al-
pha value of 0.5 (0.99). Thus, when the variable costs are
dominating and a single alpha value is used, considering the vehi-
cle utilization factor alone provides the best results. When this is
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Fig. 6. Average gap from lower bound for each cost component as a function of
alpha for single DC and factory instances with no dominating cost component.
not the case, the utilization and the flexibility cost factors should
be balanced by using an intermediate value of alpha. Finally, we
performed sensitivity analysis on the tasks input parameters, i.e.,
on the weight, volume, and time window parameters, and ob-
served that the solution method is quite robust to such changes.
6.2. Single DC – Multiple factories instances

In this section we examine ASTV problem instances including a
single DC and three factories, i.e., three origin–destination pairs.
The solution consists of round-trips from the DC, where the vehi-
cles are housed, to one of the factories and back. The solution
method was tested on three problem sizes ranging from a total
of 150 tasks to a total of 450 tasks.

Overall, the average gap of the total cost from its lower bound is
7.42% where again the gap of the fixed cost from its lower bound is
significantly larger than that of the travel cost. The gap is signifi-
cantly affected by the cost ratio, with an average gap of 3.5% and
10.97% for cost ratios of 5 and 100, respectively. These gaps are lar-
ger than those in the previous section since in these larger in-
stances the integrality requirement (24) in LB2 is removed (due
to computational limitations), which results in a less tight lower
bound on the fixed cost.

Here we were also able to test the optional solution method in
which the STV problem is solved for each alpha combination from
a set of good alpha values. We considered six values of alpha be-
tween 0.5 and 0.99 that produced the best results for these and
previously solved instances. Thus, each of the three DC-factory
ATT problems was solved six times, and the STV problem was
solved 63 = 216 times (once for each alpha combination of the
three ATT solutions). The resulting gaps, as a function of the cost
ratio, are presented in Fig. 7.

The results indicate that while the optional method clearly
dominates the original method, the largest gap between them is
only 0.75% or 0.77% (when f/kw = 100 or 75, respectively), and the
gap narrows as the significance of the variable costs increases. This
trend occurs since the optional solution method cannot improve
the travel cost determined by the ATT, it can only improve the fixed
cost and waiting cost. Therefore, the lower the importance of the
variable cost component, the higher the improvement in percent-
age of the optional method. One should also note that the improve-
ment of the optional method comes at the cost of a significantly
larger computational effort.
6.3. Multiple DCs and factories instances

In this section we examine larger ASTV problem instances
including three DCs and six factories. Using these practical in-
stances we can thoroughly assess the entire proposed solution
method which includes three main phases. The first is the assign-
ment of tasks to trips for each origin–destination pair. The second
is the scheduling of trips to routes for each DC separately, while the
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Fig. 7. Performance of the original and optional solution methods as a function of
the cost ratio for single DC and three factories instances.



Table 1
Computational results summary.

DCs Fac Tasks AGDF (%) AGND (%) AGDV (%) OAG (%)

1 1 50 7.08 6.09 3.78 5.49
100 5.95 5.72 4.19 5.32
150 4.77 4.52 3.78 4.34
200 5.63 4.91 3.06 4.45
250 4.39 3.98 2.72 3.65

1 3 150 10.07 8.04 3.20 6.79
300 11.48 9.19 3.39 7.66
450 11.35 9.19 3.92 7.82

3 6 1800 6.67 5.55 3.24 4.97
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third is the integration phase in which routes from different DCs
are combined into routes performed by a vehicle from one of these
DCs.

We consider a single scenario with a total of 1,800 tasks for the
18 origin–destination pairs. The ATTr problem was solved, for each
origin–destination pair r 2 R, for six different values of alpha be-
tween zero and one (0.99,0.9,0.8,0.7,0.6, and 0.5), which produced
the best results for the previously solved instances. The average
gap for these instances was 5% and we observed that even the
gap of the fixed cost component was minimized in most cases
for an alpha value of 0.99. The above small gap is due to the large
number of tasks (600 tasks per DC). The set of utilized trips, ob-
tained by solving the ATT with an alpha value of 0.99, is large en-
ough and diverse enough (with respect to the time window
parameters) for creating a set of laden vehicle routes. This is as op-
posed to a small set of non-flexible trips created with an alpha va-
lue of 0.99 in smaller ASTV problem instances, which are harder to
combine into laden routes and therefore result in higher fixed
costs. When the construction of laden vehicle routes is possible,
minimizing the number of trips also minimizes the number of
routes.

Thus, for instances in which the number of tasks destined to
each DC is large, it is more important to create highly utilized vehi-
cle trips than to create highly time window flexible vehicle trips. As
explained in Section 5, the average gap from the lower bound on
the fixed cost for multiple DCs instances is evaluated by summing
the minimum traveling and waiting times, and dividing them by
the length of the planning period. Therefore, the relatively small
average gap on the fixed cost component can also be explained
by the ability of the IP method to create laden vehicle routes which
occupy most of the length of the planning period.
6.4. Computational results summary

In this section we present a summary of the computational re-
sults for the problems discussed in the previous sections. Table 1
reports the following for each scenario: number of DCs (DCs); num-
ber of factories (Fac); number of tasks (Tasks); average gap of the
total cost from the lower bound, achieved by the solution method
for instances with dominating fixed cost factor (AGDF) (cost ra-
tio = 100), no-dominating cost factors (AGND) (cost ratio = 50),
and dominating variable costs factors (AGDV) (cost ratio = 5). Final-
ly, the last column reports on the overall average gap (OAG) of in-
stances of all six values of cost ratio considered. For each instance
the best result achieved either by the IP or by algorithm Combine is
considered. In all problem categories except the single DC and sin-
gle factory, the results obtained from the optional solution method
are reported.

We conclude from these results that as the variable costs be-
come dominant, the average gap of the total cost from the lower
bound decreases. This is due to the performance of the TS algo-
rithm for the ATT, which achieves a relatively low average gap be-
tween the traveling cost and its lower bound.

Running times greatly depend on the number of ATT problems
solved in the first phase. On average, each ATT problem is run for
2.5–3 minutes, and the total number of ATT executions is the num-
ber of origin–destination pairs, multiplied by the number of alpha
values (or combinations) used. The execution of the second phase
(STV and the integration phase) require no longer than a few sec-
onds, so they do not affect the run time significantly. Thus, the run-
ning time for our problems ranged from about half an hour for the
small problems with one origin–destination pair (Section 6.1) and
up to 4.8 hours for the large problems with 18 origin–destination
pairs (Section 6.3).
7. Conclusions

We have identified and formulated a new transportation and
scheduling problem in a distribution system, inspired by an appli-
cation observed at a food manufacturer, with unique characteris-
tics that were not identified and analyzed previously. We
developed a heuristic solution method, based on a new decompo-
sition/partitioning idea, which may be useful to other problems
with a structure that enables such partitioning. Our heuristic in-
cludes detailed procedures for each of the resulting problems,
and a detailed analysis of a lower bound to the entire problem.
An extensive computational study indicates that our heuristic is
very efficient.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejor.2011.06.013.
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