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Transshipment, the sharing of inventory among parties at the same echelon level of a supply chain, can be used to reduce
costs. The effectiveness of transshipment is in part determined by the configuration of the transshipment network. We

introduce chain configurations in transshipment settings, where every party is linked in one connected loop. Under sim-
plifying assumptions we show analytically that the chain configuration is superior to configurations suggested in the
literature. In addition, we demonstrate the efficiency and robustness of chain configurations for more general scenarios and
provide managerial insights regarding preferred configurations for different problem parameters.
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1. Introduction

According to the 15th Annual State of Logistics Report
(Council of Logistics Management 2004), logistic costs
in the United States have risen, from US$910 billion in
2002 to US$936 billion in 2003. Inventory costs account
for a third of this total. In the report, ‘‘the ability to
respond faster to changing customer needs’’ and ‘‘the
flexibility to adjust manufacturing and delivery cy-
cles’’ are identified as keys to success in this
competitive environment. Even industries with stable
demand patterns spend millions of dollars each year
coping with uncertainty in customer demand and op-
erating costs. Uncertainty can lead to major supply
chain inefficiencies, causing lost revenue, poor cus-
tomer service, high inventory levels, and unrealized
profits.

Inventory transshipment is a promising strategy to
provide operational flexibility to mitigate the effects of
demand uncertainty. Transshipment is the sharing of
inventory among locations at the same echelon level
of a supply chain. For example, in Figure 1, four re-
tailers are supplied from one warehouse. Rather
than relying solely on their own inventory or costly
emergency replenishment from the warehouse, retail-
ers can collaborate to address demand uncertainty.
In cases where safety stock is held, transshipment
achieves the benefits of risk pooling to meet uncertain
demand while reducing inventory levels at individual
locations, see Dong and Rudi (2004). Companies using
transshipments include Footlocker, Macy’s, and a

group of chip manufacturers (NEC, Toshiba) sharing
a common supplier, ASML (E. Yücesan, private
communication).

Tagaras (1999) and Herer et al. (2002) consider
restrictions on transshipment network connectivity
when a complete network (i.e., locations may trans-
ship directly to all other locations) is not possible.
They study networks where locations are divided into
groups and transshipment is allowed only within
groups. In this paper, we term these networks as group
configurations. Figure 2(a) is an example of a group
configuration with group sizes of two and Figure 2(b)
shows a group configuration with group sizes of
three. A complete network is a group configuration
where all locations belong to one group. Tagaras
(1999) and Herer et al. (2002) show that, while group
configurations cannot achieve all of the savings of a
complete network, the savings are considerable, and
the number of links is smaller. Establishing a link be-
tween locations requires investments in bidirectional
communication channels, physical distribution sys-
tems, and financial and administrative arrangements.
Transshipment networks without direct links between
all locations tend to consolidate transshipment flows
on a few routes, which can reduce the demand for
communication channels and transportation (vehicles
and drivers), and lower the overall complexity of a
system. This is particularly important in the case of
outsourced transportation between locations that is
negotiated in advance or in the case of multiple prod-
ucts that share common transshipment methods.
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In a chain configuration, every location is connected
to two locations forming a continuous loop. In an
unidirectional chain network, see Figure 2(c), a location
can transship to one neighboring location and receive
from another. In a bidirectional chain network, see Fig-
ure 2(d), locations can transship and receive from both
neighboring locations. In this paper, we demonstrate
the cost efficiency of the chain configurations both
analytically and numerically. Under simplifying as-
sumptions, we prove that the chain configuration is
more cost efficient than certain group configurations
that appear in the literature. Through an extensive
numerical study, we demonstrate the efficiency
and robustness of the chain configuration in more
general settings, as compared with other possible
configurations.

The paper is organized as follows. In section 2, we
present relevant literature on transshipment problems
and chain configurations in various applications. In
section 3, we describe operational and strategic trans-
shipment problems. In section 4, we analytically
compare the chain with group configurations and, in
section 5, we present numerical results comparing the
chain with other configurations in more general set-
tings. We conclude with a discussion of research
extensions in section 6.

2. Literature Review
The transshipment literature has been focused on oper-
ational decisions for a fixed network design: the
transshipment amount between locations and the replen-
ishment amount from the supplier at each location. Most
authors consider two locations, see Tagaras (1989),
Tagaras and Cohen (1992), and Tagaras and Vlachos
(2002); or locations that are identical in cost parameters,
see Krishnan and Rao (1965) and Tagaras (1999). Robin-
son (1990) and more recently Herer et al. (2006) consider
locations that vary by demand distributions and cost pa-
rameters. Tagaras and Cohen (1992) and Tagaras and
Vlachos (2002) allow the replenishment lead time to be
larger than one; in others, transshipment lead time is
negligible and replenishment lead time is one period.

Research on transshipment networks other than
group configurations is more recent. Herer et al. (2006)
compare five transshipment configurations that differ in
their transshipment capabilities (number and cost of
links) and demonstrate the value of transshipments in
each. In addition, the authors construct a sample-path-
based optimization procedure to calculate retailers’ op-
timal order quantities. In parallel to our work, Yu et al.
(2005) consider a transshipment network with one sup-
plier and three retailers, and study six network design
possibilities, which they refer to as operational flexibility
levels. They apply the newsvendor network model of
Van Mieghem and Rudi (2002) to find the retailers’ op-
timal order quantities for any given flexibility level and
analyze the interaction between optimizing order quan-
tities and increasing operational flexibility.

The transshipment problem is closely related to
multi-product inventory problems with substitution,
where demand for a certain product may be satisfied
from inventory of another product. As in the trans-
shipment literature, early research on substitutions
considers two products only. Research on multi-prod-
ucts includes Bassok et al. (1999) and Rao et al. (2004)
for the single-period problem and Shumsky and
Zhang (2009) for the multi-period problem. While
the above work and most other studies consider only
one-way (downward) substitution, Pasternack and

Figure 1 Supply Chain With Transshipment

Figure 2 Group and Chain Configurations: (a) Groups of Two, (b) Groups of Three, (c) Unidirectional Chain, and (d) Bidirectional Chain
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Drezner (1991) consider the case of a two-way substi-
tution. Indeed, the way in which products may be
substituted for one another is analogous to the way in
which transshipments may be performed in a trans-
shipment problem. However, none of the above
papers, or related papers on substitution, deal with
this substitution design question. Rather, they assume
a certain design configuration (e.g., downward sub-
stitution) and solve the resulting operational problem
of how much to replenish and how to allocate inven-
tory to demanded items. The focus and contribution
of our paper, on the other hand, is on the design
problem, namely, finding network configurations for
transshipments, which enable its effective operation.

Several network configurations have been consid-
ered in the manufacturing and service operations
literature. The chain configuration has been shown to
be an efficient structure in production. Jordan and
Graves (1995) and Graves and Tomlin (2003) show
that, if plants are assigned in a chain-like manner to
produce two types of products, one can achieve most
of the potential benefit of complete flexibility, in which
all plants are able to produce all products. Others such
as Sheikhzadeh et al. (1998), Gurumurthi and Benjaafar
(2004), Hopp et al. (2004), Iravani et al. (2005, 2007a),
Iravani and Krishnamurthy (2007b), Jordan et al. (2004),
and Chou et al. (2007) highlight the properties of the
chain structure in different production and mainte-
nance environments. We present more discussion on
the link between chain configuration in transshipment
and manufacturing settings in section 4.2.

3. Problem and Model Description
We first present the model and assumptions concern-
ing the transshipment and replenishment mechanisms.
We review the operational transshipment problem
from the literature in section 3.1 and introduce the
strategic transshipment network design problem in
section 3.2. Given N retailers, facing stationary random
demand, events occur as follows in each period:

1. Replenishment from the warehouse arrives from
orders made in the previous period; backlogged
demand is satisfied. The inventory level is equal
to the order-up-to level.

2. Demand is observed.
3. Transshipment decisions are made and occur

immediately. Transshipment costs are incurred.
4. Demand is satisfied or backlogged. Holding and

shortage costs are incurred.
5. Inventory level is updated.
6. Replenishment orders are made according to an

order-up-to policy.

We assume that the replenishment lead time from
the warehouse is one time period, and that the ware-

house has sufficient capacity to respond to all orders.
Transshipment lead times are negligible; hence trans-
shipments serve as a quicker, alternative supply if
demand exceeds available inventory. Herer et al.
(2006) prove that an order-up-to replenishment pol-
icy, together with an optimal transshipment policy,
minimizes the expected per period inventory holding,
shortage, and transshipment costs. Using an order-
up-to policy, the system regenerates every period;
therefore, minimizing the expected cost for one period
is equivalent to minimizing the long-run expected costs.

3.1. Existing Work on Operational Transshipment
Problems
The objective of the operational transshipment problem
is to minimize the expected cost per period for a given
network design. The following parameters are used:

N Set of retail locations (also called ‘‘nodes’’),
iAf1, . . ., Ng

K Set of directed transshipment links ði; jÞ 2K,
defined by configuration K � ðN�NÞ

Di Random variable denoting the demand at loca-
tion i 2N in a period

ct Cost of transshipping one unit along one link

cs Cost of one unit of shortage for one period

ch Cost of holding one unit in inventory for one period

The following are decision variables:

Si Order-up-to level at location i 2N

Xij number of items to transship on link ði; jÞ 2K

Ii
1 Net surplus at end of time period (after trans-

shipment) at location i 2N

Ii
� Net shortage at end of time period (after trans-

shipment) at location i 2N

When locations follow an order-up-to policy, the total
replenishment of the system is equal to the total demand
observed. Because variable replenishment costs are the
same across locations, they do not affect the transship-
ment decisions and can be omitted from our model. In
addition, we assume that the fixed costs of replenish-
ment and transshipment are incurred every period.

We first discuss optimizing X, the matrix of Xij, for a
general order-up-to level, and then present an itera-
tive method to find the optimal order-up-to levels. In
each period, for a given order-up-to level vector S and
an observed demand vector d, the following linear
program is solved to determine transshipment flows

zðK;S;dÞ ¼min
X

ct

X
ði;jÞ2K

Xij

þ cs

X
i2N

I�i þ ch

X
i2N

Iþi ;
ð1aÞ
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subject to X
j:ði;jÞ2K

Xij �
X

j:ðj;iÞ2K
Xji þ Iþi � I�i

¼ Si � di 8i 2N;

ð1bÞ

X
j:ði;jÞ2K

Xij � Si 8i 2N; ð1cÞ

Xij � 0 8ði; jÞ 2K; ð1dÞ

Iþi ; I
�
i � 0 8i 2N: ð1eÞ

The objective function (1a) is to minimize the sum of
transshipment costs, shortage costs, and holding costs,
given K, S, and d. Constraints (1b) are for requiring
that demand must be satisfied from inventory and/or
transshipments, or backlogged. Constraints (1c) are for
limiting transshipment amounts by the order-up-to
level. We assume that transshipped units may only tra-
verse one link in a period; however, up to its order-up-
to quantity, node i 2N may both receive units from
location j1 and transship units to location j2 for some j1,
j2 such that ðj1; iÞ 2K and ði; j2Þ 2K. This would oc-
cur if capacity is shifted among locations where j1 has a
surplus and j2 has a shortage. Lastly, constraints (1d)
and (1e) are non-negativity constraints for transship-
ments, inventory, and shortage levels.

To find the optimal order-up-to levels and the optimal
expected cost for a given configuration, Herer
et al. (2006) suggest an infinitesimal perturbation anal-
ysis (IPA) procedure. IPA is a sample-path optimization
technique, in which the gradients of the expected total
cost with respect to order-up-to levels are estimated by
solving formulation (1a)–(1e) for different demand re-
alizations and for candidate vector S. The gradient
values are used to update S, and the procedure is guar-
anteed to converge to the optimal order-up-to vector,
SK, for configuration K. The operational transship-
ment problem is then solved for random demand
observations to calculate the optimal expected cost.

3.2. The Strategic Transshipment Network Design
Problem
The objective of the strategic transshipment network
design problem is to determine the optimal network
configuration (i.e., the link set K) given a limit, P,
on the number of allowable transshipment links.
To compare the efficiency of different transshipment
networks, we introduce ZðKÞ to denote the optimal
expected cost (over demand realizations) of a network
with transshipment link set K � ðN�NÞ; i.e.,
ZðKÞ ¼ ED½zðK;SK;dÞ�. The transshipment network
design problem is formulated:

min
K

ZðKÞ subject to jKj � P ð2Þ

The objective is for minimizing the expected cost
subject to the limit on the size of the link set.
Efficient networks are those that have low values of
ZðKÞ.

4. Analytical Results
In this section, we analytically compare the perfor-
mance of the unidirectional chain and the
bidirectional chain to group configurations with the
same number of links. Let group(‘) denote a group
configuration of M groups of ‘ nodes and ‘(‘� 1) di-
rected links each, for any positive integer M such that
‘M 5 N, where N is the number of nodes in the prob-
lem. Group(2) has the same number of links as the
unidirectional chain, and group(3) has the same num-
ber of links as the bidirectional chain. We show that
the group configuration incurs higher expected costs
than the chain configuration under the simplifying
assumptions described below.

4.1. Chain and Group Transshipment Networks
A transshipment over one or more links is cost reduc-
ing if the incurred transshipment costs are less than
the sum of holding and shortage costs. For example, if
2ct � ch1cs, a transshipment over two links is cost re-
ducing. We define a shift to be a transshipment along a
single link. Accordingly, the number of profitable shifts
is the maximum number of links along which units
may be transferred to meet shortage and still reduce
costs. For example, in the case where ch 5 2, cs 5 11,
and ct 5 6, the number of profitable shifts is 2.

To obtain our results, we assume that the locations
are identical in their costs and demand distributions,
and face independent demand. This is appropriate in
cases of retailers serving near-homogeneous popula-
tions over moderately sized geographic regions.
Further, beginning with an identical cost and location
model allows us to develop analytical results and gain
basic insights on preferred networks for settings with
non-identical costs and locations. We investigate more
general cases numerically in section 5.

In Theorem 1, we prove that the unidirectional
chain outperforms group(2), with N 5 2M directed
links. We first present Lemmas 1 and 2, which are
needed in the proof of Theorem 1. All proofs are pre-
sented in Appendix A.

LEMMA 1. Given a fixed configuration with cost parameters
that allow for only one profitable shift: (1) minimizing the
expected number of units in inventory, (2) minimizing
the expected number of units in shortage, or (3) maximizing
the number of cost-reducing transshipments will yield the
minimum total expected cost.

LEMMA 2. In a chain or group(‘) configuration, the optimal
order-up-to levels are identical across locations.
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THEOREM 1. Given a network with N 5 2M locations
(M 5 1, 2, � � � ), the optimal expected cost in a unidirec-
tional chain configuration is less than or equal to the
optimal expected cost in a group(2) configuration.

In Theorem 3, we claim that the bidirectional chain
outperforms group(3) in expectation. For ease of pre-
sentation, we first prove the claim for a six-node
network in Theorem 2. We begin by presenting the
lemmas required to prove the theorems.

LEMMA 3. Consider three nodes linked in the following manner
with bidirectional links between nodes 1 and 2 and between

nodes 2 and 3: and assume their order-up-to levels

are identical and the cost parameters allow for only one profit-
able shift. The ending inventory/shortage after transshipments
at nodes 1 and 3 are positively (in the weak sense) correlated.

LEMMA 4. The optimal transshipment quantities for a group
configuration of three nodes may be obtained in two steps,
where in the first step optimal transshipments are made
along two links only, and in the second step units are op-
timally transshipped along the third link, without changing
the transshipment quantities in the first step.

THEOREM 2. Given a network with six locations, the optimal
expected cost in a bidirectional chain configuration is less
than or equal to the optimal expected cost in a group(3)
configuration.

THEOREM 3. Given a network with N 5 3M locations
(M 5 1, 2, � � � ), the optimal expected cost in a bidirectional
chain configuration is less than or equal to the optimal
expected cost in a group(3) configuration.

From the proofs, we see that for one profitable shift,
the expected costs of the unidirectional chain and

group(2) are identical. For more than one profitable
shift, the unidirectional chain is more efficient than
group(2) because the chain configuration allows for
transshipment across multiple links. Further, the bi-
directional chain is more efficient than group(3) in the
case of one profitable shift. The value of the bidirec-
tional chain configuration does not hinge only on the
ability to shift capacity along multiple links; but as
the proof of Theorem 2 illustrates, it is also based on
the ability to draw inventory from diverse (loosely
correlated or uncorrelated) sources.

4.2. Link to Manufacturing Process Flexibility
Note that formulation (1a)–(1e) with cs 5 1 and
ch 5 ct 5 0 is equivalent to the manufacturing process
flexibility model in Jordan and Graves (1995), where
the objective is to minimize shortage. In the manu-
facturing setting, plants satisfy demand of other
plants by shifting capacity along multiple links with
no penalty. In the transshipment setting, positive
holding and transshipment costs limit this flexibility.
In Jordan and Graves (1995), plant capacity is inde-
pendent of network design; in transshipment, retailers
adjust order-up-to levels to minimize system costs.

Our claims remain valid for arbitrary order-up-to
levels as long as they are identical across locations;
therefore, the theorems presented in a transshipment
context are applicable in the manufacturing process
flexibility setting. The unidirectional chain is analogous
to the manufacturing chain assignment in Jordan and
Graves (1995). Consider the six-node example shown
in Figure 3 where (a) is the unidirectional chain trans-
shipment network and (b) is a six plant and six product
manufacturing assignment. Each plant’s capacity is as-
sociated with the order-up-to level of a retailer with the
same number. Also, each product’s demand is associ-
ated with a retailer’s demand. In the manufacturing
flexibility figure, a solid arrow represents an assign-

Figure 3 Transshipment Unidirectional Chain and Manufacturing Chain Assignment Networks
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ment of a product to a plant with the same number and
a dashed arrow represents an assignment of a product
to a plant with a different number. In transshipment
setting terms, a solid arrow represents a retailer satis-
fying their demand with their own inventory, while a
dashed arrow represents a transshipment link.

Similarly the bidirectional chain is analogous to
a manufacturing assignment where each plant i is
assigned products i� 1, i, and i11. Consider the
six-node example shown in Figure 4 where (a) is the
bidirectional chain network and (b) is a six-plant and
six-product manufacturing assignment. Compared
with Figure 3(b), each plant in Figure 4(b) has the
flexibility to make an additional product.

Our theorems are applicable to manufacturing flex-
ibility assignment scenarios where the number of
plants and products are equal, and capacity at each
plant is identical. In the manufacturing setting, Theo-
rem 1 states that assigning flexibility to create
one large chain is better than creating several smaller
chains of two plants and two products each.
Theorems 2 and 3 claim the same principle in the case
where each plant is able to manufacture three products.

Indeed the underlying model and network struc-
ture in our paper resemble the process flexibility
structures in manufacturing settings (e.g., from Jordan
and Graves 1995). However, the existence of trans-
shipment and inventory costs in the transshipment
setting makes our model more general. For example,
the transshipment cost in our model is analogous to
the switchover (i.e., setup) cost in process flexibility
models, when process i produces any product j, j 6¼i.
This corresponds to the situation where process i is
mainly tooled to produce product i and producing
any other product incurs an additional setup/pro-
duction cost. This system has not been studied in
process flexibility literature.

5. Numerical Results
We extend our analysis to other configurations and
settings with non-identical demand parameters, non-
identical transshipment costs, and correlated demand.
We focus on configurations with bidirectional trans-
shipment links. In section 5.1, we present our study on
the efficiency of the chain network, and in section 5.2
we present our study on the robustness of the chain
network.

5.1. Efficiency of Chain Configurations
We compare the bidirectional chain with other con-
figurations with N bidirectional links. Three network
sizes are included in the experiments: N 5 6, 12, 18.
We fix the sum of holding and shortage costs at 13
with three pairs of holding and shortage costs, de-
noted by t5 (ch, cs)Af(2, 11), (4, 9), (6, 7)g, and
consider six transshipment costs: ct 5 2, 4, 6, 8, 10,
12. Demand at each node follows a Gamma distribu-
tion with mean of 100 and five coefficients of
variation: g5 0.25, 0.5, 1, 1.5, 2. For each scenario,
we perform pairwise comparisons of the chain with
the other configurations.

Consider a pairwise comparison of the chain with
configuration f. Let ZðKfÞ be the optimal expected
cost of configuration f. We compute the percent of
pairwise comparisons in which the chain has a lower
expected cost than configuration f with scenario val-
ues g, ct, and t. In pairwise comparisons in which the
chain is not the lower cost configuration, let Df(g, ct, t)
denote the deviation of the cost of the chain from the
cost of configuration f:

Dfðg; ct; tÞ ¼
ZðKcÞ � ZðKfÞ

ZðKfÞ
� 100%:

Figure 4 Transshipment Bidirectional Chain and Corresponding Manufacturing Assignment
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We also compute the average deviation of all pair-
wise comparisons in which the chain does not yield
the lower cost and the maximum deviation of these
comparisons. Further, we compare the relative mag-
nitude of Df(g, ct, t) with the maximum difference
between the expected costs for all configurations for
scenario values g, ct, and t.

For networks with N 5 6, there are 21 possible con-
figurations, shown in Appendix B. In Table 1, we
present the results as a function of the coefficient of
variation, which is found to have the most significant
impact on the results.

The chain is more efficient in 97.7% of all compar-
isons. The chain is the most efficient configuration for
values of g � 1, implying that the chain remains effi-
cient regardless of the cost parameters for low to
moderate levels of demand uncertainty. At g5 2, other
configurations may be more efficient than the chain,
although the chain is more efficient in 90% of the
comparisons. The maximum deviation between the
chain and more efficient configurations is 7.5%, which
is small relative to the maximum difference of 20%.
The maximum difference among all configurations for
each scenario decreases as g increases, which is count-
erintuitive as the number of transshipments should
increase with g and therefore the network design
should be more important. This can be explained by
observing Figure 5, in which a plot of the costs of the
chain network 5 and network 19 for ch 5 2, cs 5 11, and
ct 5 2 are drawn. We see that the cost of each network
rises significantly as g increases. Further, the absolute
difference between the networks increases with g.
Thus in terms of absolute costs, the importance of
network design increases with g. The maximum
difference values in Table 1 are relative, thus they
are decreasing with g as the cost of each network rises
significantly when g increases.

In Tables 2 and 3, we explore the efficiency of the
chain with respect to cost parameters for g5 2 (i.e., the
fifth row of Table 1). In Table 2, the results are pre-
sented as a function of holding and shortage costs,
and, in Table 3, results are presented as a function of
transshipment costs.

In Table 2, we observe that chain is again more effi-
cient in most cases. The percent of cases in which chain
is most efficient as well as the maximum deviation
among all configurations increases with the critical
ratio cs

csþch
. For higher critical ratios, the optimal order-

up-to levels are typically higher, which, combined
with high demand uncertainty (g5 2), allows for more
transshipments. Thus network design becomes more
important and the chain configuration allows for more
transshipment possibilities. Further, the cost of a trans-
shipment network does not change significantly for
different critical ratios; the maximum deviation in
Table 2 is representative of the absolute cost difference
between the worst and best configurations.

In Table 3, the cases in which the chain is less effi-
cient correspond to scenarios with high demand

C.V. Chain Network 5 Network 19
264.4

1,909.7

0.25

1.5

271.2

2,025.7

357.2
545.30.5 563.2 747.6

1,179.31 1,259.9 1,595.6
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p
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Figure 5 Average Optimal Costs as a Function of c

Table 1 Efficiency of the Chain Network for N = 6 as a Function of c

g

# of pair-

wise com-

parisons

Chain is

most effi-

cient (%)

Df (g, � , � )
Maximum

difference

(%)

Aver-

age (%)

Maxi-

mum (%)

0.25 360 100 — — 38.2

0.5 360 100 — — 38.3

1 360 100 — — 35.3

1.5 360 98.3 1.2 2.6 27.2

2 360 90.0 1.6 7.5 20.1

Total 1800 97.7 1.4 7.5 38.3
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variability and low transshipment costs (i.e., g5 2 and
ct 5 2 and 4). The maximum difference increases as ct

decreases; with low ct, the transshipment quantities
are expected to increase, in which case the network
design is more important. In addition, when demand
variability is high and transshipment costs are low
relative to holding and shortage costs, configurations
that centralize inventory to maximize pooling are de-
sirable. In these cases, the most efficient configuration
is network 4 in Appendix B, which we refer to as the
star network (an extra link exists compared with a
typical star as all configurations must include six
links). The star network stores additional inventory at
one centralized node and transships items to other
nodes as needed. This results in a lower cost than the
chain because in the star network, transshipments are
made along a single link, which is important when
demand is highly variable.

OBSERVATION 1. When demand uncertainty is low or
transshipment costs are high relative to holding and
shortage costs, configurations that utilize multiple shifts
are efficient. Under these conditions, balanced order-up-
to levels among all locations are desirable and the chain
is likely to be the most efficient configuration for N 5 6.

OBSERVATION 2. When demand uncertainty is high and
transshipment costs are low relative to holding and

shortage costs, configurations that utilize multiple
shifts are not the most efficient. Rather, these condi-
tions promote centralized risk pooling and the star
configuration is likely to be the most efficient config-
uration for N 5 6.

In numerical experiments, we confirm that Obser-
vations 1 and 2 hold for networks with N 5 12 and 18.
As the number of possible unique configurations for
12 and 18 location/link scenarios are much greater
(e.g., over 400 configurations for N 5 12), we consider
25 randomly generated unique networks in the pair-
wise comparisons with the chain and star
configurations. The results are presented in Appen-
dix C. The chain is more efficient in over 97% of the
comparisons with the randomly generated configura-
tions. When the chain is inferior, the average value of
D is o2% with a maximum deviation of below 7%.

Average costs of the chain and star transshipment
networks for a specific setting are presented in Table
4, where ZðKsÞ represents the cost of a star network.
Consistent with Observation 2, the star performs sig-
nificantly better (26%) than the chain when ct 5 2 is
small relative to cs1ch and g5 2, while in the other
cases the chain is more efficient.

In a direct comparison, for cases in which the star is
more efficient than the chain, the difference is as much
as 7.5%, 21%, and 26% for 6-, 12-, and 18- node sce-
narios, respectively. The chain, however, is more
efficient in over 80% of the scenarios we studied. In
these cases, the chain transshipment network is as
much as 18% more efficient than the star.

5.2. Robustness of Chain Configurations
In the following studies, we relax the assumptions of
homogeneous transshipment costs, identical loca-
tions, and independent demand. Note that a six
retailer—six link problem with unique retailers may
have as many as 720 unique linkings. We define a
linking as an arrangement of retailers in a given con-
figuration. Obtaining the optimal expected cost of
each linking requires up to 2 minutes of CPU time on
a Sun Fire v250 1.28 GHz UltraSPARC IIIi computer
with dual processors. To maintain manageable simu-
lation times, we limit our study to six retailer—six link
problems. For each configuration, we refer to the
linking that yields the minimum expected cost as its

Table 2 Efficiency of the Chain Network for N = 6 for c = 2 as a Function
of ch and cs

ch cs

# of pair-

wise

com-

parisons

Chain is

most

efficient

(%)

Df (2, � , t)

Maximum

difference

(%)

Average

(%)

Maximum

(%)

2 11 120 95.0 1.2 4.8 20.1

4 9 120 90.0 1.9 7.5 13.9

6 7 120 85.0 1.5 7.0 8.7

Total 360 90.0 1.6 7.5 20.1

Table 3 Efficiency of the Chain Network for N = 6 and c = 2 as a Function
of ct

ct

# of pair-

wise com-

parisons

Chain is

most

effi-

cient

(%)

Df (2, ct, � )

Maximum

difference

(%)

Average

(%)

Maximum

(%)

12 60 100 — — 0.8

10 60 100 — — 2.4

8 60 100 — — 4.4

6 60 98.3 0.01 0.01 7.2

4 60 78.3 0.7 2.1 12.6

2 60 63.3 2.3 7.5 20.1

Total 360 90.0 1.6 7.5 20.1

Table 4 Chain and Star Network Costs for N = 18, ch = 2, and cs = 11

g

Transshipment cost

2 6

0.5 Z ðKcÞ ¼ 1501:2;

Z ðKs Þ ¼ 1610 :2

Z ðKcÞ ¼ 2388 :8 ;

Z ðKs Þ ¼ 2571:1

2 Z ðKcÞ ¼ 7872:8 ;

Z ðKs Þ ¼ 6255:8

Z ðKcÞ ¼ 10 ; 081:3;

Z ðKs Þ ¼ 10 ; 115:31
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best linking and the linking with the highest expected
cost as the worst linking. In section 5.2.1, we study
different transshipment costs and in section 2 we
study different demand distributions. Lastly, in sec-
tion 5.2.3, we study correlated demand.

5.2.1. Non-Identical Transshipment Costs. We
consider a model in which retailers are divided into
two sets. Let ct

l be the transshipment cost between
retailers in the same set and ct

h be the cost between
retailers in the different sets; ct

l represents low trans-
shipment costs and ct

h represents high transshipment
costs, so ct

h4ct
l. Thus, we study transshipment network

design in scenarios where the cost of transshipping
between certain groups of retailers is costly and
undesirable.

In the numerical experiment, we consider two de-
mand scenarios where g5 0.5 and 1.5, with costs
ch 5 2 and cs 5 11. Several combinations of ct

l and ct
h

are included in this experiment. In Table 5, we pres-
ent the optimality gap results for the best and worst
linkings of the chain, star, and group networks for
the case where the retailers are divided into two sets
of three retailers each and for g5 1.5. The results for
g5 0.5 are similar.

For low transshipment costs (lines 2 and 3 in the
Table 5), a properly linked chain configuration is op-
timal. For high transshipment costs (lines 4 and 5 in
Table 5), a properly linked group configuration is op-
timal. This follows intuitively, as transshipping
between retailers in different sets is costly. For the
chain and group networks, the arrangement of the
retailers in the configuration has significant impact.
For the chain, it is optimal to maximize the links be-
tween retailers of the same set. For the group
configuration, it is optimal to arrange retailers from
different sets into different groups, so that all links
have low transshipment cost. In contrast, the effi-
ciency of the star network is not as sensitive to retailer
arrangement except in the case of highest transship-
ment costs. In all star network linkings, retailers will
be reliant on transshipments via the higher cost links.

In additional studies of other sets (one retailer and
five retailers; two retailers and four retailers), the
results are similar; the efficiency of the chain config-
uration improves with lower transshipment costs

and the efficiency of the group configuration im-
proves for higher transshipment costs. The cost of a
properly arranged chain configuration is within 5%
of the cost of the optimal network in all experiments.
We conclude that the chain configuration is an effi-
cient transshipment network in this non-identical
transshipment cost setting and its efficiency is robust
to the differences in transshipment costs.

5.2.2. Non-Identical Demand Distributions. We
consider non-identical demand means with ranges of
100–200 units. Mean demands are distributed evenly
throughout the range among the six retailers. For
example, for a range of 100, the mean demands at the
retailers are 100, 120, 140, 160, 180, and 200. The
coefficient of variation at each retailer is fixed at 0.5 or
1.5 depending on the scenario, so that demand
standard deviations vary among retailers accordingly.
We consider scenarios with ct 5 2 and 6, and with ch 5 2
and cs 5 11.

The results are summarized in Table 6. The de-
mand parameters and transshipment cost of the
scenario are listed in the first three columns. In the
fourth column is the optimality gap between the best
chain linking and the best linking for all configura-
tions for that scenario. The same gap for the worst
chain linking is presented in the fifth column. In the
sixth column, we report the spread, which is the gap
between the lowest and highest best linking values
of all configurations. In this numerical study, the
spread measures the maximum impact of transship-
ment network design; in addition, it is useful for
evaluating the magnitude of the other measures. In
the last two columns, we illustrate the importance of
linking for a transshipment configuration. Chain link-
ing difference represents the difference between the
worst chain linking and the best chain linking. Largest
linking difference reports the maximum gap between
the best and worst linking for all configurations.

From the table we see that the chain is an efficient
configuration if properly linked. The best chain link-
ing is 3% higher than the cost of the most efficient
configuration in settings with high demand uncer-
tainty and low transshipment costs. We also see that
the average linking difference for a chain configura-
tion is o3%, so the manner in which retailers are

Table 5 Two Sets of Three Retailers Each, c = 1.5

(ct
l, ct

h)

Linking optimality gap

Best chain (%) Worst chain (%) Best star (%) Worst star (%) Best group (%) Worst group (%)

(2, 3) 0.0 6.5 2.3 4.1 10.5 13.7

(2, 4) 0.0 12.5 3.9 7.3 8.0 14.3

(6, 9) 1.8 12.4 6.3 9.6 0.0 7.1

(6, 12) 5.0 25.9 10.0 16.1 0.0 14.2
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arranged in a chain matters little. Also, the difference
between the worst chain linking and the most effi-
cient network is on average 3% when high demand
uncertainty and low transshipment cost scenarios
are excluded. In such scenarios the chain, in general,
is not an efficient network. Otherwise, a poorly
linked chain remains an efficient transshipment net-
work. The efficiency of the chain network is robust to
non-identical demand parameters as well as retailer
arrangement. This adds a degree of flexibility in
planning chain configurations when constraints such
as geographic limits on linking arise.

5.2.3. Correlated Demands. We study the effect of
demand correlation when (i) all six retailers are
correlated, and (ii) retailers are correlated in pairs
and independent of all others. In both cases, the level
of correlation is identical between all correlated pairs.
We consider four cost/demand scenarios in our
experiments, where g5 f0.5, 1.5g, ch 5 2, cs 5 11, and
ct 5 f2, 6g.

In the first case, we set the correlation r between
each pair of retailers to be � 0.1, 0, 0.3, and 0.8. Typ-
ical of inventory pooling behavior, the costs of all
transshipment networks increase with correlation,
converging to the cost of no transshipment. The sig-
nificance of network design is most important for
r5� 0.1 when transshipments have the largest con-
tribution. Most importantly, correlation does not

significantly affect the ranking of the configurations
with respect to efficiency. This is useful in that, for a
setting where all retailer demands are correlated at the
same level, the choice of an efficient transshipment
network is robust to the level of demand correlation.

In the second case, where retailers are correlated in
pairs and independent of all others, we set r5� 0.8,
� 0.3, 0, 0.3, 0.8 for g5 0.5 and r5� 0.3, 0, 0.3, 0.8 for
g5 1.5. We consider all possible linkings for each
configuration. The optimality gap results for the best
and worst linking of the chain, star, and group net-
works for ct 5 2 are presented in Tables 7 and 8 for
g5 0.5 and g5 1.5, respectively. The results for ct 5 6
are similar and consistent with previous results with
higher transshipment costs, where the optimality
gaps are not as significant.

In each of the experiments, the chain is the most
efficient configuration when properly configured.
From the tables, it is clear the impact of network
design increases with the absolute value of r. In ad-
dition, the difference between the linking optimality
gaps of the best chain and worst chain indicates that
the arrangement of the retailers in the chain can be a
significant element of network design. This is not the
case for correlated pairwise demand in manufactur-
ing flexibility, see Jordan and Graves (1995). If the
correlation is negative, it is better to place correlated
retailers as neighbors in the chain; if the correlation
is positive, it is better to place the correlated retailers
farther apart in the chain. In contrast, the arrange-

Table 8 Retailers Correlated in Pairs, c = 1.5

r

Linking optimality gap

Best

chain

(%)

Worst

chain

(%)

Best

star

(%)

Worst

star

(%)

Best

group

(%)

Worst

group

(%)

� 0.3 0.0 5.0 1.4 2.0 13.9 14.1

0 0.0 0.0 0.2 0.2 13.2 13.2

0.3 0.0 3.6 2.6 3.2 17.2 17.2

0.8 0.0 8.0 5.3 7.1 20.5 20.6

Table 6 Retailers with Non-Identical Means and Two Levels of Coefficient of Variation

Scenario
Best chain

linking gap (%)

Worst chain

linking gap (%) Spread (%)

Chain linking

difference (%)

Largest linking

difference (%)m g ct

100–200 0.5 2 0 1.5 29 1.1 11.7

100–200 1.5 2 3 0.1 23 2.3 15.1

100–200 0.5 6 0 1.5 7 1.2 7.2

100–200 1.5 6 1 2.2 6 1.6 8.7

100–300 0.5 2 1 3.5 24 2.8 18.5

100–300 1.5 2 3 8.0 19 5.0 22.4

100–300 0.5 6 1 3.3 5 2.6 11

100–300 1.5 6 1 4.7 5 3.3 13

Table 7 Retailers Correlated in Pairs, c = 0.5

r

Linking optimality gap

Best

chain

(%)

Worst

chain

(%)

Best

star

(%)

Worst

star

(%)

Best

group

(%)

Worst

group

(%)

� 0.8 0.0 13.6 22.0 22.5 39.6 40.3

� 0.3 0.0 2.9 7.3 7.4 24.3 24.7

0 0.0 0.0 3.8 3.8 20.9 20.9

0.3 0.0 1.7 3.6 3.6 21.1 21.3

0.8 0.0 3.1 3.7 4.1 21.9 22.0
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ment of retailers in a star or group configuration has
little impact on their efficiency.

6. Discussion
Our work is a first step in transshipment network
design research. We have introduced the chain con-
figuration to the transshipment literature and dem-
onstrated its advantages under a variety of demand
and cost parameters. Our analysis focuses on config-
urations with N nodes and N links, consistent with the
structure of the chain configuration. One area of fu-
ture research is to investigate the network design
problem for a general number of links. Because of the
number of possible configurations, an effective net-
work evaluation method or metric would be useful.

Additionally, in numerical studies we have relaxed
several of the initial assumptions and defined scenar-
ios in which the chain is an efficient and robust
transshipment network. In future research, these
models can be further generalized. In particular, it is
important to investigate the transshipment network
design problem in which the unit transshipment cost
between different locations depends on the specific
pair of locations (non-homogeneous transshipment
costs). Such transshipment cost structure can represent
the distance between the locations, or other location-
pair characteristics. As with the case of non-identical
demand distributions, the linking of the configuration
must be considered and finding the linking with min-
imal total expected costs is non-trivial. The nodes will
differ in their accessibility due to different (transship-
ment) costs of connected links and varying order-up-to
levels. Future research can build on the framework and
basic fundamental analysis in this paper to study par-
ticular cases of these more general settings.
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Appendix A. Proofs of Lemmas and
Theorems

PROOF OF LEMMA 1: As only one shift is profitable, every
cost-reducing transshipment incurs a cost of ct and
saves cs1ch. Recall that ct� (cs1ch) � 0 when the num-
ber of profitable shifts is 1. Let p denote the number of
units transshipped. Therefore, for a given demand
realization, the final objective value is reduced by
p[ct� (cs1ch)] when compared with the objective
value when no transshipments are made. Because
every cost-reducing transshipment reduces the inven-
tory by one unit, and this is the only way to reduce
inventory, minimizing inventory is equivalent to
maximizing transshipments, and doing so minimizes
total cost. The same argument holds for minimizing

shortage. As this holds for any one demand realiza-
tion, it holds in the expectation. &

PROOF OF LEMMA 2: Let zðK;SÞ ¼ ED½zðK;S;dÞ� be the
expected cost of the transshipment problem given K
and S. Herer et al. (2006) show that given K, zðK;SÞ
is jointly convex in S 5 (S1, S2, . . ., SN); therefore, the
optimal solution for the values of (S1, S2, . . ., SN) is
unique. In chain and group(‘) configurations, the net-
work characteristics are identical for all locations, and
as the demand cost attributes are also identical, zðK;
S1; S2; :::; SNÞ for a given K is symmetric in every Si.

From uniqueness and symmetry, we conclude that
in the optimal solution all Si values are identical.
(Otherwise, suppose Si6¼Sj for some i 6¼j. By symmetry,
if we switch the values of Si and Sj, the solution re-
mains optimal, which contradicts the uniqueness of
the optimal solution.) &

PROOF OF THEOREM 1: Here, let Kc and Kg denote the
unidirectional chain and group(2) configurations, re-
spectively. The order-up-to levels are identical at all
locations by Lemma 2; define SKg to be the optimal
order-up-to levels for the group configuration (i.e.,
Si ¼ SKg 8i 2 f1 . . . NgÞ. We prove that for S ¼ SKg,
the expected cost of chain is less than or equal to the
expected cost of group(2), which is optimal. Clearly
then, the optimal expected cost of the chain, where
S ¼ SKc , is lower, thus proving the theorem. If no
shifts are profitable, then the expected costs of both
networks are equal because no transshipments are
made. We prove that the theorem holds for (i) one
profitable shift and (ii) multiple profitable shifts.

(i) One profitable shift. When only one shift is profit-
able, minimizing the expected inventory yields a
solution with minimum expected network cost (Lemma
1). We prove that the expected inventory in a chain is
equal to the expected inventory in group(2).

For both configurations, let Ii ¼ SKg �Di be the net
inventory at node i before transshipment, and define
G(Ii) as the distribution of Ii. As Si is identical for all i
and Di is identically distributed for all nodes, G(Ii) is
identical for all i.

Consider the chain network where node i ships to
node i11 (except for node N, which ships to node 1).
The positive inventory after transshipment at node i
is Ii

1 (chain) 5 minfmax(Ii1Ii11, 0), max(Ii, 0)g. The
expected inventory at node i is

E½Iþi ðchainÞ� ¼ E minfmaxðIi þ Iiþ1; 0Þ;maxðIi; 0Þg½ �

¼
Z 0

�1

Z 1
�Iiþ1

Ii þ Iiþ1ð ÞdGðIiÞdGðIiþ1Þ

þ
Z 1

0

Z 1
0

ðIiÞdGðIiÞdGðIiþ1Þ: ðA1Þ
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Let I1(chain) be the positive inventory after trans-
shipment of the entire chain system. Given that
only one shift is profitable, a node will not send and
receive simultaneously. As all N nodes are identical
and demand at each node is independent of all other
nodes, the expected inventory of the entire chain
system is

E½IþðchainÞ� ¼ N

Z 0

�1

Z 1
�Iiþ1

Ii þ Iiþ1ð ÞdGðIiÞdGðIiþ1Þ
 

þ
Z 1

0

Z 1
0

ðIiÞdGðIiÞdGðIiþ1Þ
�
:

ðA2Þ

In the group(2) network, node i ships to and re-
ceives from node i0 when both i and i0 belong to the
same group. The inventory at a pair of such nodes i
and i0 is maxðIi þ Ii0 ; 0Þ; therefore, the expected inven-
tory in one group of the group(2) system is

E½Iþi;i0 ðgroupð2ÞÞ� ¼ E maxðIi þ Ii0 ; 0Þ½ �

¼
Z 1

0

Z 1
0

Ii þ Ii0ð ÞdGðIiÞdGðIi0 Þ

þ
Z 0

�1

Z 1
�Ii0

Ii þ Ii0ð ÞdGðIi0 ÞdGðIiÞ

þ
Z 0

�1

Z 1
�Ii

Ii þ Ii0ð ÞdGðIiÞdGðIi0 Þ

¼ 2

Z 0

�1

Z 1
�Ii

ðIi þ Ii0 ÞdGðIi0 ÞdGðIiÞ
 

þ
Z 1

0

Z 1
0

ðIiÞdGðIiÞdGðIi0 Þ
�
:

ðA3Þ

As all groups are identical and demand at each node
is independent of all other nodes, the expected in-
ventory of the entire group(2) system is

E½Iþðgroupð2ÞÞ� ¼ 2M

Z 0

�1

Z 1
�Ii

ðIi þ Ii0 ÞdGðIi0 ÞdGðIiÞ
 

þ
Z 1

0

Z 1
0

ðIiÞdGðIiÞdGðIi0 Þ
�
: ðA4Þ

As the distributions for Ii and Ii0 are the same
and N 5 2M, (A4) is the same as (A2). Therefore,
given cost parameters such that one shift is profitable,
the expected costs of these two networks are
identical.

(ii) Multiple profitable shifts. If cost parameters allow
for more than one profitable shift, the chain network
is always as good as or superior to the group(2) net-
work, as for a chain network, allowing more than one

shift expands the options available to reduce costs.
Alternatively, multiple shifts are not feasible in
group(2) networks. Therefore, if multiple shifts are
profitable, the expected cost of a chain network is less
than or equal to the expected cost of the group(2)
network. &

PROOF OF LEMMA 3: We first describe how an optimal
transshipment solution may be obtained. As only one
shift is profitable, no units are transshipped between
nodes 1 and 3 (through node 2). When node 2 has a
surplus (shortage) we assume, without loss of opti-
mality, that possible transshipments from (to) node 1
are first exhausted, and only subsequently transship-
ments from (to) node 3 occur.

Consider the following eight cases, covering
all possible realizations of net inventory/shortage
levels of the nodes after demand realization,
before transshipments. For each case we note in Ta-
ble A1 whether Yi, the net transshipment flow into
node i, is positive or negative (both in a weak sense),
or zero.

From Table A1, we observe that the levels of Y1 and
Y3 are either positive together, negative together, or
one is zero, hence we conclude that E(Y1 Y3) � 0. Fur-
ther, we claim that E(Y1) 5 0, because according to the
above solution procedure, the net flow out of node 1
may be obtained by ignoring node 3, in which case
nodes 1 and 2 are expected to send the same amount
of flow to each other. From these results, we conclude
that E(Y1 Y3) � E(Y1) �E(Y3) and therefore the correla-
tion between the transshipment flow into nodes 1 and
3 is positive; that is, sY1Y2

� 0.
Consider the random variables representing the

ending inventory/shortage at nodes 1 and 3 after
demand realization and after transshipments, i.e.,
the random variables I11Y1 and I31Y3. The covari-
ance between these two variables follows the
equation: sðI1þY1ÞðI3þY3Þ ¼ sI1I3

þ sY1I3
þ sI1Y3

þ sY1Y3
.

The first term, sI1I3
¼ 0 because I1 and I3 are

independent; the second term, sY1I3
¼ 0 because,

according to our solution procedure, Y1 depends on

Table A1 Transshipment Flows for Eight Exhaustive Cases

Case Realization Y1 Y2 Y3

1 All nodes are short 0 0 0

2 No nodes are short 0 0 0

3 Only node 1 is short � 0 � 0 0

4 Only node 2 is short � 0 � 0 � 0

5 Only node 3 is short 0 � 0 � 0

6 Only node 1 is not short � 0 � 0 0

7 Only node 2 is not short � 0 � 0 � 0

8 Only node 3 is not short 0 � 0 � 0
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I1 and I2 only. For the third term, I1 and Y3 are related
through node 2, as in cases 4 and 7 of Table A1. In case
4, we note that the higher I1, the less node 3 needs to
transship to node 2, therefore, the higher Y3. In case 7,
we note that the higher I1, the less node 2 needs
to transship to it, therefore node 2 may transship
more to node 3, so Y3 is higher. Thus sI1Y3

� 0. Finally,
from above, sY1Y2

� 0 so we conclude that
sðI1þY1ÞðI3þY3Þ � 0. &

PROOF OF LEMMA 4: Number the nodes in the group 1, 2,
and 3. Without loss of generality, in the first step, units
are transshipped on (1, 2) and (2, 3) only. In the second
step, units may be transshipped on (1, 3). Consider
again the solution procedure in the proof of Lemma 3
as well as the eight cases in Table A1. In cases 1, 2, 4,
and 7 the solution using only links (1, 2) and (2, 3)
are optimal since link (1, 3) is never used for trans-
shipment.

For case 3, let I	i ðI		i Þ be the inventory/shortage level
at node i after demand realization and after trans-
shipment of the first step (first and second steps).
Therefore, I	1 ¼ minðI1 þ I2; 0Þ and I	2 ¼ maxðI1 þ I2; 0Þ,
resulting in two sub-cases:

Case I11I2o0. Therefore, I	1 ¼ I1 þ I2 and I	2 ¼ 0.
In the second step, node 3 may transship to node 1,
therefore I		1 ¼ minðI	1 þ I3; 0Þ and I		3 ¼ maxðI	1 þ I3; 0Þ.
Thus, letting Î ¼ I1 þ I2 þ I3, if Îo0 the resulting
inventory/shortage levels at the nodes are I		1 ¼ Î
and I		2 ¼ I		3 ¼ 0; while, if Î � 0 then I		1 ¼ I		2 ¼ 0
and I		3 ¼ Î. In both cases, the solution is clearly
optimal.

Case I11I2 � 0. Therefore, I	1 ¼ 0 and I	2 ¼ I1 þ I2.
In this case we also have I3 � 0 and therefore no
transshipments will occur between nodes 1 and 3
in the second step. The solution of the first step is
clearly optimal.

A similar analysis applies to cases 5, 6, and 8, which
concludes the proof. &

PROOF OF THEOREM 2: By Lemma 2 the optimal order-
up-to level for the group configuration is equal at all
locations. Let S ¼ SKg . Consider first the case where
in both the group and the chain configurations, the
order-up-to level is set to S and the cost parameters
are such that there is only one profitable shift. (At the
end of the proof we relax those assumptions.) We
analyze the solution obtained for the transshipment
quantities.

Let K1 ¼ fð1; 2Þ; ð2; 3Þ; ð4; 5Þ; ð5; 6Þg be the set of
transshipment links that are identical to both the
group and the chain configurations, and let K2g ¼
fð1; 3Þ; ð4; 6Þg and K2c ¼ fð1; 6Þ; ð3; 4Þg be the set of
transshipment links that are unique (among these two

configurations) to the group and the chain configura-
tions, respectively.

Now, for any demand realization and for each
configuration, assume that the solution is obtained in
three steps, as follows:

Step 1. A solution is obtained while using trans-
shipment links in K1 only, and denoting
the resulting transshipment quantities by
X1.

Step 2. While fixing the transshipment quantities
X1, add the transshipment links K2g and
K2c and obtain (possibly) additional trans-
shipment units, X2g and X2c for the group
and chain configurations, respectively.

Step 3. Attempt to improve the solutions X1 [ X2g

and X1 [ X2c while using the set of trans-
shipment links K1 [K2g and K1 [K2g,
respectively.

Note that in Step 1, K1 is identical to both
configurations, and therefore the solution obtained
in this step is identical as well. From Lemma 3, the
ending inventory/shortage levels after Step 1 at nodes
1 and 3 (and similarly 4 and 6) in the group are
positively correlated. Therefore, in Step 2, we claim
that the expected number of units transshipped by X2g

is lower than the expected number of units
transshipped by X2c, as the inventory/shortage levels
between nodes 1 and 6, and 3 and 4, in the chain are
independent. As every unit transshipped is associated
with an identical saving, the chain configuration has a
lower cost at the conclusion of Step 2. Finally, by
Lemma 4, the solution of the group configuration at
the conclusion of Step 2 is optimal and cannot be
improved. On the other hand, the solution of the chain
configuration at the conclusion of Step 2 may be
improved in Step 3. Thus, the chain configuration has
a lower cost at the conclusion of Step 3 as well.

This concludes the proof for S ¼ SKg and only one
profitable shift. If we relax these two assumptions, it
may improve the solution of the chain configuration
only, and thus the proof is complete. &

PROOF OF THEOREM 3: Number the nodes in the chain
network such that the bidirectional links are of the
form (i, i11) for i 5 1, . . ., N� 1 and (N, 1). Similarly,
number the nodes in the group(3) network such that
each group i consists of nodes 3i� 2, 3i� 1, and 3i for
i 5 1, . . ., M. The proof follows the same steps and
arguments as in the proof of Theorem 2, with the

following redefined sets: K1 ¼ fð1; 2Þ; ð2; 3Þ; ð4; 5Þ;
ð5; 6Þ; . . . ; ð3i�2; 3i�1Þ; ð3i�1; 3iÞ; . . . ; ð3M�2; 3M�1Þ;
ð3M� 1; 3MÞg, K2g ¼ fð1; 3Þ; ð4; 6Þ; ; ð3i� 2; 3iÞ; . . . ; ð3
M� 2; 3MÞg and K2c ¼fð3; 4Þ; ð6; 7Þ; . . . ; ð3i; 3iþ 1Þ;
. . . ; ð3ðM� 1Þ; 3ðM� 1Þ þ 1Þ; ð3M; 1Þg. &
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Appendix B. All 21 Six Location—Six Link Network Configurations

Appendix C. Efficiency Results: 12- and 18-Node Networks

Table C1 Efficiency of the Chain Network for N = 12

g

25 randomly generated configurations Star configuration

# of pair-

wise

comparisons

Chain is

most

efficient (%)

Df (g, � , � ) Maximum

difference

(%)

# of pair-

wise

comparisons

Chain is

most

efficient (%)

Df (g, � , � )
Average

(%)

Maximum

(%)

Average

(%)

Maximum

(%)

0.25 450 100 — — 22.1 18 100 — —

0.5 450 100 — — 23.0 18 100 — —

1 450 100 — — 18.5 18 88.9 2.1 2.3

1.5 450 98.7 1.0 2.0 13.0 18 72.2 7.6 13.4

2 450 88.7 1.5 6.2 11.0 18 61.1 11.0 20.7

Total 2250 97.5 1.4 6.2 23.0 90 84.4 8.5 20.7

Table C2 Efficiency of the Chain Network for N = 18

g

25 randomly generated configurations Star configuration

# of pairwise

comparisons

Chain is most

efficient (%)

Df (g, � , � )

Maximum

difference (%)

# of pairwise

comparisons

Chain is most

efficient (%)

Df (g, � , � )

Average (%) Maximum (%)

Average

(%)

Maximum

(%)

0.25 450 100 — — 32.6 18 100 — —

0.5 450 100 — — 30.7 18 100 — —

1 450 100 — — 21.4 18 83.3 4.6 6.4

1.5 450 99.3 0.7 1.2 14.8 18 66.7 9.2 18.6

2 450 90.2 1.3 4.6 11.4 18 61.1 14.1 26.4

Total 2250 97.9 1.2 4.6 32.6 90 82.2 10.5 26.4
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Herer, Y. T., M. Tzur, E. Yücesan. 2006. The multi-location trans-
shipment problem. IIE Trans. 38(3): 185–200.

Hopp, W. J., E. Tekin, M. P. Van Oyen. 2004. Benefits of skill-chain-
ing in production lines with cross-trained workers. Manage. Sci.
50: 83–98.

Iravani, S. M. R., B. Kolfal, M. P. Van Oyen. 2007a. Call center labor
cross-training: It’s a small world after all. Manage. Sci. 53: 1102–
1112.

Iravani, S. M. R., V. Krishnamurthy. 2007b. Workforce agility in re-
pair and maintenance environments. Manuf. Serv. Oper. Manage.
9: 168–184.

Iravani, S. M. R., K. T. Sims, M. P. Van Oyen. 2005. Structural flex-
ibility: A new perspective on the design of manufacturing and
service operations. Manage. Sci. 51: 151–166.

Jordan, W. C., R. P. Inman, D. E. Blumenfeld. 2004. Chained
cross-training of workers for robust performance. IIE Trans. 36:
953–967.

Jordan, W. J., S. C. Graves. 1995. Principles on the benefits of
manufacturing process flexibility. Manage. Sci. 36: 577–594.

Krishnan, K. S., V. R. K. Rao. 1965. Inventory control in N
warehouses. J. Ind. Eng. 16: 212–215.

Pasternack, B. A., Z. Drezner. 1991. Optimal inventory policies for
substitutable commodities with stochastic demand. Nav. Res.
Logist. 38: 221–240.

Rao, U. S., J. M. Swaminathan, J. Zhang. 2004. Multi-product in-
ventory planning with downward substitution, stochastic
demand and setup costs. IIE Trans. 36: 59–71.

Robinson, L. W. 1990. Optimal and approximate policies in multi-
period multilocation inventory models with transshipments.
Oper. Res. 38: 278–295.

Sheikhzadeh, M., S. Benjaafar, D. Gupta. 1998. Machine sharing in
manufacturing systems: Flexibility versus chaining. Int. J. Flex.
Manuf. Syst. 10: 351–378.

Shumsky, R. A., F. Zhang. 2009. Dynamic capacity management
with substitution. Oper. Res. 57(3): 671–684.

Tagaras, G. 1989. Effects of pooling in two-location inventory sys-
tems. IIE Trans. 21: 250–257.

Tagaras, G. 1999. Pooling in multi-location periodic inventory dis-
tribution systems. Omega 27: 39–59.

Tagaras, G., M. Cohen. 1992. Pooling in two-location inventory sys-
tems with non-negligible replenishment lead times. Manage. Sci.
38: 1067–1083.

Tagaras, G., D. Vlachos. 2002. Effectiveness of stock transshipment
under various demand distributions and nonnegligible trans-
shipment times. Prod. Oper. Manag. 11: 183–198.

Van Mieghem, J. A., N. Rudi. 2002. Newsvendor networks: Inven-
tory management and capacity investment with discretionary
activities. Manuf. Serv. Oper. Manage. 4: 313–335.

Yu, D. Z., S. Y. Tang, H. Shen, J. Niederhoff. 2005. On Benefits of Op-
erational Flexibility in a Distribution Network with Transshipment. John
M. Olin School of Business, Washington University, St. Louis, MO.

Lien, Iravani, Smilowitz, and Tzur: An Efficient and Robust Design for Transshipment Networks
Production and Operations Management 20(5), pp. 699–713, r 2010 Production and Operations Management Society 713


