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he period vehicle routing problem (PVRP) is a variation of the classic vehicle routing problem in which

delivery routes are constructed for a period of time (for example, multiple days). In this paper, we consider
a variation of the PVRP in which service frequency is a decision of the model. We refer to this problem as the
PVRP with service choice (PVRP-SC). We explore modeling issues that arise when service choice is introduced,
and suggest efficient solution methods. Contributions are made both in modeling this new variation of the PVRP
and in introducing an exact solution method for the PVRP-SC. In addition, we propose a heuristic variation of
the exact method to be used for larger problem instances. Computational tests show that adding service choice
can improve system efficiency and customer service. We also present general insights on the impact of node

distribution on the value of service choice.
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Introduction

In many supply chains, as well as other pick-up
and/or delivery operations, customers often require
repeated visits over a time horizon. Examples can be
found in the delivery of groceries (or other products),
the collection of waste, or the distribution of equip-
ment for intermodal operations. In these examples,
one must design routes that consider volume, travel
time, and visit frequency. Such applications motivated
the development of the period vehicle routing prob-
lem (PVRP).

The PVRP is a generalization of the classic vehi-
cle routing problem (VRP), in which vehicle routes
are constructed for a t-day period (for example, one
week). Other units of time may be used; however,
this paper employs the above convention. Each day
within the period, a fleet of capacitated vehicles per-
forms routes that begin and end at a single depot.
Customers are visited a preset number of times over
the period, with a schedule that is chosen from
a menu of schedule options. Each schedule option
represents a set of days on which a node is vis-
ited. For example, if over the period of one week a
node is to be visited twice, the menu options may
be {(Mon, Tues); (Mon, Wed); (Wed, Fri)}. The objec-
tive of the PVRP is to find a set of tours for each
vehicle over the period that minimizes total travel
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time while satisfying operational constraints (vehicle
capacity and visit requirements).

The first problem motivating the PVRP was intro-
duced in Beltrami and Bodin (1974) for assigning hoist
compactor trucks in municipal waste collection. The
PVRP was formally defined in Russell and Igo (1979)
as an “assignment routing problem” and first for-
mulated mathematically in Christofides and Beasley
(1984). Solution methods in these and subsequent
papers have focused on two-stage (construction and
improvement) heuristics; see also Tan and Beasley
(1984) and Russell and Gribbin (1991). Chao, Golden,
and Wasil (1995) review the heuristics proposed in
the above papers and compare these methods with a
new heuristic developed to overcome issues of poor
local optima. Gaudioso and Paletta (1992) consider a
PVRP model that minimizes fleet size. More recently,
Cordeau, Gendreau, and Laporte (1997) implement a
tabu search algorithm for the PVRP. These papers all
consider heuristic methods whose quality is unknown
because no optimal solutions or lower bounds are
provided. However, because these papers share com-
mon data sets, results are compared across papers.

In the abovementioned references, each customer is
visited with a preset frequency. Each node may be
served from a node-specific set of schedule options
with a fixed number of visits per week. However,
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determining schedule choices for a node independent
of routing decisions may lead to routing inefficiencies.

Newman, Yano, and Kaminsky (2005) consider
a scheduling and routing problem in which the
schedule and frequency of visits to customers is a
decision variable. The customer’s cost of holding
inventory is used as an approximation of the willing-
ness to pay for more frequent service. The authors
note that the PVRP literature emphasizes routing
costs or fleet size and does not consider inventory or
other costs associated with the selection of a partic-
ular day-of-the-week schedule. However, the model
in Newman, Yano, and Kaminsky (2005) assumes that
route construction is exogenous; routes are selected
from a given set of routes.

In this paper, we consider a variation of the PVRP
that accounts for service choice. This work was ini-
tially motivated by the delivery operations for interli-
brary loan items, described in §3.1. We define a sched-
ule to be the set of days on which a node is visited.
Service to a node is characterized by the schedule of
visits and the associated visit frequency. In particu-
lar, we assume that each customer requires a min-
imum number of visits per period, but is willing
to accept a higher frequency. The customer and/or
the system benefits from higher frequencies, which
is accounted for in the objective function. The ben-
efit from a higher frequency may represent the cus-
tomer’s savings in holding cost or, more generally,
the customer’s willingness to pay for more frequent
(better) service. Thus, the PVRP with service choice
(PVRP-SC) exploits possible efficiencies from com-
bined routing and service decisions. Importantly, due
to the service choice, the overall performance of the
system may be enhanced because some nodes may
receive better service than the minimum required. An
implicit constraint in our modeling of the PVRP-SC
is to maintain a reasonable set of different routes for
each driver to perform.

Like the PVRP-SC, the inventory routing problem
(IRP) determines visit frequency and route configu-
ration simultaneously. In the PVRP-SC, the amount
delivered to a node is determined by the schedule
assigned to the node (all demand accumulated since
the last visit), while in the IRP the amount deliv-
ered to a node is a decision variable separate from
visit frequency. Our modeling of the PVRP-SC ensures
that minimum service requirements are met. The ser-
vice benefit is related to the node and depends on
a parameter determined by the node’s volume and
the chosen service. On the other hand, in the IRP
the service-related costs are modeled as holding costs
and therefore are associated with each specific unit of
item. Typically, no minimum frequencies are imposed.

As with the vast majority of the inventory lit-
erature, the IRP literature may be classified into

models in continuous time with a constant demand
rate over an infinite horizon, and models in dis-
crete time with a finite horizon and varying demand.
In continuous time the visit frequency is typically
modeled as a continuous decision variable that con-
tributes a nonlinear term to the objective function.
A variation of an EOQ-type solution is usually
suggested to solve for the replenishment quantity
decision variables. Work in this category includes,
for example, Anily and Federgruen (1990), Chan,
Federgruen, and Simchi-Levi (1998), and the surveys
by Federgruen and Simchi-Levi (1995) and by Anily
and Bramel (1998). Kleywegt, Nori, and Savelsbergh
(2002) provide a classification of recent articles on
both deterministic and stochastic demand IRPs. The
IRP literature in discrete time is quite sparse, and usu-
ally considers special cases of the problem or suggests
heuristic solutions. See, for example, Kim and Kim
(2000), Gaur and Fisher (2004), and Herer, Tzur, and
Setty (2003). Because demand in these models varies
from period to period, the solution is typically not
repetitive.

In this paper we introduce the PVRP-SC. We con-
sider how service choice impacts the volume accu-
mulated at a node, as well as the stopping cost.
This paper explores modeling issues that arise when
service choice is introduced and suggests efficient
solution methods. We highlight the assumptions that
allow for a compact formulation and an exact solu-
tion method. Contributions are made both in the for-
mulation of this new variation of the PVRP and in
the introduction of an exact solution method for the
PVRP-SC. In addition, we propose a heuristic varia-
tion of the exact method to be used for larger problem
instances.

Section 1 describes the PVRP-SC in detail and
presents a mathematical formulation. Section 2 intro-
duces the solution method and §3 presents com-
putational results and general insights. Finally, §4
summarizes the paper and discusses future work.

1. Problem Description

The PVRP-SC is the problem of finding a set of tours
for each vehicle for each day over a period that min-
imizes an objective of total travel cost minus service
benefit while satisfying operational constraints (vehi-
cle capacity and visit frequency minima). The exam-
ple in Figure 1 illustrates how introducing choice in
visit frequency can lead to greater control over sys-
tem efficiency. In the figure, a set of nodes is served
from a central depot by two vehicles. Each node is
characterized by preset visit frequency (either daily,
three-day, or two-day), and vehicles are assigned to
nodes as shown. Consider Nodes 1 and 2 served by
the second vehicle. Because the nodes have different
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......................... Visit frequency
@ 5 days per week
@ 3 days per week
(O 2 days per week
Vehicle routes
- Mon., Wed., Fri.
— Tues., Thurs.

Vehicle 2

Figure 1 Period Vehicle Routing Problem

preset frequencies, they are visited by different sched-
ules. Vehicle 2 must travel to the region containing
Nodes 1 and 2 five days a week, incurring a long
travel distance for each trip. If the preset frequencies
are treated as lower bounds rather than fixed values,
routing efficiency may increase. Node 2 can be visited
with Node 1 on a Monday-Wednesday-Friday tour,
thereby reducing the travel distance for Vehicle 2.

The increase in efficiency comes with an increase in
solution options for an already difficult combinatorial
optimization problem. The PVRP-SC is an extension
of the VRP, which is shown by Lenstra and Rinnooy
Kan (1981) to be NP-hard. Further, the amount deliv-
ered to a node must reflect the dependence of accu-
mulation on schedule choice. The stopping cost at
a node increases with the amount of material dis-
tributed or picked up, which is again a direct function
of schedule choice.

The following notation is used to model and for-
mulate the PVRP-SC:

N set of demand nodes; N ={1, ..., n}; node 0 rep-
resents the depot

A set of network arcs; A={(i, j): i, j € NU{0}}

K set of vehicles

C vehicle capacity; (items per vehicle)

T setof days T={1,...,t}; t represents the length
of the period

S set of service schedules; S={1,...,|S|]}; s€S is
a subset of T

1 if day d €T is in schedule s € S

asd - .
0 otherwise

t; travel cost on arc (i, j) € A; (dollars)

w; demand at node i € N; (items per day)'

fi minimum visit frequency at node i € N; (number
of days/period)

v® service frequency for schedule s € S; (number of

days)

1Tt is assumed that each item consumes the same amount of
capacity.

stopping cost at node i € N when served by
schedule s € S (dollars/stop)

of service benefit for schedule s € S (dollars/item)

B° demand accumulation adjustment factor for
schedule s € S.

The cost of stopping at a node 77 is a function of
the demand at node 7 and the frequency of schedule s.
We introduce a service benefit @° to provide incentive
to offer more frequent service to nodes. The formula-
tion can be generalized to relate frequency and service
benefit through a volume-related function by defining
a parameter o to be a function of w; rather than a
constant for all nodes. In this way, various types of
benefit structures (e.g., quadratic) may be modeled.

Formulating capacity constraints is more complex
in the PVRP-SC than in the PVRP. To ensure that
capacities are not exceeded, one must know the vol-
ume delivered to a node. In existing formulations of
the PVRP, it is assumed that the same amount is deliv-
ered at each visit to a node, regardless of the spacing
of days in a schedule (which can vary even with fixed
service levels). In the PVRP-SC, the service frequency
determines the demand between visits; the adjust-
ment factor 3° is estimated as the maximum number
of days between visits on schedule s € S. This conser-
vative estimate for 8° guarantees feasibility, yet may
preclude better solutions.

We introduce the following decision variables:

1 if node i € N is visited by vehicle k € K
v, = on schedule s € S

0 otherwise

1 if vehicle k € K traverses the arc (i, j) € A
x;ijk = ondaydeT

0 otherwise.

Because the capacity constraints depend on the spe-
cific vehicle and service level at each node, we define
y;. such that nodes are visited by the same vehicle
each time. Allowing nodes to be visited by multi-
ple vehicles would require either a nonlinear capacity
constraint or a fifth index on the routing variables for
schedule choice. In the motivating example of interli-
brary loan delivery, this definition of v}, is required.

The following formulation for PVRP-SC is an exten-
sion in several dimensions of the VRP formulation in
Fisher and Jaikumar (1981):

Z*:minZ[Z > t,.]»xfl]-k

keKLdeT (i, j)eA

LYY - wiawfk] (1a)

seSieN
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subject to

22 Vyizfi VieN (1b)

seS keK

Y yi<1 VieN (1c)

seS keK

Y Y (Bw)ayy; <C VkeK;deT (1d)

seSieN

Y xp=> a4y, VieN;keK;deT (le)

jeNU{0} seS

Y oxjp= ) VieNUu{0);keK;deT (1f)

jeNU(0) jeNU(0}
>ox<IQl-1 VQCN; keK;deT (1g)
i jeQ

yi€{0,1} VieN;keK;seS (1h)
xf€{0,1} V(i,j)eA; keK; deT. (1i)

The objective function (1a) balances travel time and
service benefit. The first term represents arc travel
times. The second term represents the node stopping
costs and a demand-weighted service benefit. Set-
ting o* =0, Vs € S, is equivalent to considering only
routing in the objective, and specifying large values
of o solves the problem of maximizing service bene-
fits first, and minimizing routing costs as a secondary
objective.

Constraints (1b) enforce the minimum frequency of
visits for each node. Constraints (1c) ensure that one
schedule and one vehicle are chosen for each demand
node. Constraints (1d) represent vehicle-capacity con-
straints. The material distributed to or picked up from
a node depends on the schedule and node demand,
and is allocated to specific days using the parame-
ter a ;. Constraints (1le) link the x and y variables for
the demand nodes. Constraints (1f) ensure flow con-
servation at each node. Constraints (1g) are the sub-
tour elimination constraints and ensure that all tours
contain a visit to the depot. Constraints (1h) and (1i)
define the binary variables for assignment and rout-
ing, respectively.

Formulation (1) can be modified to include other
operating constraints that also make the problem
more tractable. As mentioned earlier, it may be desir-
able from an operations perspective to limit the num-
ber of different routes performed by each driver to
ensure that solutions can be implemented easily. Con-
sider the example in Figure 1. The solution offers
three discriminating service levels to nodes (daily ser-
vice, three times a week, twice a week), while requir-
ing each driver to perform only two different routes.
This example can be generalized to any set of sched-
ules that satisfies the property introduced in the fol-
lowing lemma.

LEmMA 1. Assume that the set of schedules S includes
|S| — 1 disjoint schedules (schedules do not share any com-
mon days) and a schedule |S| that is the union of all dis-
joint schedules. Then the set of nodes served on a route
on a certain day included in disjoint schedule s' is always
visited on the same route each day in schedule s'. This
results in at most |S| — 1 different routes for each vehicle.

Proor. Let M be a set of nodes visited on a certain
day. If there exists no i € M such that i is assigned to
schedule |5|, then all nodes i € M must be assigned to
the same schedule by the disjoint assumption. Other-
wise, denote by M’ the set of nodes that are assigned
to schedule |S|. Nodes in M\M' are assigned to the
same schedule as in the previous case. Now, by def-
inition of schedule |S|, all nodes in M’ are visited
too whenever nodes in M\M' are visited. Thus, the
set of nodes visited on this day and all others in
the schedule does not change. Given the same set
of nodes, the same vehicle assignments and routing
decisions are still optimal. Given |S| —1 disjoint sched-
ules, there will be at most |S| — 1 different routes for
each vehicle. O

Lemma 1 implies that the number of different
routes does not depend on t. With sets of sched-
ules defined as in Lemma 1, the number of routing
variables (x%,) can be reduced. Let U be the set of
disjoint schedules {1, ..., |S| — 1}. Rather than defin-
ing xf’jk over all days, the variables are defined by
unique delivery days, xj;; u € U. In the example in
Figure 1, u =1 corresponds to a Mon-Wed-Fri sched-
ule that is performed three times a week (y' =3) and
u =2 corresponds to a Tue-Thurs schedule that is per-
formed twice a week (y? =2). Hence, y* can also be
indexed by u. If the union of the disjoint sets were not
included in the schedule options, there would be no
need to differentiate between u and s in the formula-
tion. With the union included, the indices on a,; and
x;’jk are changed from d to u rather than introducing
new parameters for simplicity of notation. The units
remain the same (days) although the dimensions over
which the parameters/variables are indexed have
changed. The parameter g, is defined as

1 fors=u;seS, ucl
a,=11 fors=|S|; uel (2)

0 fors#u;seS\{|S|]}, uel.

The PVRP-SC is now formulated as follows:

7 :minZ[Z Syt

keKlLuel (i, j)eA

N wiawfk] (3a)

seSieN
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subject to

22 VVa=fi VieN (3b)

seS keK

Y yi<1 VieN (3c)

seS keK

Y (Bw)agy; <C VkeK;uel (3d)

seSieN
Z xl?‘].kzz%uyfk VieN; keK,uel (3e)

jeNU{0} seS

Yo xp= ) xj VieNU{0) keK;uel (3f)

jeNU{0} jeNU{0}

in”].k§|Q|—1 VOQCN; keK;uel (3g)
i,jeQ

v €{0,1} VieN;keK;seS (3h)
X €{0,1} V(i,j)eA; keK; uel. (31)

Note that the routing component in (3a) is multi-
plied by y* to reflect the full cost of routing through-
out the time period. Formulation (3) allows consistent
tours for drivers and easier system management. Fur-
ther, each node that is visited by a disjoint schedule is
visited by the same vehicle at the same time each day.
This variation is adopted throughout the remainder
of the paper.

2. Solution Methods

Section 2.1 provides an overview of the solution algo-
rithm. The first component is a Lagrangian relax-
ation of (3), in which two subproblems are created
by relaxing one constraint of the original problem.
Critical to the Lagrangian procedure are the initial
lower and upper bounds, and the methods used to
update the bounds, described in §2.2 for the lower
bounds and §2.3 for the upper bounds. If the lower
and upper bounds converge to identical values, the
optimal solution is reached and the algorithm termi-
nates. Otherwise, the branch-and-bound component
is implemented to close the gap, as described in §2.4.
The branch-and-bound procedure uses information
from the Lagrangian relaxation to improve perfor-
mance. With slight variations to this exact algorithm,
we design a heuristic algorithm for large problem
instances that is described in §2.5. While our algo-
rithm includes computations typically employed in
such algorithms, we enhance those computations that
are specific to the PVRP-SC and are developed in
this research. The details of these developments are
described in this section according to the outline
above.

2.1. Description of the Lagrangian Relaxation
By relaxing constraints (3e), the assignment deci-
sions (y-variables) are completely separated from

the routing decisions (x-variables). The two result-
ing subproblems are solved independently and the
relaxed constraints are incorporated in a Lagrangian
fashion. We introduce Lagrange multipliers A} for
ieN, k € K, and u € U, associated with the
relaxed constraints (3e), and define Af, = 0 because
constraints (3e) are not defined for i =0. We obtain
the following Lagrangian function:

LR(A) = Z[Z 2 Y+ 2 (T

keKLuel (i, j)eA seSieN

wa yzkj|

19353 3PTA (D oA WYY

uel keK ieN jeNU{0} seS

=22 2 (Yt AR

keKuel (i, j)eA

220

keK seS ieN

- Z Z Z Z)‘?kasuy?k' 4)

keK uel ieN seS

S S S
T, — W)Y

For a given A vector, we define
Z,(x,y) = min LR(A)
Xy

subject to  (3b)—(3d), (3f)—(3i).

The solutions to the following two independent
subproblems provide the x and y values that mini-
mize the Lagrangian function. The assignment sub-
problem determines the y values:

Z\(y)=min} > > (v'1 — wa)y;
keK seS ieN
SEE M (Tas) G
keK uel ieN seS
subject to

Y2 VVi=fi VieN (5b)
seS keK
2> yx=1 VieN (5¢)
seS keK
> (Bwyagy; <C VkeK;uel (5d)
seSieN
v €{0,1} VieN; keK;seS. (5e)

The routing subproblem determines the x values:

Zy()=mind > >0 (vt + A (62)

keKuel (i, j)eA

subject to
3 Xjjy = > Xjp VieNU{0}; keK;uel (6b)
jeNu{0} jeNU{0}
Zx;‘jk§|Q|—1 VOQCN;; keK;uel (6¢)
i,jeQ

x €01} V(i) eA; keK; uell. (6d)
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The routing subproblem decomposes by (k, u) pairs
for each vehicle/delivery day combination, resulting
in |K]| - |U| instances of the following subproblem, in
which k and u are given:

Z)(X(k, ) =min > (Yt + A X (7a)
(i, e

subject to

> Xy = > xjp  Vie NU{0} (7b)

jeNU(0} jeNU{0}
> % =IQl-1 VQCEN (7¢)
i,jeQ

xy €{0,1} V(i j) €A (7d)

For each A € R*IKI+IUI it follows that

Z\(x, ) =Z\() +Zy(y) = D Zy(xp, ) +Za(y)
(k, u)

Zy(x,y)<Z".

nd

fo5]

Each resulting subproblem is a difficult problem
by itself. In the assignment subproblem, a schedule
and a vehicle must be assigned to each node, such
that frequency and capacity constraints are satisfied.
The frequency constraints are easy to satisfy, and the
best feasible schedule for each node may be chosen
according to the node’s coefficient. While the capac-
ity constraint is a “knapsack” type of constraint that
is theoretically difficult, the assignment problems can
be solved to optimality with CPLEX in seconds.

The (k, u) routing subproblem is known in the liter-
ature as a version of the traveling salesman problem
with profits (TSP with profits), in which a profit is
associated with each node and it is not necessary to
visit all nodes. The objective is to find a route with
maximum profit and minimum travel cost. In some
versions, one objective is optimized subject to con-
straints on the value of the other objective; in other
versions, both objectives are weighted, as in our case.
The problem can also be modeled as the orienteering
problem, or the prize collecting TSP; see Feillet, Dejax,
and Gendreau (2003) for a survey and classification
of the TSP with profits. Feillet, Dejax, and Gendreau
(2003) also prove formally that the TSP with profits
is NP-hard. Because the problem is solved for every
(k, u) pair at each Lagrangian iteration, investing the
time to solve (7) optimally is not realistic. Alterna-
tively, lower and upper bounds may be embedded
within the Lagrangian iterations; see §§2.2 and 2.3,
respectively.

After each iteration of the Lagrangian algorithm,
the Lagrange multipliers are updated according to
a standard subgradient optimization procedure; see
Fisher (1981) and Fisher (1985).

2.2. Lower Bounds

The subgradient optimization procedure for updat-
ing the Lagrange multipliers requires an initial lower
bound for the problem. One simple lower bound is
represented by the following formula:

> fi (min tij) + 2(750) Tfs(l) - wiag)
jen” e ieN

where 5(i) is the schedule that satisfies y*@7¥ =
min, ¢{y°7{} for node i, and § is the schedule that sat-
isfies § = max,¢{a’}.

An alternative lower bound may be found by com-
puting the routing term based on a minimum span-
ning tree (MST) method, which constructs an MST
through all the nodes. The nodes are assumed to
be visited at the (same) lowest possible frequency,
with stopping costs and service benefit determined as
above. Let C,5r be the cost of the MST. This lower
bound is given by

(min £)Cusr + Z0707 ~ ).

ieN

The lower bound is updated at each iteration of
the Lagrangian algorithm by solving the subproblems
for the given Lagrange multiplier values. Ideally, opti-
mal solutions would be found for each subproblem;
however, this is not realistic for the routing subprob-
lem. Therefore, we set the iteration’s lower bound
as the sum of the optimal solution to the assign-
ment problem and the lower bounds on the routing
subproblems.

The difficulty in solving the routing subproblem is
due to the exponential number of subtour elimination
constraints (7c). Typically, only some of those con-
straints are needed; however, the specific constraints
required are not known in advance. Therefore, the
following approach is adopted. Initially, all subtour
elimination constraints are relaxed. If subtours exist in
the resulting solution, the associated subtour elimina-
tion constraints are added to the formulation, and the
problem is re-solved (with CPLEX). This is repeated
until either a feasible solution is obtained or some
stopping rule applies. In the first (second) case the
solution is optimal (a lower bound) for the routing
subproblem and in both cases the objective value is a
lower bound on the routing component of the original
objective value. We use a predetermined time bud-
get as a stopping rule for the routing subproblem.
See §2.5 for a discussion on this choice. When a time
budget is used, the following cut is added for every
(k, u) routing subproblem (7) to ensure that the depot
is included in the routes:

> x}‘jk52x(§‘jk VieN. (7e)

jeNU{0} jeN



Francis, Smilowitz, and Tzur: Period Vehicle Routing Problem with Service Choice

Transportation Science 40(4), pp. 439454, © 2006 INFORMS

445

Let LB,(x) be a lower bound on Z,(x) and let
LB, (x, ) be alower bound on Z, (x ,,) for a given A.
We obtain

Z\)+ > LB, (xk, ) = Z\(y) +LBy(x) < Z,(y) +Z,(x)
(k,u)

=Z)(x,y)<Z".

2.3. Upper Bounds
Upper bounds are used in various phases of the algo-
rithm. At the end of the algorithm, the best feasi-
ble upper bound represents the suggested solution,
whether it is a provably optimal solution or a heuris-
tic solution. The capacity constraint makes the feasi-
bility problem hard, particularly when searching for
an initial upper bound, and especially if the capacity
constraint is tight.

Recall that the objective function (3a) consists of
total time (travel plus stopping) to perform all routes
during the period

DI RS ey

keKLuel (i, j)eA seSieN

and demand-weighted service factor for all nodes

> S wa |

keKL seSieN

Each component can be bounded from above. An
upper bound on the first component is based on the
assessment that, in practice, each vehicle has a lim-
ited time I" to perform its tour, even if not explicitly
expressed by the constraints. (See §4 for a discussion
of the implications of such a constraint.) An upper
bound on the total time traveled during the period
by all vehicles is given by |K|-¢-T" (the parameter I
may be chosen somewhat loosely if its value is not
known explicitly). The second component is bounded
by — Y.y ;& where s’ is the schedule that satisfies:
@ = min,{a’}. Therefore, the upper bound on the
objective function is given by: [K|-t-T' — 3,y w;a*.

The initial upper bound serves in the subgradient
optimization step that updates the initial Lagrange
multipliers. In each subsequent iteration of the LR
algorithm, we attempt to improve the upper bound.
Given the assignment decisions from solving (5),
we search for feasible vehicle routings for these
assignments using a randomized saving heuristic for
the VRP problem from Clarke and Wright (1964),
described in the appendix. Because the assignment
decisions are feasible, the heuristic solution is guar-
anteed to be feasible as well. This solution value may
update the best known upper bound. This method
can also be used to find an initial upper bound if I' is
not known.

Upper bounds may also be obtained from solu-
tions to the routing subproblem. Two feasibility issues
must be addressed with solutions to (7). First, the
routing solutions must not contain subtours. Second,
the assignment and routing decisions must satisfy the
relaxed constraints (3e). Therefore, in each iteration
in which the solutions to (7) do not contain any sub-
tours, we fix the assignment variables using linking
constraints (3e). We then check the capacity and fre-
quency constraints. If the solution is feasible, it may
update the upper bound.

2.4. Closing the Gap: The Branch-and-Bound
Procedure

At the conclusion of the Lagrangian relaxation phase,
the solution that corresponds to the best known upper
bound is a candidate solution to the problem. If the
upper bound does not equal the lower bound, the
remaining gap is closed with branch and bound. Typ-
ically, branch and bound is not a preferred method
for hard combinatorial problems like the PVRP-SC
because significant computational effort and time are
required. While this is still a valid concern, there are
two factors that facilitate the branch-and-bound pro-
cedure. First, the upper bound from the LR phase is
likely to be relatively close to the optimal solution,
certainly much closer than the initial upper bound.
This claim is supported with empirical evidence in §3.
As a result, significant parts of the branch-and-bound
tree are likely to be truncated. Second, solutions to the
subproblems from the Lagrangian phase eliminate the
need for repetitive computation and provide useful
information in guiding the branch-and-bound algo-
rithm, as explained below.

Due to the large number of routing variables,
the branch-and-bound procedure enumerates the
assignment variables only. The routing variables are
determined subsequently through the solution to the
routing subproblem, either optimally or via a lower
bound. A key observation here is that, given a parti-
tion of nodes into routes, the vehicle index assigned
to each route is arbitrary. Therefore, in branching over
the assignment decisions, an aggregate decision vari-
able is introduced, zi = Y ;¢ ¥§, which equals 1 if
node i is assigned to schedule s and 0 otherwise. This
limits the number of variables over which branching
is performed.

The branching order is an important decision.
When setting the value of a variable to either zero or
one, better feasible solutions are likely if the variable
is set to its “correct” value, that is, its value in the
optimal solution. This is of particular importance in
a depth-first traversal of the branch-and-bound tree,
where variables considered early in the branching
order retain their values for a long time. Hence, it is
important to branch first on those variables with val-
ues that can be speculated with greater confidence.
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In particular, the frequency with which the value of
each y-variable is 1 in a feasible solution to the whole
problem is recorded in the Lagrangian phase. From
the frequency of the y-variables we derive the fre-
quency of the z-variables to determine the branching
order. Recall that the subproblems are solved in each
iteration, each time for a different set of Lagrange
multipliers; therefore, a large number of y-variable
solutions are used in this statistic.

At each node, an attempt is made to find a
good feasible solution using the randomized sav-
ings heuristic described in the appendix. A lower
bound for each node is obtained by solving two sub-
problems similar to subproblems (5) and (7) used in
the Lagrangian, except that additional constraints are
imposed by the fixed z-variables. We introduce addi-
tional notation for these subproblems. Let L, be the
set of all pairs of indices (i, s) that have been fixed at
the current node by assignments of z{ =1 (including
those assignments at preceding nodes in the depth-
first traversal of the branch-and-bound tree). Simi-
larly, let L, be the set of pairs of indices (i, s) fixed by
assignments of z; =0.

The y-subproblem at a given node of the tree is

min} 0 (Y'1 — wa)y;, (8a)
seS keKieN
subject to
Y2 Yyizfi VieN (8b)
seS keK
Y3y <1 VieN (8c)
seS keK
XY (Bw)ayy<C VkeK;uel (8d)
seSieN
Yyi=z Y(i,s)eLUL, (8e)
keK
v, €{0,1} VieN;kekK;seS. (8f)

Constraints (8b), (8c), (8d), and (8f) are identical to
those in (5). Constraints (8e) are added for all (i, s)
combinations whose z-value is fixed.

The x-subproblem at a given node of the tree is

min) > Y ¥ Xk (9a)

keKuel (i, j)eA
subject to

Y. xp= ) xj VieNU{0} keK;uel (%b)

jeNuU{0} jeNU{0}

Zx;.‘jk§|Q|—1 VOQCN;; keK;uel (9¢)
i,jeQ

Z Z xl?‘jkzasuzf. V(i,s)eL,, uel (9d)
keK jeNU{0}

xi €10,1} V(i j)eA; keK; uel. (%e)

Constraints (9b) and (9¢c) are the flow-balance and
subtour elimination constraints, respectively. Con-
straints (9d) ensure that at least one vehicle is routed
to node i, if i has a fixed schedule choice s, for every
unique delivery day u such that a,, = 1. This con-
straint will never result in choosing more than one
vehicle because we are minimizing (9a). Note that this
formulation decomposes by u, but not by k.

The following lemmas show that the sum of the
objective values of subproblems (8) and (9) constitutes
a lower bound at the node.

LeEMmMA 2. Given the fixed z values at a given node in
the branch-and-bound tree, the solution to (9a)-(9e) is a
lower bound on the routing cost

22 2 Yy

keKuel (i, j)eA

corresponding to the optimal solution of (3) with additional
constraints on the x and y values imposed by the fixed z
values.

Proor. Consider formulation (3) with additional
constraints fixing x and y to match the fixed z values.
Constraints equivalent to (3b)-(3d) and (3h) do not
appear in (9a)—(9); and constraints (9b), (9¢), and (9e)
are identical to (3f), (3g), and (3i), respectively. There-
fore, it remains to show that constraints (9d) are relax-
ations of (3e). Recall that constraints (3e) are

3 x;]t,k:zusuyfk VieN; keK; uel.
jeNU{0} seS

Weaker constraints are derived by summing over all
vehicles:

>y x;]%kZZasunyk VieN; uel.

keK jeNU{0} seS keK

Using the definition of z{ =}, v;,, we have

Y D> xp=) a,z YieN;uel.

keK jeNU{0} seS

Equivalently, we can exclude from the summation on
the right-hand side any schedule s for which z; ¢ L;,
because minimizing (3) will set to 1 only those x val-
ues that are forced to 1 by (3e). We rewrite the con-
straints as follows:

Z Z xl]k_

keK jeNU{0}

VieN; uel.

Z as”ZlS»

seS:i(i, s)ely

Because only one schedule can be chosen for a node,
we have

Z Z X;;k=ﬂ5MZ?

keK jeNU{0}

V(i,s)eL,; uel.

Constraints (9d) are relaxations of the above, which
have been shown to be a relaxation of (3e). Hence, all
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constraints of (3) are either equivalent or relaxed in
(9a)—(9e), and the objective function is a lower bound
on the optimal routing cost. [

Given the fixed z values, it is possible to strengthen
the lower bound obtained from (9a)-(9e) with addi-
tional cuts. Let L§ be a subset of L, containing (i, s)
pairs such that z{ =0 for some s € S\{|S|} and vis-
iting on schedule |S| has been ruled out for these
nodes. Thus, node i is excluded from the correspond-
ing unique delivery days. Note by definition that
(i, |S]) can never be in L}. Formally, we have

Lo ={(i,5) € Ly: s € S\{[S}, iz {(i, |S]) € Lo}}-

Constraints similar to (9d) set to 0 specific routing
variables corresponding to unique delivery days that
have been ruled out by fixed z values as follows:

Z Z xib;kfasuzzs'

keK jeNU{0}
V(i,s)eLy, ue{u: (i,s)eL;, a, =1}.  (9f)

These cuts are weaker than constraints (3e). This can
be demonstrated in a manner similar to the discussion
of constraints (9d) in the proof of Lemma 2.

The following constraints ensure that all nodes are
included in some route:

DD Xjp>1 VieN. (9g)

uel keK jeNU(0}

Again, (9g) is weaker than (3e) because it is equivalent
to the constraints obtained by summing (3e) over all
vehicles k and delivery days u. With (9g) added, the
problem can no longer be decomposed by unique
delivery day u e U.

Constraints can be added to guide the routing sub-
problem toward capacity-feasible routes:

> Y Blwxly—CY xh, <0 VkeK,uel, (9h)

ieN jeNU{0} jeN

where 8" is a demand accumulation factor used to
adjust the demand accumulated at each served node
according to the chosen level of service. We define

B ifa, =1, and either z; =1, s€ S
B = or 21 =0, s € S\{|S]}

B°! otherwise.

If a particular node i has been assigned to a specific
schedule (i.e., z{ =1), then the demand accumulation
adjustment 3° corresponding to the schedule s is used.
Note from (2) that for a given delivery day u, only
one s can satisfy a,, =1, s € S\{|S|}. Otherwise, the
least possible accumulation, corresponding to |S|, is
used. Constraints (9h) become stronger with greater

depth of traversal down the tree, ensuring capacity-
feasible routes at the leaves. Constraints (9h) ensure
that the depot is included in all routes, even if all
subtour elimination constraints are not added.

LeEmmMA 3. Given the fixed z values at a given node in
the branch-and-bound tree, the solution to (9a)-(%h) is a
lower bound on the routing cost

200 > Y

keKuel (i, j)eA

corresponding to the optimal solution of (3) with additional
constraints on the x and y values imposed by the fixed z
values.

ProoF. The constraints (9f)—(9h) have been shown
to be either equivalent to or weaker than con-
straints (3e). Hence, the additionally constrained
problem is still a lower bound. O

If the sum of the objective values of (8) and (9) is
larger than the best known upper bound, the entire
subtree emanating from that node is truncated. As
in the Lagrangian phase, the assignment subprob-
lem is solved optimally, while the routing subprob-
lem may terminate with a lower bound rather than an
optimal solution. Note, however, that further down
the branch-and-bound tree, more z-variables become
fixed, and both subproblems become more restricted.

When reaching a node that is a leaf of the tree,
the time limit is removed to find the optimal solution
of the routing subproblem. This is necessary to guar-
antee the optimality of the resulting solution at the
end of branch and bound. Fortunately, at the leaf of
the tree all z-variables are fixed; therefore, the routing
subproblem with the added set of aggregated con-
straints includes many cuts. Hence, fewer additional
cuts must be added after initially solving the relaxed
subproblem.

2.5. A Related Heuristic Approach

For small and medium problem instances, the com-
bination of the Lagrangian and branch-and-bound
algorithms yields an optimal solution in a reason-
able amount of time, as shown in §3. However, the
PVRP-SC is a complex combinatorial problem that is
a generalization of several other NP-hard problems
such as the TSP and the VRP. It is not realistic to
expect that arbitrarily large instances may be solved
to optimality. In this section, the exact approach is
modified to provide good heuristic solutions that
apply most of the useful elements described in the
previous subsections.

As expected, the routing subproblems are the major
bottlenecks in the solution method. To reduce solution
times, routing subproblems in the Lagrangian phase
are not necessarily solved to optimality. The magni-
tude of deviation from optimality can be controlled
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through the “time budget” stopping rule discussed
in §2.2. With a larger budget, more cuts are likely to
be found that could improve the solution. When per-
forming the upper-bound heuristic to find a feasible
solution, it may be desirable to limit the time spent on
each iteration. This must be balanced with the result-
ing reduction in solution quality. Similar considera-
tions arise in the branch-and-bound phase, in which
both the relaxation and the heuristic are performed.
The time spent at the leaves could be restricted too.
The total solution time may be controlled by limit-
ing the use of the upper-bound heuristic to a subset
of Lagrangian iterations and/or branch-and-bound
nodes.

The extent to which each of the above control
parameters may be used is an algorithmic design
issue. These choices depend on the problem instance
size and the amount of time available to search for a
solution. Roughly speaking, the more time spent on
finding good feasible solutions, the better the quality
of the solution will be. However, it is also important
to develop a good understanding of where it is most
useful to spend the available time. In §3.1, we illus-
trate the effect of controlling the amount of time per
iteration on solution quality.

Finally, we may choose to terminate the branch-
and-bound algorithm with a solution within some
0 percentage of the optimal value. In this case, a node
is fathomed if the lower bound at the node is greater
than (1 — 6) of the upper bound.

3. Numerical Study
In this section, we examine the impact of service
choice on period vehicle routing problems and the
effectiveness and robustness of the solution method
for the PVRP-SC. Two data sets are included in this
study. The first set, described in §3.1, is drawn from
the application that motivated the development of the
PVRP-SC and the second set, described in §3.2, is
taken from the PVRP literature. Section 3.3 presents
insights on the impact of service choice on operations.
The solution algorithm is implemented using C
with the CPLEX Callable Library Interface and the
CPLEX 8.1 solver, running on a Sun Fire v250
1.28-GHz UltraSPARC IIIi computer with two proces-
sors. The subproblems are modeled as described in §2.
For larger problem instances, constraints (9g) are not
included due to computational limitations.

3.1. Motivating Problem

The North Suburban Library System (NSLS) is a state-
funded library system that delivers interlibrary loan
items (books, video cassettes, etc.) to its member
libraries in the suburbs north of Chicago. The 50 pub-
lic libraries served by NSLS account for 89% of the
total demand. These libraries, along with information

4 demand > 150 items
| B 75 <demand < 150
N demand < 75 items
™ |
n |
* |
|
*
[ ]
* |
- *
" Lake Michigan
[ | m N
|
u 80 Depot .
*
| * |
[ ] +n
¢*

Figure 2 Geographic Distribution of Libraries in NSLS Service

on their daily volume of loan items, are shown in
Figure 2. Four vans operate from a sorting facility
(the depot) and visit the libraries to pick up outgo-
ing items and deliver incoming items. At the end of
the work day, the items that have been picked up are
sorted at the depot for delivery to their destination
libraries when they are next visited. NSLS would like
to provide the greatest possible visit frequency to its
members. However, due to budgetary restrictions and
rising demand for service from libraries, NSLS may
reduce frequencies and design routes in a way that
takes into account routing efficiency as well as the
demand of the libraries.

3.1.1. Solution Method Performance. We exam-
ine the sensitivity of the solution method to the struc-
ture of problem instances. We construct subsets of
nodes randomly drawn from the 50 public libraries,
ranging in size from 12 to 44 nodes. Each subset is
tested with three and four vehicles, and capacities at
an additional 10%, 20%, 30%, and 40% above the base
capacity, which is adjusted by the number of nodes.

Figure 3 depicts the three options for imple-
mentation of the solution method: terminating after
Lagrangian relaxation (LR); continuing with exact
branch and bound (B&B); and continuing with heuris-
tic branch and bound. Lagrangian relaxation finishes
with a gap, G,, between the feasible solution, Z'R,
and the final lower bound, LB:R. In the exact varia-
tion, branch and bound runs until an optimal solu-
tion is found; in the heuristic variation, branch and
bound runs until a solution within 6% of the optimal
is found. While it is preferable to use one of these two
options, this may not be realistic for large instances.
We use small- to medium-size instances that can be
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Lagrangian relaxation phase
« Feasible solution, ZX%

« Lower bound, LB-F

A
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Figure 3 Solution Approach

solved to optimality (or d-optimality) to estimate the
gap that can be expected from the Lagrangian solu-
tion for larger instances. If the exact solution is avail-
able, the quality of Z'® is assessed relative to Z*
with G3. If a solution with 6-optimality is available,
the quality of Z'* is assessed relative to a lower
bound on the optimal solution, LB? = Z°/(1 + ), with
a gap GJ.

The performance metrics G; and Gj are used to
analyze the Lagrangian solutions for the NSLS test
cases, shown in Table 1. Each test case is represented
by one cell. The top value in the cell is G, and the
bottom value is G5. Cells without G} values indicate
that branch and bound did not terminate within the
eight-hour limit.

Three clear trends emerge when evaluating the
quality of Z'R with G,. First, the average gap usu-
ally increases with the number of nodes; with both
three and four vehicles, the value of G, for 44 nodes
is two to three times the value for 12 nodes. With
more nodes, the routing subproblems (7) are more dif-
ficult to solve within the time budget, which results
in weaker lower bounds. If the solutions to (7) con-
tain subtours, corresponding upper bounds cannot be
obtained, and feasible solutions do not improve. Sec-
ond, the average gap decreases with additional capac-
ity. More capacity increases the likelihood of finding
feasible solutions to update upper bounds. Finally, the
average gap decreases with the number of vehicles.
The number of vehicles impacts the flexibility of the
system to service the nodes (the formulation of the
PVRP-SC does not include a fixed vehicle cost).

These trends are less clear when evaluating the
quality of Z' relative to the optimal solution with the
values of Gj. This is to be expected because the above
trends impact both upper and lower bounds in the
LR phase. In general, the LR solution is within 10%
of the optimal solution with relatively large variations
among the instances. The number of nodes impacts
which test cases can be solved to optimality. The
exact branch-and-bound method cannot be completed

Heuristic variation

Gap measures

Table 1 NSLS Data Set Results: Exact Solution Method
Additional capacity (%)
[N 10 20 30 40 Averages (%)
(a) Problem instances with four vehicles
12 13.8 13.8 8.1 9.6 1.3
3.6 4.4 4.8 7.3 5.0
16 15.7 15.6 11.8 10.7 135
2.3 14.8 11.8 1.9 7.7
20 22.2 22.1 16.0 14.7 18.7
3.6 6.5 3.2 14.7 7.0
28 29.3 28.5 19.9 15.9 234
22.7 2.8 5.4 8.8 9.9
36 26.4 23.9 16.4 16.3 20.7
7.0 204 5.9 11.4 11.2
40 34.6 32.7 23.0 15.7 26.5
16.4 5.9 7.8 3.6 8.4
44 36.4 36.1 30.8 23.2 31.6
21.2 — 11.8 5.3 12.8
Averages 25.5 24.7 18.0 15.2 20.8
10.9 9.2 7.3 7.6 8.7
(b) Problem instances with three vehicles
12 17.9 16.9 11.2 10.7 14.2
9.1 2.6 10.2 7.3 7.3
16 19.3 18.0 12.5 10.7 15.1
15.7 49 48 10.1 8.9
20 26.7 25.0 16.3 19.5 21.9
59 9.4 14.7 2.7 8.2
28 35.1 30.5 21.8 24.4 27.9
27.9 14.3 5.3 4.0 12.9
36 314 314 201 17.9 25.2
10.1 24.0 2.3 9.8 11.6
40 45.6 442 26.6 19.4 33.9
— — 15.2 18.4 16.8
44 39.3 39.2 324 29.8 35.2
— — — 4.7 4.7
Averages 30.8 29.3 20.1 18.9 24.8
13.8 11.0 8.8 8.2 104

Note. Test cases without values for G; could not be solved with the exact
branch and bound.

Legend. G, = (Z'F — LB'R)/LBLF. G; = (Z'F — Z*) 2.
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Table 2 NSLS Data Set Results: Heuristic Solution
Method
Additional capacity (%)
|| 10 20 30 40
(a) Problem instances with four vehicles
44 7.2
(b) Problem instances with three vehicles
40 22.0 10.6
44 15.9 14.4 16.0

Legend. G = (Z, — LB?)/LB®. LB* = Z°/(1 + §).

within eight hours for some cases over 36 nodes. For
these cases, Table 2 presents the values of G5 with
0 =0.02. The other cases are not shown, although all
cases are solved with the heuristic method as well.
By definition, the difference between Z* and Z° is
bounded by 2%, and the average difference observed
over all test cases is 1.8%. The average difference
between G; and GJ for the cases not shown is 0.2%,
and never more than 1%. Table 2 indicates that for
larger problem instances, the Lagrangian solutions
may be as much as 22% from optimality. As discussed
next, the advantage of the LR phase is its speed.

Figure 4 presents the solution times for the LR
phase and the exact and heuristic B&B phases. Each
data point represents the average of all test cases of
that size. Solution times are also presented for the
B&B phase without running the LR phase first. In
this case, we begin with the initial upper bound, and
branch in increasing order of variable indices. Results
could not be obtained with B&B within the time limit
for test cases of 28 or more nodes without the LR
phase. With the two-phase approach, the LR phase
significantly reduces the gap before performing B&B.
Further, the branching scheme in B&B benefits from
results of the LR phase. These factors explain the dra-
matic differences in solution times.

--- LR phase
30,000 1| —a— B&B phase X
—e— B&B phase with
25.000 2% tolerance
—&— B&B phase without LR
« 20,000
ke
=
S
151
2 15,000
-]
Ay
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4 8 12 16 20 24 28 32 36 40 44 48
Number of nodes

Figure 4 Comparison of Time Spent (Average Over Multiple Test

Cases)

As expected, using the heuristic version of the B&B
phase requires less computational time than the exact
version and, by definition, the corresponding differ-
ence in the solution is bounded by 2%. This variation
is capable of solving test cases with more nodes than
the exact approach.

Recall that solution times for the routing subprob-
lems in the LR and B&B phases can be controlled by a
time budget. We impose a maximum limit of 300 CPU
seconds for each subproblem in both phases. This
limit is determined empirically to allow a majority of
the subproblem iterations to run to completion, while
terminating more difficult subproblem iterations at
the end of the time limit. As a result, the LR and B&B
phases finish in a reasonable amount of total time.
With a budget of 300 CPU seconds, for the larger test
cases (>40 node), 20% of the routing subproblems are
truncated by the time budget before all necessary sub-
tour elimination cuts are added and the upper-bound
heuristic cannot be applied at those iterations. With
a 50 CPU-second time budget, 76% of the routing
subproblems for these test cases are truncated. As a
result, the average remaining gaps after LR rise by
about 14%. With a 500 CPU-second time budget, 20%
of the routing subproblems are truncated, which is the
same fraction obtained with 300 CPU-seconds. How-
ever, the average solution time rises by a minimum of
36% for all test cases.

3.1.2. Impact of Service Choice. Currently, NSLS
serves the 50 public libraries daily, including libraries
in remote regions with low demand, as shown in
Figure 2. Libraries are allocated to routes in an
ad hoc manner as demands increase and driver hours
change. The sequencing of visits within a route is left
to the discretion of the driver. We compare the fol-
lowing three delivery options relative to the current
operations:

1. Maintain daily visits to all libraries and optimize
routes,

2. Reduce visit frequency based on demand vol-
umes and optimize routes, and

3. Determine visit frequency based on demand,
routing efficiency, and service benefit, and optimize
routes.

Option 1 is modeled as a VRP, whose solution is
repeated every day of the week. For Options 2 and 3,
libraries may be served by one of the following sched-
ules: {(Mon, Wed, Fri); (Tue, Thr); daily}. This set sat-
isfies the condition of Lemma 1. The visit frequency
assigned to each library for Option 2 (and the min-
imum frequency for Option 3) is based on daily
demand, to ensure that nodes with larger demands
receive more frequent service. Option 2 is modeled
as a PVRP; Option 3 is modeled as a PVRP-SC. The
service benefit values, o°, s € S, provide incentive
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Table 3 Solution Results for NSLS Delivery Options

Option Routing cost  Service benefit  Total objective
0. Current operations 6,315 —1,642 4,673

1. Optimized daily service 5,849 —1,642 4,208

2. Reduced service PVRP 5,751 —1,243 4,507

3. PVRP-SC* 5,425 —1,492 3,933

*Solution obtained with & = 0.02; solution is within 2% of the optimal
solution.

to increase frequency while balancing routing costs:
a'=0.15, o> =0.1, and o® =0.2.

Table 3 displays the routing costs, service bene-
fit, and total costs for the three options and the cur-
rent operations. Comparing Option 1 to the current
operations, there is an initial 7% reduction in routing
costs from optimizing route configurations. Routing
costs decrease further as the daily visitation require-
ments are relaxed and more flexibility is introduced.
However, comparing Options 1 and 2, routing costs
decrease by an additional 2%, but there is a 24% loss
in service benefit, leading to a higher total objective.
This shows that the traditional PVRP may not provide
sufficient flexibility to compensate for the reduced
service benefit. This is remedied with the PVRP-SC.
Allowing flexibility in visit frequency leads to a 16%
improvement when comparing Option 3 with the cur-
rent operations with respect to total costs, and a 7%
improvement over Option 1. With the PVRP-SC, the
loss in service benefit is smaller, and is offset by lower
routing costs. The routing cost of the PVRP-SC solu-
tion is 14% less than that of the base case and 7%
less than that of the VRP solution. For a budget-
constrained agency, this improvement is quite signif-
icant.

3.2. Test Cases from the Literature

We apply service choice to a 50-node PVRP test case
from Christofides and Beasley (1984). Test case 50b,
unlike other 50-node cases in that reference, includes
demand-dependent preset frequencies f; =1 for w; <
10 cwt (500 kgs); f; =2 for 10 < w; <25; and f; =3 for
w; > 25. The period is three days, and there are three
vehicles each with capacity of 8,000 kgs. Figure 5
shows the geographic distribution of the nodes. Note
that nodes appear to be uniformly distributed in a
square.

Three scenarios are derived from 50b to test the
impact of service choice. Clearly introducing service
choice can improve results, yet the magnitude of the
savings is less clear. Case I is the standard PVRP;
Case II is the PVRP-SC when service benefit is not
considered in the objective, but changes in visit fre-
quency are allowed to increase routing efficiency; and
Case III is the PVRP-SC with service benefit consid-
ered. The preset frequencies are treated as minimum
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50 o o)
©)
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[ J O Visit frequency
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Figure 5 Geographic Distribution of Libraries in Christofides and

Beasley (1984) 50b

frequencies in the PVRP-SC. Case II shows the impact
of service choice on routing efficiency, and Case III
shows the impact on a balance of routing efficiency
and service level.

Schedules are limited to {(Mon, Wed); (Tue); (Mon,
Tue, Wed)}. Note that this represents a smaller set
of schedules than allowed in 50b, which is origi-
nally solved over five days. The demand accumula-
tion adjustments are: B' =2, B> =3, and p*®=1. The
service frequencies are: y! =2, y* =1, and y* = 3. The
node stopping costs are set to 0. The service-level ben-
efit is set to O for all schedules in Cases I and II. In
Case ITI, o' =0.2, o> =0.1, and o® =0.3.

The value of the objective function for Case I is
an upper bound on the objective function for Case II
because the visit constraints are relaxed in Case IL
Similarly, the value of the routing component of the
optimal solution for Case II is a lower bound for
the optimal solution for Case III. These bounds can
be used in the solution method to improve solution
times. The results in Table 4 are obtained with the
heuristic variation with 6 = 0.02. The service benefit,
although not part of the objective function for Cases I
and II, is added back in Table 4 for comparison.

The results show that in Case II nodes are served
with higher frequency, and this flexibility leads to a
slight improvement in routing cost. A much larger
change in the total objective value is observed in

Table 4 Test Case Results for 50b

Instance Routing cost Service benefit Total objective
Case | 998.8 —2,765 —1,766
Case Il 972.7 —2,803 -1,830
Case IlI* 1,326.9 —4,065 —2,738

*Stopped with less than 640 nodes remaining (out of 2') due to compu-
tational constraints.
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Case III when the service term is given a posi-
tive weight. Compared to Case I, the total objective
improves by 55%, with a corresponding rise of 32%
in the routing cost.

3.3. Discussion

An analysis of the results from the previous sec-
tions leads to general insights regarding the benefits
of service choice in the PVRP-SC. As mentioned in
the introduction, adding service choice can improve
overall system performance due to increased rout-
ing efficiency and/or raised service levels for some
customers. The test cases developed from NSLS and
Christofides and Beasley (1984) clearly show signif-
icant improvement in overall system performance
when service benefit is included. The contribution of
routing cost savings to this overall improvement is
less clear. With NSLS, improvements in both rout-
ing and service are observed; however, with 50b, the
improvement comes strictly from service, and routing
costs increase. To explore this issue further, we use
the simple example in Figure 6.

In the example, the depot and three customer nodes
are located at one-mile intervals along a road seg-
ment. We ignore the service benefit and stopping
costs, and focus on the routing cost savings from mov-
ing Node B (with one-day minimum service) to a
two-day schedule. The solution in the figure shows
how the relative position of the nodes affects rout-
ing savings due to service choice. In Figure 6(a),
Node C, located furthest from the depot, has a three-
day visit requirement. The total roundtrip distance
of six miles must be covered on all days. Hence, we
are indifferent between serving Node B on Tuesday
or Monday/Wednesday. In this case, introducing ser-
vice choice does not impact routing cost. Alterna-
tively, in Figure 6(b), Node A, located closest to the
depot, has a three-day visit requirement. In this case,
adding service choice can reduce routing costs. We
choose to serve Node B on a Monday/Wednesday

route because this route passes by Node B on the way
to Node C.

This example shows that the geographic distribu-
tion of the highest minimum frequency nodes impacts
the extent to which service choice can reduce the
travel distances between remote nodes and the depot.
In particular, the potential for savings is greater when
high-frequency nodes are closer to the depot than
lower-frequency nodes. These observations can be
extended to two-dimensional cases with many nodes.
If there are a large number of randomly scattered
nodes of different minimum frequencies, it is more
likely that some highest minimum-frequency nodes
will be located far from the depot. Thus, service
choice may not reduce routing costs significantly, as
with the Christofides and Beasley (1984) nodes. How-
ever, if nodes are distributed according to some pat-
tern (such as highest minimum frequencies closer to
the depot and lower minimum frequencies spread
out), then service choice may reduce routing costs sig-
nificantly. The NSLS nodes exhibit a mixture of these
patterns. The highest minimum-frequency nodes are
scattered randomly in the west region, clustered in
the southeast region close to the depot (and nodes of
other minimum frequencies are further), and nonex-
istent in the northeast region. Savings are achieved in
the last two regions.

With the service benefit included, frequency flexi-
bility improves the solutions in the examples in Fig-
ure 6(a) and (b), as higher benefits can be obtained
by moving Node B to the two-day service level or
by moving all nodes to the three-day service level.
If there are significant stopping costs, then the term
(y*1; — w;a) combined with routing costs determines
if moves to greater service levels are desirable.

Because the PVRP-SC relaxes the frequency con-
straint of the PVRP, the cost of the PVRP-SC solution
will always be lower than or equal to the cost of the
PVRP solution. We can make the following observa-
tions about the cost differences.

Visit frequency @ 3 days per week

Vehicle routes

--- Monday, Wednesday —— Tuesday

© 2daysperweek (O 1 day per week

PVRP solution: 26+ 6 =18

PVRP-SC solution: 26+ 6 = 18

(b) High service node closest to depot

Figure 6

Impact of Node Distribution on Routing Efficiency Due to Service Choice
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¢ If stopping costs and service benefits are ignored
in the objective function, then the routing cost of the
PVRP-SC solution will always be lower than or equal
to the routing cost of the PVRP solution. The mag-
nitude of the savings for any given problem instance
depends on the geographic dispersion of nodes (in
particular, nodes at the highest minimum frequency).

e If service benefit is considered, the routing cost
may rise in the PVRP-SC if the increase is offset by an
increase in service benefit. It is also possible for both
routing costs and service benefit to improve.

* The introduction of stopping costs limits the
routing cost savings. With higher stopping costs,
increased frequencies above the minima may not be
desirable.

4. Conclusions and Future Research
This paper introduces the period vehicle routing
problem with service choice (PVRP-SC), which allows
for service choice and accounts for the benefit of
improved service. We model and formulate the PVRP-
SC and develop an exact solution method with heuris-
tic variations. The exact method presented here can
serve as a benchmark for future heuristic methods.
Computational tests on the motivating problem show
improvements in routing efficiencies and in the over-
all performance of the system as a result of introduc-
ing service choice.

As this is the first presentation of the PVRP-SC, we
envision several directions for future research, includ-
ing generalizations of assumptions required for the
formulation and exact solution method for instances
of reasonable size. Heuristic solution methods may
be used to solve problems resulting from the relax-
ation of these assumptions. Because restrictions such
as disjoint schedules and conservative estimates of
demand accumulation reduce the size of the feasi-
ble region, it may be possible to achieve better solu-
tion values with heuristics that relax these restrictions.
For example, §° is set according to the maximum
number of days between visits to ensure feasibility.
For a Tuesday-Thursday schedule, 8° = 3 because the
maximum accumulation of three days occurs between
Thursday and Tuesday, while the accumulation from
Tuesday to Thursday is only two days. In the case
of disjoint schedules and their union, and given the
current definition of y;, this conservative approxima-
tion of f° is justified because a vehicle performs the
same route each day within a disjoint schedule; hence,
no solutions are precluded. However, in a more gen-
eral case with overlapping schedules, nodes may be
visited by different vehicles. An accumulation param-
eter defined by schedule and day in this case, 8%,
would represent accumulation precisely and allow for
a richer set of solutions.

In some practical applications of the PVRP-SC, it
may be desirable to set route length constraints, for
example, for driver shifts. Route length is determined
by two factors—travel time, which is a function of
the x variables, and stopping cost, which is a func-
tion of the y variables. A route-length constraint adds
a second constraint linking the x and y variables, and
can be written as

> t,.jxl?’jk+ZZasu7iSyfk§F keK; uel.
j)eA

((H) seSieN

To apply Lagrangian relaxation to decompose the
problem, both linking constraints would need to be
relaxed.
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Appendix

Because the routing subproblem is time consuming to solve
to optimality, a heuristic is used to solve the routing sub-
problem. A similar heuristic, proposed by Daskin (2004), is
based on a randomization of the Clarke and Wright (1964)
algorithm and modified to solve the TSP. Briefly, the Clarke-
Wright algorithm has the following steps:

Step 1. Begin by putting each node into its own tour.

Step 2. Compute a savings list S = {s;;, Vi, j € N} where
the savings obtained by merging the routes between nodes i
and j is s;; = tj +tjp — t;;. Sort the savings list in descending
order.

Step 3. Select the best saving s; from the list. Merge the
routes, removing from the solution arcs (i, 0) and (0, j) and
adding arc (7, j). Update the savings list, S < S\{s;}.

Step 4. Repeat Step 3 until all nodes are contained within
one route.

To escape the greedy nature of the heuristic, random-
ization is introduced in Step 3. Instead of picking the best
possible saving, we pick randomly from among the top ¢
savings in the list. The rest of the algorithm proceeds
unchanged. The whole algorithm is repeated a number of
times and the best set of routes obtained is used. A simi-
lar heuristic has been used to solve the IRP with satellite
facilities by Bard et al. (1998).

In our implementation of randomized Clarke-Wright, the
algorithm is repeated for 300 iterations (based on the total
amount of time allocated to find a heuristic VRP solution)
and we use ¢ = 5. At the end of each iteration, we also
perform 2-opt and Or-opt on each route obtained.
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