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The problem addressed in this paper is the tool switching problem for an automated manufacturing environment, when each tool may
occupy more than one slot of the tool magazine. A machine processes parts automatically by using a limited capacity tool magazine.
Providing a tool that is needed for a certain processing operation is not in the magazine, a tool switch must occur before the job can
be processed, a time/cost consuming operation. To solve this problem, one has to decide three types of decisions, namely, how to
select the jobs’ sequence (machine loading), which tools to switch before each processing operation (tool loading) and where to locate
each tool in the magazine (slot loading). We present an integer programming formulation for the problem and suggest a heuristic
procedure to obtain a solution. Our heuristic is partly a generalization of previously suggested approaches to the first two decision
types, but it is mainly oriented towards answering the third decision type. The unified problem has not been addressed previously in
the literature. We present a numerical study that demonstrates the efficiency of our procedure.

1. Introduction and literature review

The concept of flexibility has become a key consideration
in the design, operation and management of manufactur-
ing systems. In a survey by Sethi and Sethi (1990) they de-
fine flexibility in manufacturing as being able to reconfigure
manufacturing resources in order to efficiently produce dif-
ferent products of acceptable quality. In addition, they note
that at least 50 different terms for various types of flexibility
can be found in the manufacturing literature.

A FMS (Flexible Manufacturing System) consists of a
number of numerically controlled machines, linked by an
automated material handling device, that perform the op-
erations required to manufacture parts. The tools that are
required by these operations are stored in a limited capac-
ity tool magazine attached to each machine. An automated
tool interchanging device enables the machine to inter-
change tools very quickly. The Tool Management problem
is a generic name for various problems concerned with tool
sequencing/loading/switching and setups minimization.

FMS environments are very common in the printed cir-
cuit board (PCB) assembly industry and in metal-based in-
dustries. Bard (1988) mentions a problem in the electronics
industry in which an automated placement machine pro-
duces several types of PCBs. For each type of PCB, a cer-
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tain collection of component feeders must be placed on the
machine before boards of that type can be produced. As the
machine can only hold a limited number of feeders, it is usu-
ally necessary to replace some feeders when switching from
the production of one type of board to another board type.
Exchanging feeders is a time consuming operation and it
is therefore important to determine a production sequence
for the board types that minimizes the number of “feeder
setups”. Identifying the feeders with tools constitutes an
instance of the job sequencing and tool loading problem de-
scribed below.

An example of a FMS in a metal-based industry can
be found in Tatikonda and Stietz (1994). The FMS con-
sists of three machining centers, each of which has a tool
magazine with a capacity of 320 tools, which achieves a
time of 4.5 seconds for the tool selection and 3 seconds
for the tool changes. The capacity of 320 tools allows for
tool redundancy thereby minimizing downtime due to tool
unavailability.

An essential feature of a FMS is the fast tool interchang-
ing capability. This capability allows us to reduce the num-
ber of costly setup changes while producing with the tools
available in the magazine. When it becomes necessary to
add tools to the tool magazine to allow new operations, the
machine sometimes has to be shut down while the tools are
replaced, after which the machine may resume production.
The performance of a FMS may therefore be considerably
improved by reducing the occurrences of these setups. The
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problem becomes especially crucial when the time needed
to change a tool is significant with respect to the processing
time of the parts, or when many small batches of different
parts must be processed in succession. Jain et al. (1996) ob-
served that for high mix PCB shops at Hewlett-Packard,
it was not unusual to find that over 50% of the produc-
tion time was spent in setup operations. The setup times
typically ranged from 1 to 5 hours, with an estimate of line
downtime cost of over $1000 an hour. Moreover, if capacity
limitations of the line limited sales of high demand prod-
ucts, this cost could rise to over $10 000 per hour.

Crama and Van de Klundert (1999) identified four ba-
sic tool management problems, which were derived from
the general tool management model. In the tool switching
problem, given a collection of jobs, a processing sequence
for the jobs and a loading strategy for the tool magazine has
to be found so as to minimize the total number of switches,
see for example, Bard (1988), Tang and Denardo (1988a),
Crama et al. (1994) and Hertz et al. (1998). In the tool
loading problem, given a collection of jobs and a process-
ing sequence for these jobs, one needs to find a loading
strategy for the tool magazine so as to minimize the total
number of switches, see for example, Crama et al. (1994).
The problem of finding the weighted minimum number of
switches, i.e., when there is a weight given to each tool,
can be solved efficiently, see Privault and Finke (1995). The
batch selection problem is concerned with a collection of
jobs for which one needs to find the largest subset (batch)
of jobs that can be processed without tool switches, see for
example, Goldschmidt et al. (1994) and Crama (1997). The
job grouping problem is concerned with sequencing the jobs
that are scheduled to be processed and loading tools in the
magazine in order to minimize the total number of switch-
ing instants, see for example, Tang and Denardo (1988b)
and Crama and Oerlemans (1994).

An additional related problem is the physical placement
of tools in the magazine, known as the DSA, the Dynamic
Storage Allocation problem, see for example, Chen et al.
(2002). The question addressed in this case is how to allocate
blocks so that they do not intersect with each other while
the used storage size is as small as possible.

A common assumption in the literature on the tool load-
ing and switching problems is that each tool occupies one
slot in the tool magazine. Yet, it is common for a tool to oc-
cupy several slots. In metal-based industries, this property
is applicable to big tools (Stecke, 1983) or to tools that are
kept as a kit (Matzliach and Tzur, 2000). In PCB assembly,
this property is applicable to components of different sizes,
which occupy more than one feeder slot (Jain et al., 1996;
Gronalt et al., 1997; Günther et al., 1998).

Previous work on the tool loading or switching problems
with tools that may occupy more than one slot in the maga-
zine is relatively limited. The problem is mentioned in Stecke
(1983), Shanker and Tzen (1985) and Jain et al. (1996) but
none of them includes a comprehensive treatment of the
problem. Günther et al. (1998) discussed the machine load-

ing problem (sequencing the jobs). They used component
commonality between any pair of jobs as an estimate for
the set-up effort incurred when switching between the job
pair, which allowed them to model the problem in a stan-
dard approach derived for the traveling salesman problem.
Gronalt et al. (1997) discussed the complementary problem,
i.e., given a job sequence, they addressed the tool loading
problem (which they call component set-up) and the slot
loading problem (which they call feeder assignment). Their
heuristic applies a recursive approach between the com-
ponent set-up and the feeder assignment problems. More
recently, Matzliach and Tzur (2000) addressed the tool load-
ing problem (i.e., when the job sequence is given) with tools
that may occupy more than one slot, but with no considera-
tion to their physical location. They proved that the problem
is NP-complete and suggested two heuristic procedures.

The problem addressed in this paper is the tool switching
problem, in which each tool may occupy more than one
slot in the magazine. Machines process parts automatically
by using a limited capacity tool magazine. Tools that are
not in the magazine are kept in the tool storage area. If
a tool that is needed for a certain processing operation is
not in the magazine, a tool switch must occur before the
job can be processed, a time/cost consuming operation.
Thus, one has to decide on three types of decisions, namely,
how to select the jobs’ sequence (machine loading), which
tools to switch before each processing operation (tool load-
ing) and where to locate each tool in the magazine (slot
loading). The objective is to minimize the number of tool
switches, where planning and scheduling are done off-line,
prior to production. Since each tool can consume several
(unrestricted) magazine slots, a tool placement in the mag-
azine takes into account the current physical location of the
other tools in the magazine. We refer to the latter considera-
tion as slot assignment. We present an integer programming
formulation for the problem, and suggest a heuristic proce-
dure for its solution. The concept and focus of our heuristic
is completely new, however, some procedures within it are
based on previously proposed approaches. We then con-
duct a numerical study in which we solve a collection of
tool switching problems, both via our suggested heuristic,
as well as via previously suggested approaches from the lit-
erature, adjusted by us to handle the case of tools that may
occupy more than one slot.

The paper is organized as follows: in Section 2 we spec-
ify the problem’s assumptions and formally state the prob-
lem. In Section 3 we describe our solution procedure and
in Section 4 we report on a numerical study. We conclude
in Section 5.

2. Problem assumptions and formulations

In this section we state the assumptions and specify the
parameters that define the problem. The complete integer
programming formulation is given in Appendix A. The as-
sumptions are:
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1. There is a set of jobs to be processed. Each job requires
a specific set of tools.

2. No job requires a set of tools that occupies more slots
than available in the magazine.

3. Before a certain job can be processed, its required set
of tools has to be placed in the magazine. If not all the
tools are in the magazine, then a tool switch must occur.

4. Planning is done off-line, for the fixed set of jobs, ig-
noring the effect of the rolling horizon caused by the
initial and final tool and slot assignments.

5. The cost/time associated with the placement or re-
moval (rearrangement of slots) of tools is independent
of the next job scheduled for processing.

6. The cost/time associated with the placement or re-
moval (rearrangement of slots) of tools is independent
of their size.

7. The time needed for start-up at the beginning of pro-
cessing and for shutdown at the end of processing is
fixed. Therefore, tool switches that occur before or af-
ter the processing of the set of jobs are ignored.

8. No tool maintenance operation is required during the
process, in particular not one that requires a tool switch.

9. The secondary storage site for tools that are not
currently in the tool magazine has an unlimited
capacity.

10. Each tool occupies a given number of slots, indepen-
dent of the presence of other tools. Thus, the possibility
of tools that partly overlap is ignored.

2.1. Parameters

N = number of jobs that need to be processed; jobs are
designated by the index j;

M = number of tools; tools are designated by the index i;
C = capacity (number of slots) of the tool magazine; Slots

are designated by the index k.

The index n designates instants. Instant n is the point in
time at which the nth job has completed processing, but
before any tool switches occur. B is a vector of length
M, whose ith entry bi represents the number of maga-
zine slots required by tool i A is an M × N matrix whose
(i, j)th entry aij = 1 (0) if tool i is (not) required by
job j.

The problem is to determine the sequence of the jobs
that need to be processed, the tools that occupy the tool
magazine at every instant, and the location of the slots
that each tool in the magazine occupies. The objective
of the problem is to minimize the total number of tool
switches.

As mentioned in the Introduction, we mainly refer to en-
vironments found in PCB assembly and metal-based indus-
tries. The magazine used in PCB assembly is of the straight
type, whereas the magazine used in the metal-based indus-
tries is of the round type (slot 1 is adjacent to slot C). In

Appendix A we present integer programming formulations
for the problem, referring to both cases.

The integer programming formulations, while clarifying
the problem and formalizing it, are not useful for obtaining
an optimal solution. We used the AMPL Plus software with
the CPLEX solver, in an attempt to solve several instances
to optimality, using these formulations. However, this at-
tempt was not successful. The largest instance size that the
AMPL managed to solve was a non-practical problem with
N = 5 and M = 5. Hence, in the rest of the paper we focus
on heuristics.

3. Solution procedure

In this section we describe our suggested heuristic solution
procedure for the problem. An overview of the procedure is
given in Section 3.1. Then, in Sections 3.2–3.3 we describe
how we modified existing procedures from the literature, in
order that they can be used for our problem, either as part
of our suggested procedure or for comparison purposes.
In Section 3.4 we develop a new procedure for arranging
the physical placement of tools in the magazine. Finally, in
Section 3.5 we describe the overall algorithm, based on the
previously described procedures.

3.1. Overview

Crama et al. (1994) showed that the tool switching problem
is NP-hard for any fixed C ≥ 2. Hence, it is unlikely that
a polynomial-time algorithm for it will be found. Many
heuristic procedures have been developed for the problem,
and most of them fall into two main categories: (i) con-
struction strategies, which exploit the special structure of
the tool switching problem in order to construct a single
job sequence; and (ii) improvement strategies, which itera-
tively improve a starting job sequence. Crama et al. (1994)
proposed and examined six basic approaches. Two of them,
although not decisively, were superior to the others: the
multiple-start-greedy (labeled as MSG), a constructive strat-
egy, and the global 2-opt (labeled as G2OPT) an improve-
ment strategy. The tool switching problem can be modeled
as finding a minimum traveling salesman tour, where the
cost (number of switches) of processing job j subsequent
to job i is equivalent to traversing arc (i, j). Although,
none of the Traveling Salesman Problem (TSP)-based pro-
cedures that were proposed by Crama et al. (1994) exhibited
a good performance (mostly due to sensitivity to the den-
sity of the tool/job matrix), Hertz et al. (1998) proposed
several TSP-based heuristic procedures. Their main objec-
tive was to overcome the local, narrow view that accounted
for interactions of two jobs at a time. They intended to ac-
complish this by defining a more holistic, global view of
“distances” between pairs of jobs. Among the proposed
heuristics, a constructive procedure called GENIUS per-
formed best, albeit used a simple, natural estimation of
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distances. All of the above performance rankings are of
solution quality, disregarding the computation time. The
above three heuristics, namely MSG, G2OPT and GE-
NIUS, will be referred to from now on as the sequencing
heuristics.

Each of the heuristics discussed above, both constructive
as well as improving, incorporates the KTNS (Keep Tools
Needed Soonest) procedure when computing the cost of a
(partial) job sequence. The KTNS procedure was shown by
Tang and Denardo (1988a) to be optimal for the tool load-
ing problem in which all tools occupy one slot, see Section
3.2 for more details. When we consider the case of different
tool sizes, not to mention slot assignment, the optimality of
this procedure is no longer valid. Matzliach and Tzur (2000)
showed that the tool loading problem is NP-complete when
considering different tool sizes, even without considering
slot assignment. Therefore, an alternative heuristic proce-
dure is needed to estimate the number of tool switches that
are required by a given job sequence. Such a procedure,
KSTNS (Keep Smaller Tools Needed Soonest), is discussed
in the following section.

The general form of the tool switching problem consid-
ered in this work, i.e., with slot assignment, has not yet
been dealt with in the literature as one unified problem.
The closest work to ours are the two papers by Gronalt
et al. (1997) and Günther et al. (1998), discussed in the In-
troduction, who together treat the same problem as ours,
albeit in two separate steps, where the result of the first step
is the input of the second step. In Section 3.5 we present
our suggested heuristic procedure called Aladdin. For the
sake of comparison, we modify the above three sequencing
heuristic procedures in order to account for different tool
sizes and slot assignments. The modification includes two
considerations: (i) using the KSTNS procedure instead of
the KTNS procedure, on account of different tool sizes;
and (ii) considering physical placement by using a heuristic
procedure, called the Block Submersion Procedure (BSP)
(discussed in Section 3.4). The three sequencing heuristics
mentioned above, are reviewed in Section 3.3.

Given the above mentioned procedures, a heuristic for
the tool switching problem with slot assignment, which
uses previous approaches, is defined as follows; create a
complete job sequence and a tool placement using one
of the three sequencing heuristics while using the KSTNS
whenever a cost estimate is needed. Once the tool presence
in the magazine at each processing stage is given, incor-
porate the BSP procedure to physically place tools into
the magazine slots. We use this framework to modify the
three sequencing heuristics, in order to compare them to
Aladdin.

Thus, our main contribution consists of two major as-
pects. One is the adjustment and comparison of previously
proposed heuristics, while considering the general form of
the tool switching problem. The second contribution is the
presentation and analysis of a new heuristic that is based
upon novel concepts.

3.2. KSTNS

As mentioned in the previous section, the KTNS was shown
to be optimal for the tool loading problem in which all
tools occupy one slot. According to this policy, a tool is
removed from the tool magazine only when it is full and
another tool (currently not in the tool magazine) is required.
Furthermore, the tools that remain in the tool magazine,
are those for which the requirement is soonest. The KTNS
policy has been widely used in literature.

We define and use a slight variation of the KTNS, the
KSTNS. According to the KSTNS we keep the tools that
we need soonest, and among those we prefer the smaller
tools. The reason for this variation is to create more space
in the magazine once we have to perform a tool switch,
instead of choosing arbitrarily among the tools that are
needed at the same time. Thus, we may gain more flexible
tool placement options, when the problem of the physi-
cal placement of tools is addressed. When employing the
KSTNS, the physical placement of tools in the magazine
is done arbitrarily. The procedure always delivers a feasi-
ble tool placement, as will be demonstrated in Section 3.4.
Note that as opposed to the KTNS rule, the KSTNS rule
is not necessarily optimal for the tool loading problem. In
fact, with tools of different sizes, a “bin packing” issue ex-
ists, so it cannot be expected that a simple rule would be
optimal. Thus, the KSTNS rule is used here heuristically.

The amount of work required by the KSTNS policy
can be computed as follows. In a preprocessing step, tools
are sorted at each instant according to the first time at
which they will be needed. This preprocessing step takes
O(NM log M) time. The rest of the procedure takes O(M)
time, and is executed O(N) times, resulting in an overall
complexity of O(MN). Thus, given the preprocessing step,
the KSTNS takes O(MN) time. This preprocessing step has
to be performed only once for all places where KSTNS is
used, and its complexity is not significant relative to the
overall complexity of any of the other procedures. That is,
given the preprocessing step, whenever the KSTNS is used
in any of the heuristics, it would take O(MN) time. If the
resulting complexity of the heuristic becomes, say, O(f (H)),
then its overall complexity (including the preprocessing
step) would be O(NM log M) + O(f (H)) = O(f (H)) since
O(f (H)) always dominates O(NM log M). Hence, in all fu-
ture calculations, we refer to the complexity for the KSTNS
O(MN).

3.3. Previous approaches

As mentioned in Section 3.1, we use the sequencing heuris-
tics MSG, G2OPT and GENIUS. In this section we review
these procedures. Since in all of them we use the KSTNS
instead of the KTNS, and otherwise follow the original
procedures as they appear in the literature, we denote the
modified procedures as MSGm, G2OPTm and GENIUSm,
respectively.
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Crama et al. (1994) suggested the MSG greedy heuristic.
The jobs to be scheduled are divided into two groups. The
first group consists of the non-sequenced candidates, des-
ignated as Q. The second group is an ordered set σ , which
includes the partial job sequence. At each phase of this con-
structive strategy, the next job to be sequenced is chosen
from Q, according to minimal cost (switches) as computed
by the KSTNS (originally the KTNS was used). Namely,
for each job j in Q, a cost c( j) is computed by employing
the KSTNS for the partial sequence (σ , j). The job with
the minimal c( j) is removed from Q, and the sequence σ

is updated accordingly. The algorithm runs N times, once
for each initial sequence σ = ( j), j = 1, 2, . . . , N and retains
the best complete sequence found. MSGm runs in O(MN4)
since each initial sequence requires O(N2) applications of
the KSTNS procedure, and there are N initial sequences.

The procedure G2OPT used by Crama et al. (1994), is
based on an idea that has been widely used for other com-
binatorial optimization problems (originally used for the
TSP). Given a sequence σ , try to produce a better sequence
by exchanging two jobs in σ . If i is the kth job and j is the
pth job in σ , then exchanging i and j means putting i in the
pth position and j in the kth position. The procedure con-
tinues as long as an improvement from the exchange can be
achieved. G2OPTm runs in O(MN3) operations, since there
are

O(N2)

possible pairs of jobs to examine, resulting in O(N2) times of
finding two jobs to exchange, in each of which the KSTNS
procedure is called.

GENIUS is a two-phase, constructive and improvement
TSP based heuristic, proposed by Gendreau et al. (1992) (in
order to emphasize this TSP oriented approach, the term
“tour” will be used to describe the job sequence). It consists
of two parts, a GENeral Insertion procedure called GENI,
and an improving procedure called US. When using the
GENI procedure with KSTNS instead of KTNS, we refer
to it as GENIm. The main feature of GENI is that insertion
of job v in the tour does not necessarily take place between
two jobs, which are consecutive (adjacent). However, after
insertion, these two jobs become adjacent to v. For any
job v, define its p-neighborhood Np(v) as the set of the p
jobs on the tour closest to v, with respect to some distance
measure. Starting from three arbitrary jobs, GENI inserts
at each step a job v not yet on the current tour, between two
jobs already on the tour. The latter two jobs are among the p
closest neighbors of v. Gendreau et al. (1992) distinguished
between two possible insertion types, for each orientation
of the tour. Suppose that we wish to insert job v between two
jobs vi and vj of the tour. Let vk be a job on the path from vi
to vj, and vl be a job on the path from vj to vi. The insertion
type is affected by the orientation of the quadruple vi, vj, vk
and vl . In type I insertion, vk �= vi and vk �= vj. Inserting v

in the tour results in re-sequencing of the jobs, in a manner

Fig. 1. Type-1 insertion of job v between jobs vi and vj in GENI.

that is illustrated in Fig. 1 (job vl does not participate in
type-I insertion).

Dotted arcs between any two jobs vi and vj stand for the
subset Vij of jobs of the tour, that their subsequence between
jobs vi and vj is not affected by the insertion. Specifically,
type-I insertion is obtained by the following. Given the fol-
lowing sequence (as in Fig. 1):

〈Vk+1,i, vi, vi+1, Vi+1,j, vj, vj+1, Vj+1,k, vk, vk+1〉,
inserting v in the tour between jobs vi and vj results in the
following sequence:

〈Vk+1,i, vi, v, vj, Vj,i+1, vi+1, vk, Vk,j+1, vj+1, vk+1〉.
In type-II insertion, vk �= vj and vk �= vj+1, vl �= vi and

vl �= vi+1. Inserting v in the tour results in resequencing of
the jobs, so that given the following sequence:

〈Vk,i, vi, vi+1, Vi+1,l−1, vl−1, vl, Vl,j, vj,

vj+1, Vj+1,k−1, vk−1, vk〉,
after inserting v in the tour between jobs vi and vj, we get
the sequence:

〈Vk,i, vi, v, vj, Vj,l, vl, vj+1, Vj+1,k−1, vk−1, vl−1,

Vl−1,i+1, vi+1, vk〉.
Gendreau et al. (1992) devised the aforementioned insertion
types, corresponding to the Euclidean nature of the orien-
tation among vertices in a plane. No matter how vague the
intuitive applicability of such insertion procedures to our
problem is, we follow its guidelines.

GENI is more than a standard insertion procedure as
each insertion is executed simultaneously with a local
optimization of the tour. At each step the GENI proce-
dure selects a job to be inserted in the current tour and its
best position in the tour. These are done by computing for
each tentative insertion the number of tool switches using
the KSTNS (originally the KTNS was used) policy, and
performing the insertion yielding the smallest number of
tool switches.

The neighborhood of GENI has to be computed accord-
ing to some distance criterion. Hertz et al. (1998) found
out that best results were obtained by using p = 6 neigh-
bors and the distance d(i,j) = |Ti ∪ Tj| − |Ti ∩ Tj| where Ti
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is the set of tools required by job i. This distance measure
is natural in the sense that it takes a larger value when jobs
i and j have fewer tools in common.

In the post-optimization phase, US, each job is in turn
removed from the tour using the reverse GENI operation,
and the job is then reinserted in the tour using GENI.
These processes are called Unstringing and Stringing (US).
The procedure ends when removing and reinserting any job
can obtain no further improvement. During the unstringing
phase, similar to the insertion processes of GENI, when a
job is removed, two ways of reconnecting the tour are con-
sidered. A formal description and complexity analysis of
GENIUSm are provided in Appendix B.

3.4. The BSP

Once the tool presence in the magazine at each instant is
known, we need to employ a procedure that will take into
account the physical placement of the tools. This issue has
not yet been addressed by the job sequencing phase, nor by
the tool loading phase. We suggest here a procedure that
we denote as the BSP.

We define a block, associated with a given tool, as a rect-
angle whose height is equal to the tool size, and whose
length is equal to the number of consecutive jobs for which
the tool occupies the same magazine slot(s). We refer to a
block length as the length of the rectangle it represents. The
basic idea of the BSP is to horizontally justify the spaces that
each tool occupies along the job sequence in the magazine,
in order to create blocks. Figure 2 illustrates tool blocks in
the magazine.

The BSP is suggested both as a method for tool place-
ment, as well as an estimate of the minimum number of

Fig. 2. An illustration of the blocks.

switches. We have to alter the definition of tool switches,
since now it is applicable to tool movement/replacement
inside the magazine only, namely, permuting the tools for
each job along the C magazine slots, since the tool loading
outline is already determined. Thus, given an initial assign-
ment of some blocks in the magazine, if a block (associated
with a given tool) cannot be placed in the lowest indexed
available slots of the magazine in its full length (for all the
jobs in which it is present), a block breaking must occur. A
block breaking means that during the time in which the tool
is present in the magazine, the tool changes its position in
the magazine and is therefore represented by two (or more)
smaller rectangles, instead of a single large rectangle. As a
result, a block breaking is equivalent to a tool switch. Thus,
the total number of switches is the sum of the switches as
computed by the KSTNS and the number of block break-
ings that we have to perform in order to physically fit all
tool blocks into the magazine.

The fewer breakings a block suffers, the less we have
to replace a tool’s position along the production process.
However, once a block breaking must occur, the length of
the resulting block (rectangle) is not important. Namely,
it is equivalent to break a block of length eight into two
blocks of length four each, or into two blocks of lengths
one and seven. Hence, the breaking procedure should not
seek a breaking point by considering the resulting blocks’
lengths. We use a rule of thumb in breaking blocks (when
necessary), which is: break the block at the point where it
intersects another block.

Another issue that has to be addressed is prioritizing the
blocks, that is, according to what priority rule should we
“submerse” the blocks to the bottom of the magazine. We
use an intuitive rule, LBF (Longer Blocks First). The LBF
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rule is natural to consider, since occupying magazine slots
with smaller blocks will reduce the degrees of freedom for
the placement of larger blocks (the same logic is employed
in bin packing heuristics).

Now, a general outline of the BSP can be drawn. Given
the tools present in the magazine at each instant, define the
tool blocks. Submerse the blocks according to the LBF pri-
ority rule, that is, placing it as deep as possible towards the
bottom of the magazine. Intersection with other blocks is
of course not allowed. If a block cannot fit into the maga-
zine with a full length, break it at the points of intersection,
and keep moving the block parts downward. Stop when all
blocks have been placed.

It is easy to see that the BSP always delivers a feasible
solution since no free spaces beneath the blocks are created.
A precise specification of the BSP and its complexity are
provided in Appendix C.

In Appendix A we presented two integer programming
formulations for the problem. One corresponds to the
straight type magazine and the other to the round type mag-
azine. The description of the BSP depicts the magazine as
an array of “vertical columns”, each of size C. This descrip-
tion is mostly illustrative. The algorithm refers to each slot
individually, hence, it is applicable to both magazine types.

3.5. Aladdin

In this section we describe Aladdin, our suggested solution
procedure to the tool switching problem. The Aladdin pro-
cedure takes precedence over previously proposed schemes,
by answering simultaneously the three types of decisions
stated in the Introduction, namely, machine loading, tool
loading and slot loading. Next, we present informally some
of the core notions of the Aladdin procedure.

A most important design guideline is not to answer the
above questions sequentially. The weakness of previous pro-
cedures lies in their sequential nature, namely, first deter-
mine the job sequence, then determine the tool loading
scheme, and finally determine in which slot each tool should
be placed. Another important principle of Aladdin is its
strong tool placement orientation. As will be demonstrated
in Section 4, the number of tool switches significantly in-
creases when dealing with actual tool placements. Thus, a
sequence-oriented procedure is myopic in the sense that a
relatively good result without placement will turn out to be
poor when placement is considered.

Aladdin starts by using the GENIUS algorithm to pro-
duce a tool sequence. Note that since we produce a tool
sequence, the use of KSTNS is not needed, therefore we
apply the original GENIUS algorithm, with a distance
measure between tools as defined below. The original
neighborhood and distance measures when producing a
job sequence concern the relation between two jobs. How-
ever, in order to maintain the principle of tool placement
orientation, we consider the relation between two tools.
Similarly to the GENI procedure, for any tool v, we de-

fine its p-neighborhood Np(v) as the set of the p tools on
the tour closest to v, with respect to the distance measure
d(v,j). Thus, we redefine the distance between two tools to be
d(i,j) = N − |Ji ∩ Jj|, where Ji is the set of jobs that require
tool i. Note that we not only use Ji instead of Ti, but also
we negate the original expression by subtracting it from the
total number of jobs. This is because GENI seeks the least
cost routing, which will be achieved in our case, if we place
in the magazine those tools that share many common jobs.
In that case, during a long job sequence they may not have
to be switched.

Once we obtain the tool sequence, we start to load and
place the tools into the magazine in accordance with that
order, as long as we do not exceed the magazine’s capac-
ity. We can start each time with another tool in the se-
quence, thus employing the Multiple Start feature of the
MSG algorithm. Furthermore, doing so is useful for an-
other reason. By using the GENIUS algorithm, we create a
globally short path. It does not assure us that the distance
between any two sequential tools is the minimum. How-
ever, when loading tools onto the magazine, the question
that we want to answer is: how many jobs can we produce
with that set of tools? This is the quality of a set of tools
and not of a pair of tools. Thus, if we scan more starting
sets, we may obtain a better final solution. For those tools
that are in the magazine, we look for those jobs whose tool
requirements are fulfilled by that placement. The sequence
for those jobs can be determined arbitrarily. When no more
jobs are found for the current tool set, a tool switch must
occur.

A tool switch is a combination of insertion and extrac-
tion of tools. We mark, among the jobs that have not yet
been sequenced, which tools are available. Next, we start
to insert tools according to the sequence until a job to
be produced is found. At this point, the capacity con-
straint is violated. Therefore, we remove tools that are no
longer needed, followed by tools that are not needed by
the job that was found. We break ties by tool size, keeping
smaller tools. The tool that has been extracted is moved
to the end of the tool sequence. The extraction step is
repeated until there is no violation of the capacity con-
straint. No tool is removed from the magazine, unless the
next tool requires its space. The KTNS and KSTNS em-
ploy a similar principle of performing just the necessary
movements. However, due to the different tool sizes, there
is no guarantee that the tools that have been switched can
also switch places. Thus, we have to perform an Interlaced
Placement Phase (IPP) for the new tool, this will now be
described.

The Aladdin procedure shifts tool positions during the
phase of tool switching. Thus, two “pathological” phenom-
ena may occur. One, as described in Fig. 3, is “vertical block
shifting”. When a tool is removed from the bottom of the
magazine, the tools above it may be bottom justified, creat-
ing many unnecessary tool movements. This phenomenon
is especially problematic for the first tools to be removed.
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Fig. 3. Vertical block shifting.

Thus, upward shifting of a tool to be removed, and even-
tually moving it to the top of the magazine, avoids the un-
necessary tool movements. This may not be applicable for
tools that are removed in later stages of the process. The
upward movement may cause an even greater number of
switches because of misalignment with respect to previous
columns.

The second “pathological” phenomenon, as described in
Fig. 4 is “tool zigzagging”. This phenomenon applies to

Fig. 4. Tool zigzagging.

the case of a tool, which is in the magazine for a relatively
long period. However, it changes its position because of
tools that have been moved from beneath it. This can be
remedied by the following procedure. If the tool that has
been removed is larger than or equal to the one that has
been inserted, then it takes its place, bottom justified. If it
is not, then more than one tool has to be extracted. The va-
cant spaces are not necessarily adjacent. We want to create
enough space for the new tool by moving the fewest number
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of tools as possible. We start to move the tools bottom-wise,
starting from the lowest tools. When enough space becomes
vacant, we stop.

Once a new tool has been inserted, we look for new jobs to
sequence. The process is terminated when there are no jobs
to sequence. Finally, the Post-Optimization Phase (POP)
moves to the bottom of the stack tools that appear on the
magazine for the entire N jobs. A general flowchart of the
entire Aladdin algorithm is presented in Fig. 5. A formal
description of Aladdin and its complexity analysis are pro-
vided in Appendix D.

Fig. 5. Flowchart of the Aladdin procedure.

4. Computational study

In this section we present our computational study, which
compares the performance of our suggested Aladdin proce-
dure, with existing procedures from the literature, modified
by us to tackle different tool sizes.

4.1. Data sets

Our computational study is similar to that of Hertz et al.
(1998), which followed Crama et al. (1994), which in turn
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Table 1. Problem types

N M Min Max C

10 10 2 4 12, 15, 20, 25
15 20 2 6 18, 25, 30, 35
30 40 5 15 45, 50, 55, 60
40 60 7 20 60, 65, 70, 75

followed Tang and Denardo (1988a, 1988b). Hertz et al.
(1998) refurbished the computational assessment of Crama,
et al. (1994) producing 10 random repetition instances of
each of 16 problem types. We use the same 16 problem types,
each type is characterized by a set of parameters {N, M,
Min, Max and C}, where:

N = number of jobs;
M = number of tools;
Min = lower bound on the number of tools required for

any job;
Max = upper bound on the number of tools required for

any job; and
C = the capacity of the tool magazine.

Tool sizes vary randomly between one to three maga-
zine slots. We differ from Hertz et al. (1998) with respect
to generating the magazine capacity. Since unlike previous
studies, we allow tool sizes to vary between one to three
slots, we have to provide a magazine capacity of at least
3Max, in order to ensure a feasible tool assignment for
each job. Hence, our figures regarding magazine capacity
are larger than those of Hertz et al. (1998). The various
problem types that were generated are described in Table 1.
For each type, 10 instances were randomly generated, re-
sulting in a total of 160 instances.

4.2. Results and analysis

At phase 1, we implemented our modifications to the exist-
ing procedures from the literature. This includes first imple-
menting the sequencing heuristics: G2OPTm, MSGm and
GENIUSm, in order to create a job sequence, then using the
KSTNS procedure to determine the tool loading scheme.
Finally, once the tool presence in the magazine at each in-
stant has been determined, we employed the BSP procedure,
which takes into consideration the physical placement of
the tools. The total number of switches in the solution is
the number of switches as computed by the KSTNS, plus
the number of block splits as computed by the BSP. The
resulting number of solution runs is:

16 problem types × 10 random instances
× 3 sequencing heuristics = 480 solution runs.

We obtained results for both with and without tool
placement.

At phase 2, we implemented the Aladdin procedure, with
the same input data. The results of phase 1 were used as a
reference for estimating the quality of Aladdin.

All solution procedures were implemented in C and run
on a Pentium II 350 MHz processor PC. For each algo-
rithm/problem type combination, we report two average
statistics over the 10 randomly generated instances. The
first is the number of tool switches and the second is the
computation time in seconds.

In Table 2 we summarize the results of the algorithms
that were tested on phase 1, without placement. For prob-
lem types 1–8 (small problems), we observe that the so-
lution quality (i.e., number of switches) is almost identi-
cal for all algorithms. We believe that for those small-scale
problems, the results that were obtained are close to opti-
mum, reflecting the lack of degrees of freedom in the tool
placement options. For problem types 9–16 (medium and
large problems), the MSGm algorithm performed slightly
better than G2OPTm and GENIUSm. However, the run-
ning time of the MSGm algorithm was significantly longer
than those of the other algorithms: approximately 15 times
that of the G2OPTm algorithm, and 144 times that of the
GENIUSm algorithm, for the largest problem types (types
13–16).

The computational results of both Aladdin and the al-
gorithms that were tested on phase 1 with placement, are
summarized in Table 3. Note first that among the proce-
dures considered in phase 1, when placement is included,
G2OPTm has a slight advantage (although not significantly)
over the others, while MSGm comes second. When compar-
ing the solution quality of all algorithms, we observe that
for small and medium sized problem instances, the various
algorithms perform similarly. However, for large-scale in-
stances, Aladdin demonstrates clear dominance. In nine out
of 16 types, Aladdin performed the best. Those nine types
included the four largest problems, on which Aladdin had
on average 26% fewer switches than the second best algo-
rithm (G2OPTm). For three other types, Aladdin performed
at least as good as the best among the other sequencing
heuristics. For three types the G2OPTm came first, and for
one type the MSGm won. With respect to running time, Al-
addin was the second fastest algorithm (after GENIUSm),
with only a 5.3 seconds running time for the largest problem
considered.

In Table 4 we present a comparison of the Aladdin re-
sults with and without the post-placement optimization
phase, in order to evaluate the importance of this step.
The results demonstrate that the saving earned by the
POP step is significant, but decreases (in terms of percent-
age) as the problem size increases. For the largest prob-
lems (problem types 13–16), the average saving was about
20%.

Finally, we consider an additional data set in which the
various tool sizes vary in their proportion/frequency. Albeit
real-life experience gives us no reason to assume differently,
one might find it interesting to examine several more tool
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Table 2. Summary of computational results: without placement

G2OPTm MSGm GENIUSm

M, N, Problem Time Time Time
Min, Max C type (seconds) Switches (seconds) Switches (seconds) Switches

10, 10, 2, 4 12 1 0.017 3 0.083 3 0.022 3
15 2 0.022 2 0.082 2 0.022 2
20 3 0.022 0 0.083 0 0.016 0
25 4 0.022 0 0.082 0 0.022 0

Average 1.25 1.25 1.25
15, 20, 2, 6 18 5 0.138 10 0.774 10 0.061 9

25 6 0.137 5 0.775 5 0.06 5
30 7 0.137 3 0.785 3 0.055 3
35 8 0.143 1 0.791 1 0.049 1

Average 4.75 4.75 4.5
30, 40, 5, 15 45 9 2.84 48 32.197 44 0.418 45

50 10 2.817 38 32.165 34 0.511 37
55 11 2.823 22 32.087 21 0.373 24
60 12 2.835 14 32.022 12 0.456 14

Average 30.5 27.75 30
40, 60, 7, 20 60 13 11.765 95 173.21 90 1.175 96

65 14 11.902 82 173.99 77 1.209 82
70 15 11.716 74 172.76 68 1.214 74
75 16 11.765 56 173.53 52 1.219 57

Average 76.75 71.75 77.25

size proportions. Hence, we introduced a frequency vector
that corresponds to the proportions of a given tool size, and
reproduced the results of Table 3. For example, frequency
vector (1/3, 1/3, 1/3) stands for assigning equal proportion

Table 3. Summary of computational results: with placement

G2OPTm MSGm GENIUSm Aladdin

M, N, Problem Time Time Time Time
Min, Max C type (seconds) Switches (seconds) Switches (seconds) Switches (seconds) Switches

10, 10, 2, 4 12 1 0.017 9 0.083 9 0.022 9 0.028 6
15 2 0.022 4 0.082 5 0.022 5 0.038 4
20 3 0.022 1 0.083 1 0.016 1 0.033 0
25 4 0.022 0 0.082 0 0.022 0 0.039 0

Average 3.5 3.75 3.75 2.5
15, 20, 2, 6 18 5 0.138 24 0.774 30 0.061 31 0.11 29

25 6 0.137 18 0.775 19 0.06 15 0.137 16
30 7 0.137 8 0.785 10 0.055 9 0.159 9
35 8 0.143 3 0.791 3 0.049 4 0.192 2

Average 13.25 15.5 14.75 14
30, 40, 5, 15 45 9 2.84 234 32.197 240 0.418 245 1.214 209

50 10 2.817 197 32.165 221 0.511 216 1.286 183
55 11 2.823 118 32.087 133 0.373 151 1.45 123
60 12 2.835 75 32.022 66 0.456 82 1.675 78

Average 156 165 173.5 148.2
40, 60, 7, 20 60 13 11.765 563 173.21 550 1.175 572 4.822 414

65 14 11.902 517 173.99 526 1.209 544 4.993 382
70 15 11.716 509 172.76 503 1.214 532 5.174 385
75 16 11.765 418 173.53 438 1.219 456 5.328 305

Average 501.7 504.2 526 371.5

to tool sizes 1, 2 and 3, as in the previous data set. We
have examined three more frequency vectors: (0.2, 0.2, 0.6),
(0.2, 0.6, 0.2), and (0.6, 0.2, 0.2). The results are given in
Table 5, where the “problem type” heading corresponds to
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Table 4. Summary of computational results: POP versus no POP

Aladdin—No POP Aladdin

M, N, Problem Time Time
Min, Max C type (seconds) Switches (seconds) Switches

10, 10, 2, 4 12 1 0.022 12 0.028 6
15 2 0.027 8 0.038 4
20 3 0.022 2 0.033 0
25 4 0.022 0 0.039 0

Average 5.5 2.5
15, 20, 2, 6 18 5 0.077 39 0.11 29

25 6 0.077 30 0.137 16
30 7 0.071 25 0.159 9
35 8 0.072 12 0.192 2

Average 26.5 14
30, 40, 5, 15 45 9 0.785 271 1.214 209

50 10 0.736 252 1.286 183
55 11 0.593 210 1.45 123
60 12 0.533 168 1.675 78

Average 225.25 148.25
40, 60, 7, 20 60 13 3.422 493 4.822 414

65 14 3.301 474 4.993 382
70 15 3.120 472 5.174 385
75 16 2.730 434 5.328 305

Average 468.25 371.5

Table 5. Computational results for different frequency vectors

Frequency vectors

(0.2, 0.2, 0.6) (0.2, 0.6, 0.2) (0.6, 0.2, 0.2)
Problem
type G2OPTm MSGm GENIUSm Aladdin G2OPTm MSGm GENIUSm Aladdin G2OPTm MSGm GENIUSm Aladdin

1 13.3 16.5 13.7 14.4 9 14.1 10.5 10.8 6.5 8.4 7.2 5.7
2 10.1 12.9 9.6 10.2 5.3 6.2 4.8 4.3 1.6 1.8 2.4 1.5
3 3.6 4.1 4.2 2.8 0.7 0.7 1 0.5 0 0 0.2 0.2
4 1.7 1.7 1.2 0.7 0.5 0.5 0 0.4 0 0 0 0.2

Average 7.2 8.8 7.2 7.0 3.9 5.4 4.1 4.0 2.0 2.6 2.5 1.9
5 36.9 44.5 38.2 47.9 31.7 43.9 35.3 40.3 20.3 30.4 27.3 30.4
6 26.1 37.8 28.2 34.5 16.1 27.3 19.1 26.5 8 8.4 9.7 8.3
7 16.2 21.5 18.7 20.8 8.3 8.8 8.3 9.1 0.8 1.3 2.1 1.3
8 11.5 12.6 11.7 13.4 4.4 5 6 5 1 1.1 1.8 1

Average 22.7 29.1 24.2 29.2 15.1 21.3 17.2 20.2 7.5 10.3 10.2 10.3
9 234.9 294.8 251.8 265.3 201 249.6 211.6 229.9 92 156.7 113.6 136.6

10 250.2 293.7 260.8 260.6 190.7 245.6 199.8 214.8 85.9 153.3 113.7 126.3
11 225.5 268.5 239.9 235.9 136.7 185 164.6 174.3 28.4 60.2 46.2 45.4
12 176.3 261.7 187.4 197.4 85.9 154.4 104.3 124.8 11.2 22.9 18.2 18.1
Average 221.7 279.7 235.0 239.8 153.6 208.7 170.1 186.0 54.4 98.3 72.9 81.6
13 585.5 630.9 576.6 523.8 591.8 643.2 559.8 468.7 405.9 541.5 440.9 366.2
14 598.8 637.7 562.8 507.5 568.3 649.8 584 442.8 350.2 530.3 419.4 336.4
15 576.7 659.7 599.1 458.7 486.2 594 515.8 395.6 224.4 381.8 297.8 261.7
16 576.6 616.5 558.4 450.6 425.7 512.5 478 373.1 139.3 257.8 216.9 203
Average 584.4 636.2 574.2 485.2 518.0 599.9 534.4 420.1 280.0 427.9 343.8 291.8
Average 189.2 217.5 191.0 174.8 154.5 188.2 162.9 143.7 75.8 119.3 94.9 86.1
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that in Table 3. The results indicate that overall Aladdin still
performs the best, with G2OPTm in second place. G2OPTm

performs best for problems in which the proportion of tools
with size one is largest, only slightly better than Aladdin.
This is not surprising, since Aladdin was designed to handle
larger tool sizes while G2OPTm considered tools of size one
only. It can also be noted that many large tools cause a
reduction in the flexibility of tool placement, thus causing
more tool switches, in which case Aladdin performs best.

5. Summary and conclusions

We have presented a new algorithm for the tool switch-
ing problem in which each tool can occupy more than one
slot of the tool magazine. This problem in its full general-
ity has not been previously addressed in the literature. Our
suggested heuristic, Aladdin, addresses all three types of
decisions, namely, machine loading, tool loading and slot
loading, simultaneously. In our numerical study, our heuris-
tic demonstrated a clear dominance over existing heuristic
approaches that were modified by us to handle different tool
sizes. The dominance with respect to solution quality (num-
ber of switches) increased as the problem size increased and
approached problems of realistic size.
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Appendices

Appendix A: Integer programming formulations

We present in this Appendix integer programming formu-
lations for the problem. First, in program A, we refer to the
case of a straight magazine, whereas in program B we refer
to the round magazine.

Recall that the definitions of the parameters used in the
formulation are given in Section 2.

Decision variables

xjn =
{

1 if job j is the nth job in the sequence,
0 otherwise.

wikn =



1 if tool i occupies slot k of the machine at
instant n,

0 otherwise.

yikn =



1 if k is the first (lowest index) slot that tool i
occupies at instant n,

0 otherwise.

That is, yikn = 1 ⇔ wikn,. . . , wi,k+bi−1,n = 1.

pikn =




1 if tool i occupies slot k as the first slot at
the (n + 1)th instant and does not occupy
this slot at the nth instant, i.e., if yikn+1
equals one and yikn equals zero,

0 otherwise.



108 Tzur and Altman

Program A

Min
N−1∑
n=1

M∑
i=1

C∑
k=1

pikn,

subject to

M∑
i=1

wikn ≤ 1 k = 1, . . . , C, n = 1, . . . , N, (A1)

aijxjnbi ≤
C∑

k=1

wikn i = 1, . . . , M,

n = 1, . . . , N, j = 1, . . . , N, (A2)
k+bi−1∑

f =k

wifn − yikn ≤ bi − 1 i = 1, . . . , M,

n = 1, . . . , N, k = 1, . . . , C − bi + 1, (A3)

biyikn −
k+bi−1∑

f =k

wifn ≤ 0 i = 1, . . . , M,

n = 1, . . . , N, k = 1, . . . , C − bi + 1, (A4)
C∑

k=1

yikn ≤ 1 i = 1, . . . , M, n = 1, . . . , N, (A5)

pikn ≥ yik,n+1 − yikn i = 1, . . . , M,

n = 1, . . . , N − 1, k = 1, . . . , C − bi + 1, (A6)
N∑

j=1

xjn = 1 n = 1, . . . , N, (A7)

N∑
n=1

xjn = 1 j = 1, . . . , N, (A8)

xjn, wikn,yikn, pikn = 0, 1 n = 1, . . . , N, j = 1, . . . , N,

i = 1, . . . , M, k = 1, . . . , C − bi + 1. (A9)

Constraint (A1) limits each slot to be occupied by one
tool at the most. Note that summing Equation (A1) over
k is equivalent to making sure that no more than C tools
are in the magazine at any instant. Constraint (A2) defines
that if job j is the nth job on the sequence, and it requires
tool i, then bi slots have to be “reserved” for it at instant
n. Constraints (A3) and (A4) make sure that all the above
bi slots of tool i are adjacent. Constraint (A3) forces yikn
to be one if its bi corresponding wikns, are also all ones.
Constraint (A4) forces the opposite direction. Constraint
(A5) makes sure that a tool is not loaded into the magazine
more than once at any one time. Constraint (A6) defines
tool movement. Constraint (A7) makes sure that at each
instant exactly one job is processed. Constraint (A8) makes
sure that all the jobs are processed exactly once. Constraint
(A9) is the integrality constraint.

Program B

The same as program A, except for slight changes concern-
ing the adjacency constraints. In the round magazine, extra

slot adjacencies are allowed, for example, for bi = 2 a tool
may occupy slots {C, 1}, and for bi = 3 slots {C-1, C, 1}
or {C, 1, 2}. The modification would be to let k run over
the extra indices, writing constraints (A3) to (A6) explicitly
for the additional possibilities.

Appendix B: Formal description and complexity
of GENIUSm

GENIm is described by the following procedure.

Step 1. Create an initial tour by selecting arbitrarily a sub-
set of three jobs. Initialize the p-neighborhood of
all jobs.

Step 2. Arbitrarily select a job v that is not yet on the tour.
Implement, by using the KSTNS, the least cost in-
sertion of v, considering all choices of vi, vj, vk and
vl and the two possible orientations of the tour
and the two possible insertion types. Update the
p-neighborhood of all jobs to account for the fact
that v is now on the tour.

Step 3. If all jobs are now part of the tour, stop. Otherwise
go back to Step 2.

In Step 2, O(p4) choices of vi, vj, vk and vl must be
considered (a maximum of 360 possible combinations for
a full six neighbors situation). Each quadruple is exam-
ined four times for two insertion types and two tour ori-
entations, where each examination requires O(MN) time
on account of the KSTNS. For the best choice, v is in-
serted in the tour, and then the p-neighborhood of all
jobs is updated, which takes O(N) time. Since Step 2 is
executed N-3 times, the overall complexity of GENIm is
O(MN2p4 + N2) = O(MN2p4).

The US algorithm is described by the following proce-
dure.

Step 1. Consider an initial tour τ of cost z. τ ∗ ← τ ; z∗ ← z;
t ← 1.

Step 2. Starting from tour τ , apply the unstringing and
stringing procedures with job vt , considering in
each case the two possible types of reconnecting
the tour, and the two tour orientations. Let τ ′ be
the tour obtained and z′ be its cost. τ ← τ ′; z ← z′.

Step 3. If z < z∗, τ ∗ ← τ ; z∗ ← z; t ← 1; repeat Step 2.
Else (z ≥ z∗ , no improvement was obtained): t ←

t + 1; if t = n + 1 stop. Record τ ∗ and z∗ as the
solution.

Else repeat Step 2.

Note that the cost of two consecutive tours produced by
Step 2 may increase. Indeed, a job to be removed from the
tour is not necessarily located between two jobs that belong
to its p-neighborhood. Thus, reinserting the job in the po-
sition it occupied before its removal may not be allowed.
However, the best-known tour is always stored. As a re-
sult, the complexity of GENIUS and GENIUSm cannot be
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bounded as a function of N and M as it can be applied as
long as the objective function improves.

Appendix C: Formal description and complexity of the BSP

To formally describe the BSP, we use the following defini-
tions. Let W be an N × C matrix, which reflects the maga-
zine’s slot occupancy for every instant, namely, wjk equals
one when slot k at instant j is occupied. Recall that bi is
the number of magazine slots required by tool i. Let Jin
equal one (or zero) if tool i is (is not) in the magazine at
a given instant n. This is given as input for the BSP pro-
cedure. Define a tool block of W as a maximal subset of
horizontal consecutive Jin = 1 in W . Let TB denote the set
of tool blocks in W . Let h be the number of such tool blocks
TB = {tb1, tb2, . . . , tbh}. Denote the length of tool block l
(the number of periods for which it is on the magazine) as
sbl .

The BSP is described by the following procedure.

Step 1. Set l = 1. Splits = 0.
Step 2. Sort TB in descending order according to sbl (ac-

cording to the LBF priority rule).
Step 3. While not exceeding C and not intersecting other

blocks, place sbl as deep as possible at the bottom
of the magazine. Mark magazine slots as occupied.
l = l + 1. If l = h + 1 stop. Return splits.

Step 4. Split tbl at the points of intersection. Place the
block parts as deep as possible at the bottom of
the magazine. Mark magazine slots as occupied.
l = l + 1. Splits = splits + number of intersection
points. Go to Step 3.

The amount of work that the BSP takes is computed as
follow. Step 2 requires O(h log h) time. Step 3 is repeated
h times and Step 4 is repeated up to h times. The work of
placing blocks in the magazine, and marking magazine slots
as occupied takes O(NC) for the entire algorithm. Thus, the
total amount of work that the BSP requires is O(h log h) +
O(NC) = O(h log h + NC).

Appendix D: Formal description and complexity
analysis of Aladdin

We present here a formal description of Aladdin. Denote by
J and J ′ the groups of non-sequenced and sequenced jobs
respectively (|J| + |J ′| = N). Similarly, denote by T and T ′
the group of tools that are unloaded from and loaded into
the magazine respectively (|T | + |T ′| = M). σT , σT ′ and σJ ′

are sequences (permutations) of T , T ′ and J ′ respectively.
The first tool on σT is denoted as tool in. Denote D as
the M × M triangular distance matrix that corresponds to
all M tools. We use the notation “A p B” to mark that
job A can be produced by the set of tools B. Recall that
N, M and C are the number of jobs, tools and magazine
capacity, respectively. Aladdin is described by the following
procedure.

Step 0. Initialization: J = {1, . . . , N}. T = {1, . . . , M}.
Calculate D. Set start tool = 0.

Step 1. Create a tool sequence σT using the GENIUS
algorithm (|σT | = M).

Step 2. Set start tool = start tool + 1. While not exceed-
ing C, start from start tool and position the tools
of σT with the lowest slot index of the magazine.
Mark those tools as in T ′. Mark magazine slots
as occupied. Mark the next tool in T as tool in.

Step 3. If |J ′| = N go to Step 6. If there is no job A, such
that A p T′ then Go to Step 4. Else, move job A
to J ′. J = J\A. Place A at the end of σJ ′ . Repeat
Step 3.

Step 4.
4.1. Move tool in from T to T ′. T = T\tool in.

Mark the next tool in T as tool in. Repeat
this until there is a job A, such that A p T′.
Denote the newly inserted tools as tools in.

4.2. Remove tools that are not used by any other
job in J or A from T ′ to T . Break ties by
tool size removing the larger tools first.
Place it at the end of σT .

4.3. If the tool to be removed is in the magazine
for every job until now, then change its
place in the magazine by moving it so as to
be the first tool. Repeat this stage as long as
exceeding C.

Step 5. Move through the magazine from the bottom.
Once you reach a vacant space try to insert a tool
from tools in into the space. If no such tool exists,
adjust all tools above the space in a downwards
direction towards the bottom. Repeat this step
until all new tools in are placed in the magazine.
Go to Step 3.

Step 6. If a tool is in the magazine for N periods move
it to the bottom of the stack. Adjust other tools
in a downwards direction towards the bottom.
Record best solution. If start tool = M then ter-
minate. Else, reset σT . Go to Step 2.

The Aladdin procedure encapsulates the GENIUS pro-
cedure at its tool sequencing phase. Hence, due to the US
part of GENIUS, its complexity cannot be bounded. Nev-
ertheless, we provide a calculation of the amount of work
that the other steps of Aladdin take, except for the tool
sequencing phase.

The initialization, Step 0, involves calculating the dis-
tance matrix D. For each pair of tools, we go over all N jobs.
For each job we check if this pair of tools are required, by
using the corresponding values in the input matrix A (see
Section 2). Therefore, this step consumes O(NM2).

In Step 1 we create a tool sequence σT by using the GE-
NIUS algorithm. The complexity of GENI is O(NM2p4)
(note that we sequence tools and not jobs), and as specified
in Section 3.3, we cannot decisively determine the complex-
ity for the US part of the algorithm.
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The main loop of the procedure, involves Steps 2 to 6.
Step 2 involves filling the first stack, which takes O(C) time.
At Step 3, for each selection of a tool set that was placed
in the magazine, we have to find its corresponding jobs.
Each job requires at most O(C) tools. The presence of each
of those tools has to be searched in an array of at most
C components. Since there are at most N non-sequenced
jobs, this checking step takes O(NC) time. Step 3 may be
repeated O(N) times for each start tool, therefore the com-
plexity of Step 3 for a given start tool is O(N2C). The
complexity of Step 4 entails the use of Min(M,C) which
will be denoted as C′. Step 4.1 is the tool insertion and
checking step which takes O(NC). It can be repeated up
to C′ times, resulting in O(NCC’) time for Step 4.1. Tool
extraction, which takes place on Step 4.2, can encounter
up to O(C′) tools and O(N) jobs resulting in complexity of
O(NC’) time. Step 4.3 considers at most O(C′) tools, to be
searched in O(N) jobs backwards, and repositioning O(C)
tools, that is O(NCC′). Steps 4.1 and 4.2 are executed N
times resulting in O(N2CC′) for the entire Step 4. The IPP
phase, which take place at Step 5 involves up to O(C) tool-
shifting, and is repeated N times thus takes O(NC) time. The
POP procedure (beginning of Step 6) involves up to C shifts

of tools for each job stack, namely a cost of O(NC). Repeat-
ing Steps 2–6 for M possible starting tool sets (Step 6) sums
up then to: Step 0: O(M2N), Step 1: unbounded, Steps 2 to
6: O(MN2CC′).
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