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We consider centrally controlled multi-location systems, which coordinate their replenishment strategies through the use of trans-
shipments. In a dynamic deterministic demand environment the problem is characterized by several locations, each of which has
known demand for a single product for each period in a given finite horizon. We consider replenishment, transshipment and
inventory holding costs at each location, where the first two have location-dependent fixed, as well as linear components, and the
third is linear and identical to all locations. We prove that the resulting dynamic transshipment problem is NP-hard, identify a special
structure which is satisfied by an optimal solution and develop, based on this structure, an exponential time algorithm to solve the
problem optimally. In addition, we develop a heuristic algorithm, based on partitioning the time horizon, which is capable of solving
larger instances than the optimal solution. Our computational tests demonstrate that the heuristic performs extremely well.

1. Introduction and literature review

Centrally controlled multi-location systems are capable of
increasing their profitability through coordination. In re-
cent years, organizations have started using novel logistic
strategies such as internal and external coordination in
order to achieve a competitive advantage. In this paper we
consider coordination among facilities through replen-
ishment strategies that take into consideration transship-
ments, that is, movement of a product between locations
at the same echelon level. Consider, for example, a retail
chain with several stores located across the country.
Further, consider one of their products whose supplier is
located outside the country. Every replenishment, by any
of the stores, is associated with a fixed replenishment cost
which, in the case of a distant supplier, can be quite sig-
nificant. The stores forecast their demand for the product,
according to which they must plan their replenishment
strategy. In this context, coordinated replenishment
strategies, accompanied by an appropriate transshipment
strategy, can result in substantial cost savings.
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The main benefit often associated with transshipments
is balancing inventory levels at the various locations
through emergency stock transfers. In other words, when
one location has surplus inventory and a second has a
shortage, a transshipment will take place from the first to
the second location. Indeed, many of the problems dis-
cussed in the literature which consider transshipments
are associated with environments in which demand is
stochastic, where such emergency transfers are meaning-
ful. In the existing stochastic models demand is always
static.

In this paper we consider a problem in which demand
is deterministic and dynamic. In this environment, the
benefit associated with transshipments is the saving of
replenishment costs, as in the example above. This means
that when one location (store) replenishes its stock, a
large quantity may be requested, some of which is des-
ignated to be transshipped to another location. In this
way, fixed (and possibly variable) replenishment costs are
saved at the expense of transshipping the product be-
tween the locations.

Our Dynamic Transshipment Problem (DTP) is char-
acterized by several locations, each of which has a known
demand for a single product for each period in a given finite
horizon. The requirements have to be satisfied without
backlogging. The cost components are replenishment
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(from an outside supplier), transshipment and inventory
holding costs at each location. The first two have both a
fixed and a linear component which are location-depen-
dent. The third is linear and identical to all locations.

We consider several mechanisms by which transship-
ments can take place. The mechanism is determined
exogenous to the model. For example, the Direct trans-
shipment mechanism requires that transshipments are sent
directly from the sending location to the receiving loca-
tions. Another example is the TSP transshipment mecha-
nism which requires that each time a location sends out a
transshipment, a truck follows a traveling salesman tour
through the sending location and each of the receiving
locations. We consider the former in the body of the pa-
per, while the latter is considered, along with other ex-
tensions, at the end of the paper. The combined decision
of how much to transship and how these units are trans-
ferred from the sending to the receiving locations (given a
transshipment mechanism) is referred to as the transship-
ment strategy. The problem is to determine the minimal
cost replenishment quantities and transshipment strategy.

The dynamic transshipment problem was introduced
by Herer and Tzur (2001). There, two locations were
considered and location-dependent holding costs were al-
lowed, giving rise to another reason for using transship-
ments. In this paper we extend the analysis to multiple
locations with identical holding costs. Fixed replenishment
costs were considered previously only by Herer and Tzur
(2001), as mentioned above, and by Herer and Rashit
(1999) in the single period stochastic setting. In addition to
these references, much additional work has been carried
out in a stochastic setting. Most of this work has concen-
trated on either the single period or the infinite horizon
version of the problem. However, Robinson (1990) ex-
amined the finite horizon version as we do here. Additional
recent work on transshipments include Archibald et al.
(1997), Rudi et al. (1998) and Tagaras (1999).

We show that our problem is NP-hard and provide an
exponential algorithm to solve it optimally. In addition,
we develop a time partitioning heuristic based on the
general framework of the design of time partitioning
heuristics for dynamic lot sizing problems developed by
Federgruen and Tzur (1999). The heuristic performs very
well in an extensive experiment that we conducted.

The major contributions of this paper are in proving
the NP-hardness of the multi-location DTP, identifying
the structure satisfied by an optimal solution and deve-
loping optimal and heuristic algorithms for the problem.
Both algorithms are based on the structure that was
found, which is a generalization of related dynamic lot
sizing results. In addition, we contribute to the modeling
of the dynamic transshipment problem with multiple lo-
cations by presenting several possible transshipment
mechanisms.

The DTP may be viewed as an extension of the classical
single item dynamic lot sizing problem presented by
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Wagner and Whitin (1958). It is closely related to the
Joint Replenishment Problem (see Section 4.3) studied by
Joneja (1990), Federgruen and Tzur (1994a), and others,
as well as the one warehouse multi-retailer problem,
studied by Federgruen and Tzur (1999). These latter
problems are known to be NP-hard (Arkin e al., 1989).
Note that none of these lot sizing problems considered
the issue of transshipments.

This paper is organized as follows: in the next section
we formulate our model. In Section 3 we prove structural
properties of an optimal solution. These properties are
then used in Section 4 to develop our optimal algorithm
for the problem. In this section we also discuss the
complexity of the DTP and our optimal algorithm. In
Section 5 we develop our heuristic algorithm, and discuss
its complexity while in Section 6 we describe our com-
putational study. Finally, in Section 7 we discuss three
extensions to the problem. Section 8 concludes the paper.

2. Model formulation

We follow Herer and Tzur (2001), extending the notation
to L locations:

L = number of locations; (i =1,...,L), we use p to
refer to the location which replenishes from the
outside supplier, hereafter referred to as the
replenishing location, p € {1,...,L};

T = number of periods; (t =1,...,7);

d; = demand at location i in period ¢; (for ease of
exposition we assume d;; > 0 for all i),

h = holding cost per unit per period, independent of

the location at which it is held. The assumption
of identical holding costs is reasonable consid-
ering that a single product is being considered;

K; = fixed cost incurred whenever location i replen-
ishes (from the outside supplier);
¢ = replenishment cost per unit at location i. Typi-

cally we would expect ¢; to be independent of i,

however, this is not required;

fixed cost incurred whenever the link between

locations i and j is used in the transshipment

strategy;

fixed costs of sending a transshipment from

location p to the locations in the set .7 \ {p}.

Under the direct transshipment mechanism

AP(‘ﬂL)}: Zie]\{p} Apiﬂ pE {17 s 7L}7 I C {17

., L}

Cij = direct variable transshipment cost per unit
transshipped from location i to location j;

cij = effective variable transshipment cost, or simply
the wvariable transshipment cost, per unit
transshipped from location i to location j;
Cij = éij +c — Cj.
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The direct variable transshipment cost ¢;; may represent
the per unit cost of loading the unit onto the vehicle at
location i and unloading it at location j. Note that ¢;; is
considered the effective variable transshipment cost be-
cause when a unit is transshipped from location i to lo-
cation j we pay, in addition to the direct variable
transshipment cost, a cost of ¢; instead of ¢; to satisfy a
unit of demand at location j. From now on we ignore
the variable replenishment cost, as it is included in the
variable transshipment cost. (Therefore, the constant
S e 20 dy has to be added to the total cost that we
obtain in order to get the true cost of a given solution.)
Even though ¢;; can be negative, we observe that
cjj +cji = ¢;; + ¢;; > 0, thus it is suboptimal to transship
items back-and-forth. We assume with respect to the
variable transshipment and fixed link costs that the tri-
angle inequality is satisfied, that is: ¢;; +cjx > cix and
Aij + Aj > Ajx. In almost all practical situations this as-
sumption is satisfied.

We say that there is a transshipment from location i to
location j when, in a given period, there are items that
originate at location i and their final destination is loca-
tion j. A transshipment cost of ¢;; is incurred for each unit
transshipped in this way. We refer to the decision re-
garding how much to transship between each pair of lo-
cations as the transshipment quantities decision. Another
decision, referred to as the transshipment links decision,
specifies the links to be used in order to carry out the
transshipment. The transshipment links decision is asso-
ciated with the fixed costs of transshipments which is
determined by the (given) transshipment mechanism.
With the Direct transshipment mechanism, a transship-
ment from location i to location j means traversing the
link between location i to j and incurring a cost of 4;;.
The fixed link (transshipment) costs depend only on the
identity of the sending and receiving locations and not on
the quantities to be transshipped; thus, this cost is de-
noted 4,(.#). From now through to the end of Section 6
we consider the Direct transshipment mechanism. In
Section 7.1 we discuss additional transshipment mecha-
nisms and the cost structure resulting from each of them.
Finally, we assume that the time to perform a trans-
shipment is small in comparison to the length of a period.

The dynamic transshipment problem is to find replen-
ishment quantities and transshipment strategies for all
locations over the finite horizon, such that demand at
every location in every period is satisfied and the sum of
fixed replenishment costs, fixed and variable transship-
ment costs and variable holding costs is minimized. We
refer to this problem as the DTP.

It is helpful to represent the flow of items in the DTP
with the Direct transshipment mechanism as a fixed cost
network flow problem in the following way (see Fig. 1).
There are LT + 1 nodes: a source node denoted as node 0,
and a node for each location i for every period ¢, denoted
as node (i,#), (1 <i<L and 1 <¢<T). There is a de-
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mand of d;, units at node (i,¢), and a supply at the source
node of the sum of all demands. The set of arcs consist of
replenishment arcs, inventory arcs and transshipment
arcs. Replenishment arcs exist between the source node
and every other node; inventory arcs exist between node
(i,t) to (i,t+1) for 1 <i<L and all 1 <¢t<T; two
transshipment arcs (one in each direction) exist between
nodes (7,¢) and (j,¢) for every pair of nodes 1 <i# ;<L
and 1 < ¢ < T. The costs of the flows on these arcs are the
replenishment costs (fixed), holding costs (variable) and
transshipment costs (fixed plus variable), respectively. We
refer to this network as the replenishment network. A
feasible flow (i.e., a flow that satisfies the demand re-
quirements of the nodes) in this network corresponds
with a feasible solution to the DTP and every feasible
solution can be represented as a feasible flow.

3. The structure of the optimal solution

In this section we identify the structure of an optimal
solution. This structure will form the backbone of both
our optimal and heuristic solution procedures. The fol-
lowing lemma is closely related to a well-known result for
minimum cost uncapacitated network flow problems with
concave costs (Denardo, 1982). While the DTP with the
Direct transshipment mechanism is in fact such a problem
(thus the result follows from the above reference), this is
not the case for the transshipment mechanisms presented
in Section 7.1. Therefore, a short proof is provided.

Lemma 1. There exists an optimal solution to the DTP in
which every node in the replenishment network has only one
source of supply.

Proof. For each node with more than one source of
supply, choose the source with the least variable source to
node unit cost (if several such sources exist, choose one of
them arbitrarily). Transfer the flow from all other sources
of this node to the flow from the chosen source; this does
not increase the variable costs, and may even save on
fixed replenishment or transshipment costs. |

In the following definition of a block, s; is used to de-
note the Start of the block at location i#; similarly e; — 1
is used to denote its End. In addition, in the following
definition and throughout the rest of the paper, when-
ever s; = e; the series (i,s;),...,(i,e; — 1) is considered
empty.

Definition 1 (block). 4 block denoted by (s1,s2,...,s1) —
(e1,e2,...,e) (1 <s;<e<T+1foralli=1,...,Land
there exists a j € {1,...,L} such that s; < e;), or simply
(s) — (e) is a set of nodes on the replenishment network
of the form (1,s1),...,(1,e1 — 1), (2,82),..., (2,e2 — 1),
...... , (Lysp)y...,(Lyer — 1) whose demand is satisfied



422

i .

Y

dLQ

dLl

Fig. 1. The replenishment network.

from replenishment(s) within these nodes, and replenish-
ment(s) within these nodes are not used to satisfy demand at
nodes outside the block.

For example the block (1,3,4,4) — (3,3,6,5) denotes
that the demands at location 1 in periods 1 and 2, the
demand at location 3 in periods 4 and 5, and the demand
at location 4 in period 4 (i.e., nodes (1,1), (1,2), (3,4), (3,5),
(4,4) of the replenishment network) are all met through
replenishment at these same location-period pairs.

Definition 2 (belong to a block). Given a block, let
I ={ils; < e;} be the set of locations having some of their
demand satisfied by a replenishment within the block; if
i € 4, we say that location i belongs to the block.

Using the same example as above, locations 1, 3, and 4
belong to the block (1,3,4,4) — (3,3,6,5), and thus
J =1{1,3,4}.

Definition 3 (immediate transshipment). A transshipment is
called immediate if and only if it is performed in the period
in which the transshipped items arrive at the replenishing
location.

Herer and Tzur
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Definition 4 (special block). (s1,s2,...,57) — (e1,ea,...,
er) is a special block if the following three conditions are
satisfied:

1. (s1,82,...,8.) — (e1,ea,...,ep) is a block.
2. All the demand of all nodes in (s1,s2,...,5)
— (e1,ea,...,e) is satisfied by one replenishment.

3. If the replenishment is at location p, then there is an
immediate transshipment to every i € #\{p} and there
are no other transshipments in the block.

Special blocks have the following properties.

Property 1. If (s1,s0,...,5.) — (e1,ea,...,e.) is a special
block, then a replenishment occurs at location p in period
s, for some p € .# such that s, = min;c s s;. This property
holds since a special block contains only one replenish-
ment and no backorders are allowed.

Property 2. If (sy,s2,...,51) — (e1,ea,...,er) is a special
block in a solution that satisfies Lemma 1, then s; = s, for
all i € .#. This property holds because otherwise, due to
Condition 3 of Definition 4, node (i,s,) would have two
sources of supply.
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The following lemma, together with Lemma 1, will be
needed in the proof of the theorem which characterizes
the structure of an optimal solution.

Lemma 2. There exists an optimal solution to the DTP in
which all transshipments are immediate.

Proof. Given any solution which satisfies Lemma 1 we
show how to transform it, without increasing costs, into
a solution in which all transshipments are immediate.
Consider the earliest replenishment in the solution, and
the final destination of all the units included in it. If all
units arrive at the location of their final destination in the
same period in which they were replenished, then all
transshipments associated with this replenishment are
immediate, and we proceed to the next replenishment.

On the other hand, if some units arrive at their final
destination later than the replenishment period, then we
push all the transshipments associated with this replen-
ishment back in time to the replenishment period, thus
making them immediate. Furthermore, since there is only
one source of supply for each node, if some units are
pushed backward, then all units that supply the node in
question are pushed backward. The total holding costs
remain the same since the holding costs at all locations
are identical. The variable transshipment costs are unaf-
fected by the timing in which the transshipments are
performed. Moreover, the transshipments may now come
directly from the replenishing location rather than
spending time at another location, which is less costly by
the triangle inequality on the ¢;;’s. Similarly, the fixed
transshipment costs are less costly by the triangle in-
equality on the 4;;’s. Note that a node may have more
than one source in the replenishment period in the
transformed solution, but since we are examining the
replenishments from earlier to later this is of no conse-
quence to the proof.

Repeating this transformation for all replenishments
from the earliest to the latest results in all transshipments
becoming immediate, with a cost value no larger than the
original cost value. |

Note that we have not yet shown that there is an op-
timal solution to the DTP that satisfies both Lemma 1
and Lemma 2. This fact is proven within the proof of
Theorem 1.

Theorem 1. There exists an optimal solution to the DTP
that can be described as a collection of disjoint special
blocks.

Proof. Given any solution we first show how to trans-
form it into a solution which satisfies both Lemmas 1 and
2 without increasing costs. Then we show that the re-
sulting solution is a collection of disjoint special blocks.
The transformation consists of two steps:
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Step 1. Transform the solution into one in which every
node has only one source of supply, as in the
proof of Lemma 1.

Step 2. Transform the solution resulting from Step 1 into
one in which all transshipments are immediate, as
in the proof of Lemma 2.

At the completion of Step 2 some nodes may have
more than one source of supply, and therefore Step 1 may
need to be repeated. Whenever we perform Step 1, some
transshipments may become non-immediate because
some replenishments may be eliminated and the trans-
shipments associated with these replenishments may no
longer be immediate. As a result, Step 2 may need to be
repeated at the completion of Step 1. Therefore, Steps 1
and 2 are executed one after the other until no nodes have
more than one source of supply and all transshipments
are immediate. This transformation process is finite since
in Step 2 transshipments are always pushed backwards in
time (and time is discrete), and in Step 1 no new trans-
shipments are formed.

We now show that a solution which satisfies the above
two lemmas, satisfies the condition of the theorem.
Consider any replenishment and the set of locations
which receive units from this replenishment. By Lemma 2
the transshipments to these locations are immediate. For
a given location, we know from Lemma 1 that all nodes
in the replenishment network that receive supply from
this replenishment are consecutive in time and that they
are not supplied from anywhere else in the network.
Therefore, the nodes that are supplied from this replen-
ishment satisfy the conditions of Definition 4 and there-
fore form a special block. Since every replenishment in
the optimal solution is associated with a special block,
Theorem 1 is proved. |

To illustrate Theorem 1 consider a four location five
time period problem. For this problem the following
collection of disjoint special blocks forms a solution to
the DTP: (1,1,1,1) — (1,1,3,2), (1,1,3,2) — (3,3,3,2),
(3,3,3,2) — (6,3,3,2), (6,3,3,2) — (6,3,3,6), and
(6,3,3,6) — (6,6,6,6).

4. Finding an optimal solution

As a result of Theorem 1 we consider only solutions
which are a collection of special blocks. The cost of such a
solution is simply the sum of the costs of all the blocks
that are included in it, since there is no interaction be-
tween blocks. Given the cost of each special block, we
show in Section 4.2 how to find an optimal collection of
special blocks while in Section 4.3 we discuss the com-
plexity of this algorithm. First, however, we describe how
to calculate the cost of a special block.
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4.1. Calculating the cost of a special block

Recall that the block (si,s2,...,5,) — (e1,ea,...,e) is
also denoted by (s) — (e) and that .# = {i|s; # ¢;} and
s; = s, for every i € .#. As a result, and according to the
definition of a special block, a replenishment occurs in
period s, for one of the locations in the set .#. Denote by
M, ((s) — (e)) the minimal cost of the special block given
that location p is the replenishing location. M,((s) — (e))
consists of four parts, the replenishment cost at location
p (K,), the holding cost at all locations (k) .,
Z;’:szi’:[IH dir=hY i, j’:S:H (¢ —1sp)d,-,), the variable
transshipment cost (3_c 5\ 1,y Cpi Zf’zsp dy), and the fixed
transshipment costs (3 ;c 5 () 4pi)-

It follows that the cost expression for a special block

(replacing Zie]\{p} Api by A4,(.F)) is:

ei—1
My((s) = (@) = Kp+ 5SS (= 5,)d

i€d t=sp+1

ei—1
+ D ) di+Ap(s). (1)

S ="

To find the cost of a block, we consider all possible lo-
cations as the replenishing location, and choose the best
one. Let M((s) — (e)) denote the minimum cost of a
special block, then:

M((s) = (¢)) = min My((s) — (). (2)

For example, consider the special block (7,9,7,7,6) —
(9,9,8,7,6). We say that locations 1 and 3 belong to the
block and its cost is: min[K; + Ahdig + ci3ds7 + Ai3,
K5 + hdig + c31(dy7 +dig) —|—A31].

4.2. Optimal algorithm for solving the DTP

In this section we present an algorithm for finding an
optimal solution by identifying an optimal collection of
special blocks. Similarly to the single location Wagner
and Whitin (1958) and the two location Herer and Tzur
(2001) versions of the problem, we solve our problem by
finding a shortest path in an appropriately defined net-
work.

We refer to this network as the block network and it is
based on an L-dimensional grid which has 7 + 1 nodes in
each dimension. We identify a node in this network by an
L-tuple, (s1,s2,...,s,) which indicates that the starting
inventory at location i in period s;, i = 1,...,L, 1s zero.
An arc from node (si,s2,...,5,) to node (ej,ez,...,er)
corresponds to the block (si,s2,...,5.) — (e1,e2,...,eL).
In fact we build the network such that there is an arc from
node (s1,s2,...,5,) to node (e, ey,...,e.) if and only if
the block (sy,$2,...,5.) — (e1,e2,...,e) is a well defined
special block, i.e., s; < ¢; for all i (and s; < e; for some i)
and for each i € .7, 5; = 5,. Moreover, we use the nota-

Herer and Tzur

tion (s1,s2,...,5.) — (e1,e,...,er)(and (s) — (e)) to
refer both to the block and to the associated arc. The cost
of an arc is set equal to the cost of the associated special
block, i.e. M((s) — (e)), see Equation (2).

We note that as a result of the way the block network
was constructed:

1. Every path in the block network from node
(I,1,...,1) to node (T+1,T+1,...,T+1) corre-
sponds to a feasible solution for the DTP. The cost of
the path equals the cost of the corresponding DTP
solution. With cost equal to the sum of the cost of the
arcs.

2. There exists a path in the block network from node
(1,1,...,1) to node (T+1,T+1,...,T+1) that
corresponds to an optimal solution to the DTP (The-
orem 1).

As a result of these two observations we see that the
DTP can be solved by finding the shortest path in the
block network from node (1,1,...,1) to node (7 + 1,
T+1,...,T+1).

4.3. Complexity of the optimal algorithm for solving the
DTP

Herer and Tzur (2001) described a polynomial (O(T*))
algorithm to solve the dynamic transshipment problem
with two locations when holding costs are location-de-
pendent. Here we show that with L locations the problem
is NP-hard even with identical holding costs at all loca-
tions.

Theorem 2. The DTP is NP-hard.

Proof. Consider the decision version of the Joint Re-
plenishment Problem (JRP):

Instance JRP: a demand dj, is specified for L products
for T periods. We incur a fixed replenishment cost K; in
every period in which item i is replenished as well as a
variable inventory holding cost %; in every period for each
unit of item i held in inventory. In addition, we incur a
joint fixed replenishment cost K, whenever at least one
item is replenished, regardless of the exact set of items
being replenished.

The decision version of the JRP was shown to be NP-
complete by Arkin et al. (1989) for item-dependent
holding cost rates. By multiplying the demand of each
item by its holding cost and setting the holding cost of
each item to one, the result also applies for item-inde-
pendent holding cost rates. Hence, we assume from now
onthat h; = 1foralli=1,...,L. For a given instance of
the decision version of the JRP we define an instance of
the decision version of the DTP, as follows: T =T; L =L
and each location is associated with an item; d;; = dj,, for
all i, t; h=1; ¢;; =0, for all i, j; 4; =K;, for all i, j
K, = Ky + K;, for all i.
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With this transformation one can see that the total
fixed cost of replenishing a set of items .# in the JRP (i.e.,
Ko+ ,c,K)) is the same as the total fixed cost of re-
plenishing any location p in .# and transshipping to the
rest of the locations in .#. Similarly, the other cost com-
ponents in a replenishment strategy for the JRP are
identical to the costs of the associated replenishment and
transshipment strategy for the DTP. Since the reduction
is polynomial, this completes the proof. |

Remark. While we have used the unit scaling technique in
order to refer, without loss of generality, to the JRP with
item-independent holding costs, a similar scaling is not
applicable for the DTP. This is because the cost of
transshipping one unit from location i to location j is not
well-defined when these two locations have different unit
scales.

We now turn our attention to determining the com-
plexity of our optimal algorithm for solving the DTP. The
algorithm contains two stages:

1. Building the block network.
2. Finding the shortest path in the block network.

To build the network we have to create its nodes and
arcs. Since the block network is L-dimensional with 7 + 1
nodes in each dimension, it has (7 + 1)* nodes. As there
is a one-to-one correspondence between arcs in the block
network and special blocks, we determine the number of
arcs by counting the number of special blocks. Any subset
of locations can make up the members of a special block,
thus there are 2/ — 1 possible combinations of locations
that can belong to a special block. As mentioned in
Property 2, the starting period is identical for all loca-
tions in the special block, and hence takes a value be-
tween one and 7. The run out time (e; — 1) for each
location i that belongs to the special block can be any one
of O(T) periods. Furthermore, since the number of lo-
cations that belong to a special block is O(L), the special
block may end in any one of O(T%) ways. Combining
these observations we see that there are O(2LTL*!) arcs.

To complete the construction of the block network we
need to evaluate the cost of each of the arcs. To do this we
first perform an O(LT?)" preprocessing step to calculate
the following quantities for all 1<i<L and
I <s<e<T+1:

D;(s,e) = the demand at location i for periods s through
e — 1 inclusive (=37 dy);
H;(s,e) = the holding cost at location i for periods s

through e — 1 if we replenish in period s for
periods s through e—1 (=h Z;;SZ Di(t+1,
e—1)=h Z;:slﬂ (t = s)d).

' The naive complexity is O(LT*®), but O(LT?) can be achieved
with minimal care.
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Once these calculations are performed we can rewrite
Equation (1) as:

M,((s) = (¢) = K, + Y Hi(si, e:)
icd
+ ) epDi(sie) +4,(7). (3)
ic/\{p}

Equation (3) can be evaluated in O(L) time and thus
evaluating M((s) — (e)), requires O(L?) time. Since there
are OQ2LTIH!Y arcs, building the network requires
O(L*2-T* 1) time. Finally, since a shortest path in any
network can be calculated in O(number of arcs) time,
that is, O(2ETE*!) in our case, the complexity of the al-
gorithm is O(L?2LTEH).

5. Time partitioning heuristic for the multi-location DTP

The algorithm developed in Section 4 may be used to
solve instances of the multi-location DTP of limited size.
In this section we propose a heuristic which is capable of
solving larger instances.

5.1. Heuristic algovithm for solving the DTP

The suggested heuristic is based on the idea of time par-
titioning, suggested by Federgruen and Tzur (1994a),
initially for the Joint Replenishment Problem. It was later
extended to a general framework for the design of time
partitioning heuristics for dynamic lot sizing problems,
see Federgruen and Tzur (1999). This approach is moti-
vated by forecast horizon results for the single item dy-
namic lot sizing problem which suggest that optimal or
close to optimal initial decisions can be determined on the
basis of relatively short horizons (see e.g., Bensoussan
et al., 1991; Federgruen and Tzur, 1994b). Therefore, in
time partitioning heuristics for dynamic lot sizing prob-
lems, the complete horizon is partitioned into smaller
intervals, such that an instance of the problem is defined
for each interval and may be solved to optimality. The
problems defined on the intervals are solved sequentially,
where the results of an earlier interval determine the
starting conditions of the subsequent interval, until a
complete solution is constructed.

Following the general steps of the design of time par-
titioning heuristics (Federgruen and Tzur, 1999), our
suggested time partitioning heuristic for the multi-loca-
tion DTP is as follows:

Step 1. “Identify the collection of intervals into which the
full horizon is to be partitioned.” We partition
the full horizon into non-overlapping intervals. A
trade-off exists in determining the length of each
interval. On the one hand, an important guide-
line is to choose a length for each interval small
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enough such that the multi-location DTP in-
stance defined on it can be solved by our optimal
algorithm in a reasonable amount of time. On the
other hand, we expect that longer intervals will
generally produce better results since then less
truncations of the full horizon occur. These
truncations are the only reason for the loss of
optimality in applying the heuristic procedure. It
is recommended to set the interval length to be
the longest possible within a reasonable time
constraint on the heuristic’s run time.

Step 2. “Define initial conditions for the intervals.” The
subproblem associated with each interval is a
slightly modified instance of the multi-location
DTP. The parameters of each period in the sub-
problem are the original parameters of the cor-
responding intermediate period in the original
problem. However, to avoid requiring zero initial
and ending inventories in each subproblem, initial
conditions are defined, which allow an option for
starting inventory (which is the ending inventory
of the previous interval). As a result a slightly
modified instance of the multi-location DTP is
created, see below. In Step 3 we discuss how these
differences are handled algorithmically.

The initial conditions of each subproblem (except for
the first subproblem which remains unaltered), in essence,
add an extra source to period 1, denoted as period 0. The
purpose and actual meaning of this extra source is to allow
additional units to be replenished in previous subprob-
lems, such that the initial inventory of the current sub-
problem may be positive. We restrict our attention to
adding replenishment to each location only in the latest
period (within the previous subproblems) in which re-
plenishment already exists for that location. For some
locations the last replenishment period means a direct
replenishment of that location from the outside supplier;
for other locations it means a period in which transship-
ment has occurred to that location. In this way, additional
replenishment and transshipment quantities are added to
previous subproblems. The timing of replenishments and
transshipments in previous subproblems remains un-
changed. In this way the “extra source” of supply asso-
ciated with period zero is associated with variable costs
only, since we have already accounted for the fixed costs.
Within the variable costs, special care has to be taken with
respect to holding cost calculations. A unit added to the
previous subproblems has to be carried in inventory for as
many periods as there are until the beginning of the new
subproblem. This procedure is formalized below.

Let DTP, denote the multi-location DTP associated
with the gth interval, and n, be its length, as determined
in Step 1 above. We denote N, = > §_, ng, i.e., N, is the
original index of the last period in the gth interval. For
g = 1, DTP, consists of the first n; periods of the original
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problem. To specify DTP, for some g > 2, let {;(g—1)
denote the last period in which location i replenished its
inventory, either by ordering itself or by receiving a
transshipment from some other location in the partial
solution of the first g — 1 intervals. Period 0, which rep-
resents the extra source of period 1 in each subproblem,
has the following parameters (we add (0) to the notation
of all parameters which are constant over time, to denote
their value in period 0; for the holding cost rate we dis-
tinguish among locations by their index):

e d = 0 for all i; there is no demand associated with the
additional period.

e A4;;(0) =¢;(0) = oo for all i and j; i.e., no transship-
ments are allowed in period 0.

e K;(0) = 0 for all i; as explained above, additional units
may be ordered at each location from the extra
source, without re-incurring the fixed replenishment
costs.

e 5j(0) = (Ng—1 —li(g — 1)+ 1)h; this represents the
cost of carrying one unit in inventory from the last
time location i was replenished until the beginning of
the new subproblem.

e ¢;(0) =0 for all , if in period ¢;,(g — 1) location i re-
plenished from the outside supplier, and ¢;(0) = ¢;; if
in period /;(g— 1) a transshipment occurred from
location j to location ; this cost represents the cost of
purchasing an additional unit, in the same way it was
purchased in its last replenishment period.

It may be observed that in the resulting subproblem,
the cost parameters of period 0 are not equal to those of
the rest of the periods, and that the demand in period 0 is
zero. In this way an instance of a subproblem differs from
the original definition of the multi-location DTP.

Step 3. “Apply or develop an exact procedure to solve
the subproblem associated with each interval and
solve the subproblems sequentially.” Here we use
the optimal dynamic programming algorithm
developed in Section 4, modified to account for
the differences of the subproblems from the
original problem definition.

Consider the block network associated with an arbi-
trary subproblem. We represent period 0 in this network
by an additional arc (beyond the existing one), emanating
fromnode (1, 1,...,1) to every other node in the network.
The cost of the additional arc from node (1,1,...,1) to
node (e, ey, ..., e ) represents the cost of using period 0 to
replenish every location i for which ¢; > 1. This replen-
ishment will be used to satisfy demand in periods
1,...,e; — 1. That is, the cost of adding units to the last
replenishment period of location i. This cost is separable
by location, since no new replenishments or transship-
ments, which incur fixed costs, can be made. Therefore the
cost of the additional arc is as follows (the indices used
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in the expression are the indices of the periods in the
subproblem):> ", , U dy[ei(0) 4+ hi(0) 4 (£ — l)h]} .The
first two terms within the inner parentheses represent
the purchasing and holding cost up to the beginning of
the sub-problem of each unit replenished in period 0; the
third term represents the holding costs within the periods
of the subproblem for these units. The existing (regular)
arc from node (1,1,...,1) to node (ej,ez,...,e.) repre-
sents purchasing the same units in period 1 of the sub-
problem. Therefore, the alternative with the least cost
should be used in the block network. The rest of the
algorithm proceeds as described in Section 4.

It is interesting to note that the form of both the op-
timal solution and the solution obtained from the above
heuristic are the same, i.e., they are collections of disjoint
special blocks (cf. Theorem 1).

5.2. Complexity of the heuristic algorithm for solving the
DTP

The complexity of the heuristic is derived from the com-
plexity of the optimal algorithm for the problem and the
number of subproblems solved. Defining the subproblems
appropriately and constructing the complete solution at
the end of the heuristic takes O(LT) time, which is negli-
gible relative to the rest of the complexity. The com-
plexity of the optimal dynamic programming algorithm as
discussed in Section 4.3, is O(L?2ETH+1). The modification
of the subproblem involves the addition of O(T*) arcs,
whose costs can (with a little bit of care) be calculated in
O(T*) time. Thus, the overall complexity of the algorithm
is not affected by the modifications described above. As-
sume, for simplicity, that all subproblems are of equal
length, n, independent of 7 and that 7/n is an integer. In
this case, the complexity of the optimal algorithm for each
subproblem is O(L?2Fn*+!) and the complexity of the en-
tire heuristic (which consists of solving T'/n subproblems)
is O((T /n)L*2Ent*Y) = O(TL*2Ent).

The complexity is now linear in the number of periods,
but still exponential in the number of locations, due to the
factor 2fn*, where n may be very small (see our compu-
tational results where 7 is chosen to be as small as three).
The reason is that the heuristic partitioned the periods,
which affected only the complexity associated with the
number of periods. Due to the reduced complexity of the
heuristic it will run in a reasonable amount of time for
values of L and T which are considerably larger than is
possible in the optimal algorithm. If needed, the heuristic
may be generalized to include a partitioning of the loca-
tions as well.

6. Computational tests

To test the effectiveness and behavior of our heuristic, we
conducted an extensive experiment which consisted of a
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total of 1808 runs of our heuristic. In total, nine attributes
of the problem were considered; the first two involved the
size of the problem, the third was the way in which the
horizon was spilt into intervals, and the last six involved
various aspects of the problem investigated.

The two attributes that determined the size of the
problem are the number of locations (L) and the number
of periods (7). The size of the problems investigated was
limited since we needed to find the optimal solution for
each problem. We used a limit of 12 hours of computer
time to find the optimal solution as a guide in limiting the
problem size. The problem sizes investigated, hereinafter
denoted (L, T), were (1,8), (1,12), (1,24), (2,8), (2,12),
(2,24), (3,8), (3,12), (3,24), (4,8), (4,12), (4,16), (4,20),
(4,24), (5,8), (5,12), (6,8). Problems with one, two, and
three locations were only used to examine trends in the
heuristic performance with respect to the problem size;
they are not interesting multiple location problems in
themselves. Note that the problem size was not limited by
our heuristic, but by the optimal algorithm which was
needed for comparison.

The third attribute was how the problem was split into
subproblems. Problems consisting of eight periods were
split into two problems of four periods each (denoted 4-
4). Problems consisting of 12, 16, 20, and 24 periods were
split either into two equal halves, 6-6, 8-8, 10-10, and 12-
12, respectively, or a series of problems each having four
periods, 4-4-4, 4-4-4-4, 4-4-4-4-4, and 4-4-4-4-4-4, re-
spectively. In addition, problems having five locations
and 12 periods were split into four sub-problems having
three periods each, 3-3-3-3, and problems having four
locations and 24 periods were split in three additional
ways—3-3-3-3-3-3-3-3, 6-6-6-6, and §8-8-8.

For each problem size and each method of splitting the
horizon into intervals we compared the heuristic solution
to the optimal for 64 problems representing a full facto-
rial experiment of the last six attributes, each tested at
two levels. In all problems the holding cost was set equal
to one. The six attributes of the problem and values tested
are as follows:

1. Mean demand—10 and 50. Note that even though
demand is deterministic, it is dynamic. Thus, we ran-
domly drew the demands for each location in each
period from a uniform distribution.

2. Coefficient of variation (CV) of demand—0.2 (stable
demand) and 0.5 (unstable demand).

3. Number of identical locations in terms of the demand
parameters—L and L — 1. When all locations were not
identical the last location took its two demand pa-
rameters from the other level of the factorial design.
This factor was chosen to examine if the heuristic’s
performance was affected by the ‘identicalness’ of the
locations.

4. Placement of locations—uniform and separated. In all
experiments the locations were confined to the unit
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circle. When the placement was uniform, the locations
were placed uniformly within the unit circle. When the
placement was separated, all locations were placed at a
distance of at least 0.5 from the center of the circle.
L — 1 locations were placed together (between 75° and
105°) and the last location was placed by itself (be-
tween 180° and 360°). In all cases the locations were
placed uniformly in the allowable areas. Note that
when the locations were separated and the locations
were not identical, the non-identical location was the
location that was chosen to be separated from the
group. This factor was also chosen to vary the ‘iden-
ticalness’ of the locations. We denote the distance
between locations i and j by J;;.

5. Fixed replenishment cost (K;)—30 and 60.

6. Fixed and variable transshipment costs between loca-
tions i and j (Al],Clj)f(Sélj, léu) and (20(511, 451J)
These two attributes were allowed to vary together
because they both represent the attribute of trans-
shipment costs.

We split our analysis into two parts. In the first part
we examine, for a fixed problem size, the effects of the
other seven attributes of the problem. In order to more
clearly and concisely present this data we will concen-
trate on the biggest problem sizes (4,24), (5,12), (6,8).
The results for the other problem sizes are qualitatively
the same. In Table 1 we present the average values of
the ratio of the heuristic solution to the optimal solu-
tion?, organized by the attributes being investigated. We
also report, in parentheses after the average, the per-
centage of the problem instances for which the heuristic
solution coincided with the optimal solution. Note that
each number presented (except for the last row and last
column) represents the average of 32 problems in-
stances.

In the discussion below we will use the term ‘“‘signif-
icant’ in its statistical sense. However, the term can also
be used in its practical sense and it is questionable
whether any of the differences found below are practi-
cally significant. The greatest ratio in Table 1 is 1.010,
which represents a relative error of only 1%! We per-
formed an ANOVA analysis with a significance level of
95% (see Table 1). We used ANOVA because of its
widespread recognition despite the fact that the residu-
als are not normally distributed with mean zero (as can
be inferred from Table 1). We also performed a non-
parametric analysis of the results and obtained quali-
tatively the same results with only slightly different p
values.

>The true cost of any policy includes the constant
S e SE, di (see Section 2). However, we exclude this
constant from our computational study with the note that this
is a conservative decision (the inclusion of the constant would
decrease the ratio being considered).
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Of the six attributes of the problem, three were found
to significantly affect the performance of the heuristic.
The heuristic performs better with higher mean demands,
lower fixed replenishment costs, and lower transshipment
costs. These three trends can be viewed as one: each tends
to increase the replenishment frequency (Harris, 1915).
With a high frequency of replenishments it is more likely
that a period in which a replenishment occurs in the op-
timal solution would be contained within a given interval
considered by the heuristic, and therefore would not be
“missed” by our heuristic.

One interesting significant second order interaction was
found, that being between the mean demand and the CV
of demand. A high CV is synonymous with having de-
mand spikes which is sometimes called lumpy demand. In
the presence of demand spikes our heuristic is more likely
to identify optimal decisions which are involved with fixed
costs since the cost associated with non-optimal decisions
is relatively much higher. For example, often it is prefer-
able to replenish in a period with a demand spike; the
items needed to satisfy the unusually large demand do not
have to be held in inventory. Moreover, when the mean
demand is also high, the absolute magnitude of the de-
mand spikes increases, thus there is a two-way interaction.

The way the horizon was split into intervals was found
to significantly affect the performance of the heuristic.
The longer the intervals, the better the heuristic per-
formed, since less “‘truncations” of the horizon occurred.
However, even with a very short interval (three periods)
the results can be termed exceptional.

The problem size consists of two attributes: number of
locations and number of time periods. We investigated
them separately. First we fixed the number of periods at
eight, 12 and 24 and allowed the number of locations to
vary from one to the point at which computing the op-
timal solution required more than 12 hours (see Table 2).
The length of the subproblems was set to four periods. In
Table 2 we see that the quality of the solution generally
increased as the number of locations grew and this trend
was indeed shown to be significant. We believe the reason
for this is that when more locations are involved, there
are more possibilities to “‘correct” a suboptimal decision.
A correction can be made, for example, through a
transshipment from another location, which makes a di-
rect replenishment; with more locations, there are more
such opportunities.

To investigate the effect of the length of the horizon we
fixed the number of locations and allowed the horizon
length to vary (see Table 3). The sizes of the subproblems
were again set to four periods. In the table we see that the
quality of the solution generally decreased with the length
of the horizon and this trend was indeed shown to be
significant. One possible reason for this phenomenon is
that for the first subproblem our heuristic finds the op-
timal solution and ‘mistakes’ can only creep in with
subsequent intervals.
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Table 2. The effect of the number of locations: in all cases the
heuristic divided the horizon into subproblems each having four
time periods

L T Ratio of heuristic
solution to

optimal solution

Percent of optimal Run time of
solutions heuristic
found (%) (in seconds)

1 8 1.004 75 <1
2 8 1.003 70 <1
3 8 1.002 75 <1
4 8 1.001 78 <1
5 8 1.001 &4 <1
6 8 1.001 83 53
1 12 1.004 75 <1
2 12 1.003 66 <1
3 12 1.003 69 <1
4 12 1.002 66 <1
5 12 1.004 63 3
1 24 1.011 31 <1
2 24 1.006 47 <1
324 1.004 50 <1
4 24 1.004 53 <1

Table 3. The effect of the horizon length: in all cases the
heuristic divided the horizon into subproblems each having four
time periods

L T  Ratio of heuristic ~ Percent of optimal Run time of
solution to solutions found heuristic

optimal solution (%) (in seconds)

38 1.002 75 <1

3012 1.003 69 <1

3 24 1.004 50 <1

4 8 1.001 78 <1

4 12 1.002 66 <1

4 16 1.003 70 <1

4 20 1.003 47 <1

4 24 1.004 53 <1

5 8 1.001 84 <1

5 12 1.004 63 3

7. Extensions

In this section we discuss three extensions of the problem.
The first is when different transshipment mechanisms are
applied within the transshipment strategy (Section 7.1),
the second is when the variable replenishment and
transshipment costs may be general concave functions
(Section 7.2), and the third is constant supplier lead time.
In both cases we demonstrate that our analysis may be
extended to these more general cases.

7.1. Other transshipment mechanisms

In the analysis of Sections 2—-6 we assumed that the Di-
rect transshipment mechanism is used. Indeed, we believe
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Fig. 2. Illustration of the four transshipment mechanisms: (a)
Direct; (b) TSP; (c) Multi-Path and (d) MST.

that this mechanism is the most important one. However,
other transshipment mechanisms are also realistic.

We now present three other transshipment mechanisms
(see Fig. 2(a—d)). We also consider the implications of
these mechanisms on our analysis and conclude that all
theoretic as well as algorithmic results in Sections 2—6
apply to all the mechanisms considered. In fact, our re-
sults hold as long as A4,(.#) is both monotone (i.e.,
Ap(JF1) < A4,(F1US2)) and subadditive (ie., 4,(51J
I2) < Ap(S1) + 4p(F2)). These two properties are found
in most (if not all) practical cases.

7.1.1. The TSP transshipment mechanism

This mechanism requires that each time a location sends
out a transshipment, a truck follows a traveling salesman
tour through the sending location and each of the re-
ceiving locations. In this case 4,(.#) is the cost of the links
in the traveling salesman tour through the locations in the
set .

7.1.2. The multi-path mechanism

In this mechanism, the transshipment reaches the re-
ceiving locations through a set of paths which originate at
location p. Thus, 4,(.#) is found by identifying a mini-
mum cost set of disjoint paths originating at location p
and covering all locations in the set .7.

7.1.3. The MST transshipment mechanism

This mechanism requires one to move the items from
location p to all other receiving locations by traversing a
series of links emanating from the sending location. Its
cost is the minimal cost of linking up all the locations into
one connected graph using the subgraph induced by the
set 7. If 4;; = Aj; for all i, j € .#, then 4,(.7) is the length
of the minimal spanning tree in the subgraph induced by
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the set .J. If 4;; # A4;; for some i, j € .#, then we need to
solve the related problem of finding the minimal spanning
arborescence rooted at p.

We now show that all the results obtained in Sec-
tions 2—6 for the Direct transshipment mechanism are
valid for the other mechanisms as well. Whenever re-
quired, we extend the arguments given earlier. The re-
plenishment network (Fig. 1) still represents the flow of
items in the DTP. However, when the other transship-
ment mechanisms are used, the fixed transshipment costs
cannot be associated with the transshipment arcs. This is
because the link between the sending location and a re-
ceiving location is not necessarily used. On the other
hand, other links may be used, as explained above. The
fixed link (transshipment) costs still depend only on the
identity of the sending and receiving locations and are
given by the set of functions 4,(.#). Therefore, the re-
plenishment network does not represent a network flow
problem any more, and yet the results associated with this
network still hold. In particular:

e A feasible flow in the replenishment network corre-
sponds with a feasible solution to the DTP and every
feasible solution can be represented as a feasible flow.
Lemma 1 and its proof hold with no changes.
Lemma 2 holds with no change. In its proof, the only
change is associated with claiming that the fixed
transshipment costs are less costly in the transformed
solution than in the original solution. This is true since
A4,(f) is subadditive.

Theorem 1 and its proof hold with no changes.
Equation (1) holds with no change.

Theorem 2 holds with no change. This generalization
is clearly true for the TSP transshipment mechanism,
since the TSP itself is NP-hard. For the other two
mechanisms, it is still true (as in the proof of Theo-
rem 2) that the total fixed cost of replenishing a set of
items .# in the JRP is the same as the total fixed cost of
replenishing any location p in .# and transshipping to
the rest of the locations in ..

e To efficiently implement Equation (3) we evaluate
A,(F) for all # in a preprocessing step. Thus the time
required to evaluate Equation (3) remains unchanged.
However, the time required to evaluate 4,(.#) for all .#
in the preprocessing step depends on the transshipment
mechanism used. If the TSP transshipment mechanism
is used, the value of 4,(.#) is independent of the re-
plenishing location, p. With this mechanism the pre-
processing step may be accomplished in O(L?2") time
by using the standard dynamic program for finding the
length of the minimal traveling salesman tour through
the set {1,..., L} (Held and Karp, 1962). A similar
dynamic program, with the same complexity, can be
used to evaluate 4,(.#) for all .# and a given p for the
Multi-path transshipment mechanism. Since p can take
on O(L) values, the total complexity of the prepro-
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cessing step is O(L*2%). If the MST transshipment
mechanism is used with symmetric costs, then 4,(.%)
can be calculated in O(L?) time because this is the
number of arcs (see e.g., Gondran and Minoux (1989)).

e Thus, since 4,(.#) is independent of p, the complexity
of the preprocessing step is O(L*2%). If the arc costs
are not symmetric, then 4,(.#) does depend on loca-
tion p. The cost of the resulting rooted arborescence
problem can also be found in O(L?) time, see e.g.,
Gondran and Minoux (1989), thus the total com-
plexity of the preprocessing step is O(L’2F). Were
these algorithms more closely examined, it is possible
that some savings could be made, but this is not the
focus of our paper. If the MST transshipment mech-
anism is used with asymmetric costs or the Multi-path
transshipment mechanism is used, then the complexity
of the algorithm is O(L*2ETHH! + L32F) because of the
preprocessing step. Otherwise, the complexity of the
algorithm after preprocessing dominates the com-
plexity of the preprocessing step and the complexity of
the overall algorithm is O(L?2LTH).

e Both the optimal and the heuristic algorithms can be
implemented without modification.

7.2. General concave replenishment and transshipment
costs

The analysis thus far also applies if we allow the replen-
ishment costs to be any concave functions (instead of
fixed plus linear) and if we allow the variable transship-
ment costs to be any concave functions (instead of linear).
To modify the proof of Lemma 1 we must substitute the
word marginal for variable. In the proof of Lemma 2 we
need to note that when transshipments are combined the
total variable transshipment cost may be reduced due to
concavity. The proof of Theorem 1 is unchanged.

7.3. Constant supplier leadtimes

Since our model is deterministic we can easily incorporate
constant supplier leadtimes into our model. This can be
done by solving the problem as presented in this paper
and shifting the orders back in time. We note that this
extension is particularly appropriate to our model since
its motivation, as given in the Introduction, is based on
clustered locations and a distant supplier.

8. Conclusions

We have analyzed a multi-location supply chain in which
transshipments are allowed. In a dynamic deterministic
demand environment, the benefit associated with trans-
shipments is the saving of fixed and possibly variable
replenishment costs. The cost of transshipments, on the
other hand, is associated with transferring the stock



432

among locations, and is modeled in this paper by both
fixed and variable components. Several transshipment
mechanisms are considered to model the fixed component
of the transshipment costs, each being associated with a
different way in which the stock may be transported
among locations. We have developed, for this problem,
both an optimal and a heuristic algorithm. They are
based on a structure which we found to be satisfied by an
optimal solution. The heuristic is required for larger in-
stances. Through an extensive computational study we
have demonstrated that our heuristic performs very well.

Acknowledgements

The authors gratefully acknowledge the work of Ilan
Estrugo who both coded and ran the algorithms de-
scribed in this paper. We would also like to thank Paula
S. Herer for her help in the statistical analysis contained
herein.

References

Archibald, T.W., Sassen, S.A.E. and Thomas, L.C. (1997) An optimal
policy for a two depot inventory problem with stock transfer.
Management Science, 43, 173—183.

Arkin, E., Joneja, D. and Roundy, R. (1989) Computational complexity
of uncapacitated multi-echelon production planning problems.
Operations Research Letters, 8, 61-66.

Bensoussan, A., Proth, J.M. and Queyranne, M. (1991) A planning ho-
rizon algorithm for deterministic inventory management with piece-
wise linear concave costs. Naval Research Logistics, 38, 729-742.

Denardo, E.V. (1982) Dynamic Programming Models and Applications,
Prentice Hall, Englewood Cliffs, NJ.

Federgruen, A. and Tzur, M. (1994a) The joint replenishment problem
with time-varying parameters: efficient, asymptotic and e-optimal
solutions. Operations Research, 42(6), 1067-1086.

Federgruen, A. and Tzur, M. (1994b) Minimal forecast horizons and a
new planning procedure for the general dynamic lot sizing model:
nervousness revisited. Operations Research, 42(3), 456-468.

Federgruen, A. and Tzur, M. (1999) Time-partitioning heuristics: ap-
plication to one warchouse, multiitem, multiretailer lot-sizing
problems. Naval Research Logistics, 46, 463—486.

Gondran, M. and Minoux, M. (1989) Graphs and Algorithms, Wiley,
New York, NY.

Harris, F. (1915) Operations and Cost, A.W. Shaw Co., Chicago, IL,
pp. 48-53.

Herer and Tzur

Held, M. and Karp, R.M. (1962) A dynamic programming approach
to sequencing problems. SIAM Journal on Applied Mathematics,
10, 196-210.

Herer, Y.T. and Rashit, A. (1999) Lateral stock transshipments in a
two-location inventory system with fixed and joint replenishment
costs. Naval Research Logistics, 46, 525-547.

Herer, Y.T. and Tzur, M. (2001) The dynamic transshipment problem.
Naval Research Logistics, 48, 386—408.

Joneja, D. (1990) The joint replenishment problem: new heuristics and
worst case performance bounds. Operations Research, 38, 711-723.

Robinson, L.W. (1990) Optimal and approximate policies in multi-
period, multilocation inventory models with transshipments. Op-
erations Research, 38, 278-295.

Rudi, N., Kapur, S. and Pyke, D.F. (1998) A transshipment game.
Working paper, The Wharton School, Philadelphia, PA.

Tagaras, G. (1999) Pooling in multi-location periodic inventory dis-
tribution systems. O M EG A-International Journal of Management
Science, 27, 39-59.

Wagner, H.M. and Whitin, T.M. (1958) Dynamic version of the eco-
nomic lot size model. Management Science, 5, 89-96.

Biographies

Yale T. Herer, B.S. (1986), M.S. (1990), Ph.D. (1990), Cornell Uni-
versity, Department of Operations Research and Industrial Engineer-
ing. Yale joined the Faculty of Industrial Engineering and
Management at the Technion—Israel Institute of Technology in 1990
immediately after the completion of his graduate studies and, except
for a few year hiatus at the Department of Industrial Engineering at
Tel Aviv University, he has been there ever since. He has worked for
several industrial concerns, both as a consultant and as an advisor to
project groups. In 1996 Yale received the IIE Transactions best paper
award. Yale is a member of the Institute for Operations Research and
Management Sciences (INFORMS), Institute of Industrial Engineers
(IIE), and the Operations Research Society of Israel (ORSIS). His
research interests include supply chain management, especially when
integrated with transshipments. He is also interested in production
control and production system design.

Michal Tzur is a Senior Lecturer in the Department of Industrial En-
gineering at Tel Aviv University, Israel. Michal joined Tel Aviv Uni-
versity in 1994 after spending 3 years at the Operations and Information
Management department at the Wharton School at the University of
Pennsylvania. She received her B.A. from Tel Aviv University and her
M. Phil. and Ph.D. from Columbia University. Michal is a member of
ITE, INFORMS and POMS. Her research interests are in the areas of
supply chain management, multi-echelon inventory management, op-
erations scheduling and production planning.

Contributed by the Location Department



