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Abstract: We investigate the strategy of transshipments in a dynamic deterministic demand
environment over a finite planning horizon. This is the first time that transshipments are examined
in a dynamic or deterministic setting. We consider a system of two locations which replenish
their stock from a single supplier, and where transshipments between the locations are possible.
Our model includes fixed (possibly joint) and variable replenishment costs, fixed and variable
transshipment costs, as well as holding costs for each location and transshipment costs between
locations. The problem is to determine how much to replenish and how much to transship each
period; thus this work can be viewed as a synthesis of transshipment problems in a static stochas-
tic setting and multilocation dynamic deterministic lot sizing problems. We provide interesting
structural properties of optimal policies which enhance our understanding of the important issues
which motivate transshipments and allow us to develop an efficient polynomial time algorithm for
obtaining the optimal strategy. By exploring the reasons for using transshipments, we enable prac-
titioners to envision the sources of savings from using this strategy and therefore motivate them
to incorporate it into their replenishment strategies. c© 2001 John Wiley & Sons, Inc. Naval Research
Logistics 48: 386–408, 2001
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1. INTRODUCTION

Supply chain management has become an increasingly important consideration for many firms
due to its impact on cost, service level, and production quality. Among other issues, it entails defin-
ing replenishment and associated inventory policies which are cost effective. One such policy,
commonly practiced in multilocation inventory systems, involves movement of stock between lo-
cations at the same echelon level. These stock movements are termed lateral stock transshipments,
or simply, transshipments.

Research efforts have generally viewed transshipments as an emergency recourse when unex-
pected circumstances have caused a surplus at one location and a shortage at another. One reason
for considering only this reason for transshipments is the general lack of consideration of fixed
replenishment costs. When these costs are present, we may want to replenish at one location
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and transship items to another location, in order to save on the fixed costs. Another reason for
transshipments which was not discussed previously in the literature is to save on the holding costs,
exploiting cases where different locations have different holding costs. (The latter reason may
indeed be more important in settings where fixed replenishment costs exist, as in such cases more
inventory is held.)

While both these reasons for transshipments would surely manifest themselves in the stochas-
tic setting, we study their impact in the deterministic setting where the ‘‘traditional’’ reason for
transshipments (i.e., to satisfy an unexpected shortage with a surplus) does not affect and compli-
cate the issue. Moreover, we consider dynamic deterministic demand while only static stochastic
demand has been considered in the literature. As in the majority of the literature on deterministic
inventory models, the problem is important when planning is performed on the basis of a pre-
determined schedule. The latter can represent, for example, early orders, or a forecast of future
demands. The dynamics of the demand over time may be a result of its randomness, and possibly
also a result of the product’s seasonal or life-cycle trends.

The dynamic transshipment problem is characterized by several locations, each of which is
characterized by fixed replenishment (or a set of locations may incur a joint replenishment cost),
per unit replenishment, and per unit holding costs. In addition there is a fixed and per unit cost
for transshipping between locations. A transshipment is defined as the transfer of stock between
two locations at the same level of the inventory/distribution system. The problem is to determine
replenishment quantities and how much to transship each period so as to satisfy deterministic
dynamic demand at each location at minimal cost. The planning horizon is finite and no backorders
are allowed.

Consider, for example, a department store which sells vacuum cleaners. The store may have
several branches at various locations, with some customers requiring this item at one location and
others requiring it at another location. When replenishing their stocks, the branches can either
place separate orders with the supplier, or alternatively only one order may be placed by one
of the branches, taking into consideration all branches’ needs for stock. In the first instance,
several fixed replenishment costs are incurred (one for each branch), or, more generally, a joint
replenishment cost is incurred. In the second case, only one fixed cost is incurred, and the vacuums
will be delivered to the replenishing location and possibly transshipped (incurring transshipment
costs) to (some of) the other locations; these transshipments can take place immediately or any
time before the vacuum cleaners will be demanded. In other words, the use of transshipments
allows the firm to determine the desired location(s) within the supply chain in which a global
quantity of inventory is to be held, as opposed to the case where each location independently
holds its own inventory. Such supply chain coordination is also in line with recent (technological)
communication enhancements such as EDI, among the various participants of the supply chain
(see, e.g., Stalk, Evans, and Shulman [23]).

The dynamic transshipment problem can be viewed as an extension of the classical Wagner–
Whitin problem (Wagner and Whitin [27]). In this problem, a single product at a single location is
considered and that location can replenish stock only from a single source, its supplier. When two or
more locations are considered, the optimal strategy for each of them is determined independently.
On the other hand, in the transshipment problem each location has two or more potential sources
of supply [the supplier and the other location(s)]; therefore, the optimal strategy for all locations
must be determined jointly. Since our research both explores additional reasons for transshipments
(beyond the one studied in the literature for the static stochastic transshipment problem) and
generalizes the Wagner–Whitin setting, it can be viewed as a synthesis of these two lines of
research.
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This work focuses on the dynamic transshipment problem with two locations, providing detailed
analysis of properties, interesting structure of optimal policies, as well as an efficient polynomial
time algorithm [O(T 4), where T is the number of periods] to solve the problem. For a realistic
problem, a typical planning horizon that is used for the determination of replenishment quantities,
is not very large (10–30), thus allowing practitioners to implement the suggested algorithm. The
interesting structure enhances understanding of the issues that are relevant in our problem setting
and is the basis for our algorithm. This is the first time that transshipments are examined in a
dynamic or deterministic setting as well as the first time with fixed transshipment costs. Following
this work, Herer and Tzur [12] analyzed the multilocation dynamic transshipment problem in
which the holding costs are identical at all locations. There, several transshipment mechanisms
are discussed, the complexity is established to be NP-Hard, and an exponential time procedure
which provides an optimal solution is developed. Since the time required to obtain an optimal
solution in the multilocation environment is too large for realistic problems, they present and
analyze the performance of a heuristic algorithm.

The rest of the paper is organized as follows. In the next section we review the most relevant
literature. In Section 3 we introduce our notation and give preliminary results. In Section 4 we
define the framework and properties used to develop the algorithm for the dynamic transshipment
problem. In Section 5 we present our analysis and algorithm. For the sake of clarity we develop
up to this point in the paper the model without joint replenishment costs and without fixed
transshipment costs. In Section 6 we treat these two aspects of the model as extensions which can
be incorporated into the framework and algorithm of Sections 4 and 5. Finally Section 7 contains
some discussion and conclusions.

2. LITERATURE REVIEW

The issue of transshipments in a multilocation discrete time environment has been studied by
many authors in a stochastic static setting without fixed transshipment costs. In this literature
a differentiation is properly made between models that allow transshipments before demand is
realized (see Allen [2, 3], Gross [9], Karmarkar and Patel [17], and Karmarkar [14–16]) and
models that allow transshipments after demand is realized but before it needs to be satisfied (see
Krishnan and Rao [18], Tagaras [24], Robinson [22], and Herer and Rashit [10, 11]); Tagaras and
Cohen [25] add to the model nonzero lead times. An interesting variation on these two extremes
is allowing transshipments while demand is being realized (Archibald, Sassen, and Thomas [4]).
In the deterministic setting this differentiation is clearly not meaningful.

In his investigation of the two location problem, Tagaras [24] determined a transshipment policy
which he called complete pooling. Under this policy the amount transshipped from location i to
location j is the minimum between the excess at location i and the shortage at location j. Under
certain, fairly general, cost structures one can show that complete pooling is optimal. Krishnan
and Rao [18], Robinson [22], Pasternack and Drezner [21], Tagaras and Cohen [25], and Herer and
Rashit [11] all assume this or related cost structures. Herer and Rashit [10] investigate alternative
cost structures, i.e., what happens when complete pooling is not optimal.

The environment of inventory models with deterministic dynamic demand is known mostly
due to the classical single product problem, introduced by Wagner and Whitin [27]. Since then,
many variations of the classical model have been introduced: allowing backorders, considering
capacity constraints, including startup costs and limiting the maximum inventory levels, to name
just a few.

The literature on inventory models with dynamic demand for the class of multiproduct and/or
multilocation models is relatively restricted. A polynomial time solution procedure which provides
an optimal solution is known only for a serial system, where the production of a single item consists
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of several stages (see Zangwill [28] and Love [19]). Other multi-product models with dynamic
demand include the joint replenishment problem (see, e.g., Joneja [13] and Federgruen and Tzur
[7]) and the capacitated multiproduct model (see Maes and Van Wassenhove [20] for a review).
Federgruen and Tzur [8] consider a multilocation model known as the one-warehouse multiretailer
problem, which represents a two-level distribution system. These problems are known to be NP-
complete, and only heuristic solutions or exponential algorithms (typically branch and bound)
are available for them. None of the existing models with deterministic dynamic demand consider
transshipment between locations.

3. NOTATION AND PRELIMINARIES

For the sake of clarity we first introduce notation and develop our model without fixed trans-
shipment costs and without joint order costs. These two aspects of the model will be treated as
extensions in Section 6.

The dynamic transshipment problem is defined by the following parameters:

L number of locations (i = 1, . . . , L) (in this paper we address the case where L = 2);
T number of periods (t = 1, . . . , T );
dit demand at location i in period t (for ease of exposition we assume dit > 0 for all i and t);
hi holding cost incurred at location i for every unit held there for one period (we assume

without loss of generality that h1 ≤ h2);
Ki setup cost incurred whenever location i is replenished;
ci replenishment cost per unit at location i;
ĉij direct transshipment cost per unit transshipped from location i to location j;
cij effective transshipment cost, or simply the transshipment cost, per unit transshipped from

location i to location j, cij = ĉij + ci − cj .

Note that cij is considered the effective transshipment cost because when a unit is transshipped
from location i to location j we pay, in addition to the direct transshipment cost, a cost of ci

instead of cj to satisfy a unit of demand at location j. (Therefore, the constant
∑2

i=1 ci

∑T
t=1 dit

has to be added to the total cost that we obtain in order to get the true cost of a given solution.)
Further note that cij can be less than zero; even though we would expect such a situation to be
rare, it can be handled by our model without modification. In fact, we would expect that in most
situations ci = cj is satisfied, that is, cij = ĉij > 0. In this case, the difference between h1 and
h2 results solely from physical and geographical characteristics of the locations. For example,
the size of the warehouse and its material handling efficiency, and whether the location is in an
expensive business area or in a distant suburb. We observe that cij + cji = ĉij + ĉji > 0; this
implies that it is not optimal to transship items back-and-forth.

The dynamic transshipment problem is to find a replenishment strategy for all locations over
the finite horizon, such that demand at every location in every period is satisfied on time (no
backorders are allowed) and the sum of fixed and variable replenishment costs, holding costs, and
fixed and variable transshipment costs is minimized. Since in our analysis we use the effective
transshipment costs, we do not further consider the variable replenishment costs.

The transshipment problem may be represented as a network flow problem on the following
network, see Figure 1.

DEFINITION 1: The replenishment network has 2T + 1 nodes: a source node, denoted as
node 0, and a node for each location i for every period t, denoted as node (i, t) (i = 1, 2 and
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Figure 1. The replenishment network.

1 ≤ t ≤ T ). The set of arcs consist of replenishment arcs, inventory arcs, and transshipment
arcs: Replenishment arcs exist between the source node and every other node; inventory arcs exist
between node (i, t) to (i, t+1) for i = 1, 2 and all 1 ≤ t < T ; two transshipment arcs (one in each
direction) exist between nodes (1, t) and (2, t) for every 1 ≤ t ≤ T . The cost of the flow on these
arcs are the replenishment costs (fixed and variable), holding costs (variable) and transshipment
costs (fixed and variable), respectively. There is a demand of dit units at node (i, t), and a supply
at the source node of the sum of all demands.

A feasible flow (i.e., a flow that satisfies the demand requirements of the nodes) in this net-
work corresponds with a replenishment plan for the transshipment problem, with the same cost
value. Therefore, a feasible flow with minimum cost on this network minimizes the cost of the
transshipment problem as well.

We note that the cost functions of all arcs are concave (fixed plus linear for the replenishment
and transshipment costs, and linear for the holding costs). The theory on concave cost network
flow problems provides us with an important theorem from which we derive a corollary that we
will apply to the replenishment network.

THEOREM 1 (see, e.g., Denardo [5]): In any minimum cost uncapacitated network flow prob-
lem with concave costs there exists an optimal flow which does not contain any loop (an undirected
cycle of arcs) with a positive flow on all arcs of the loop.

COROLLARY 1: In the replenishment network associated with the dynamic transshipment
problem there exists an optimal flow in which no more than one arc with a positive flow enters
each node (i, t). In particular, the demand at node (i, t) is supplied from a single source of
replenishment.
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If there were more than one arc with positive flow entering node (i, t), then the combination of the
two paths with positive flow from the source node to node (i, t) would contain a loop. Corollary 1
is a generalization of the zero-inventory property, which is well known in classical deterministic
inventory models that do not consider transshipments. In those models, only two possible sources
exist for each location in every period: replenishment and inventory. The generalization in our
problem is with respect to the third source, transshipments. An intuitive explanation of this corol-
lary is the following: For a concave cost structure, the marginal cost of each unit is decreasing;
therefore, it is not desirable to split an entering flow between two different sources.

4. SOLUTION FRAMEWORK

Our solution framework can be summarized as follows. We first define a structure which we
call a basic block, a generalization of a similar structure that can be found in the solution to the
Wagner–Whitin problem, although more intricate. We then show, as in the solution to the Wagner–
Whitin problem, that there exists an optimal solution to the transshipment problem which can be
described as a series of basic blocks. Next we describe how to formulate a shortest path problem,
associating the arcs of a properly defined network with these basic blocks. Finally, we present an
efficient way to calculate the cost of a basic block.

In the following definition si is used to denote the Starting period of the block at location i;
similarly ei − 1 is used to denote its Ending period. In addition, in the following definition and
throughout the rest of the paper, whenever si = ei the series (i, si), . . . , (i, ei − 1) is considered
to be empty.

DEFINITION 2: A block, denoted by (s1, s2) →→→ (e1, e2), where 1 ≤ s1 ≤ e1 ≤ T + 1, 1 ≤
s2 ≤ e2 ≤ T + 1, and either s1 < e1 or s2 < e2 (or both), is a set of nodes of the form
(1, s1), . . . , (1, e1 −1) and (2, s2), . . . , (2, e2 −1) whose demand is satisfied from replenishment
within these nodes and the replenishment within these nodes is not used to satisfy demand at
nodes outside the block. We distinguish between two types of blocks:

• If sj = ej for some j = 1, 2, then the block is called a single-location block
because it has nodes from only one location.

• If sj 6= ej for j = 1, 2, then the block is called a two-location block because it
has nodes from both locations.

Note that the notation (1, s1) denotes a node in the replenishment network while
(s1, s2) →→→ (e1, e2) denotes a block. To avoid any confusion, the latter is typeset bold.

DEFINITION 3: Two blocks are said to be disjoint if they have no common nodes.

We use Figure 2 to illustrate the definition of a block and of disjoint blocks. In the figure a
solution is represented by a flow on the replenishment network. The arcs with positive flow have
been bolded, and the flow satisfies Corollary 1. Thus, the path that each unit follows, from the
source to a particular destination node, is unambiguous. The paths can be found by following
the bolded arcs backward from every node up to the source node. According to Definition 2, the
solution represented in Figure 2 contains five two location blocks [(1, 1) →→→ (4, 4), (1, 1) →→→ (7,
5), (1, 1) →→→ (7, 7), (4, 4) →→→ (7, 5), (4, 4) →→→ (7, 7)] and two single location blocks ((t, 2) →→→ (t, 3)
and (t, 5) →→→ (t, 7), where 1 ≤ t ≤ T + 1, note that the identity of these blocks is independent of
t). Note that the pair of blocks (1, 1) →→→ (4, 4) and (1, 1) →→→ (7, 5) are not disjoint whereas the pair
(1, 1) →→→ (4, 4) and (4, 4) →→→ (7, 5) are.

The following observation is immediate from the definition of a block.
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Figure 2. An example replenishment network showing the positive flows.

OBSERVATION 1: In any two location block (s1, s2) →→→ (e1, e2) the starting inventory at
location 1 in period s1 and at location 2 in period s2 [i.e., at nodes (1, s1) and (2, s2)] is zero. In
addition, the ending inventory at location 1 in period e1 − 1 and at location 2 in period e2 − 1
[i.e., at nodes (1, e1 − 1) and (2, e2 − 1)] is zero.

While one may expect in an optimal solution that a block may be associated with a single replen-
ishment, we find that there exists an exception to this rule. We refer to this exception as a hole of
a block. In the following definition of a hole of a block ui denotes the start of a hole of a block
at location i; similarly vi − 1 denotes its end.

DEFINITION 4: (ui) → (vi), for some i = 1, 2, is a hole of a block (s1, s2) →→→ (e1, e2), if
si < ui ≤ vi − 1 < ei − 1 and the replenishment at node (i, ui) satisfies the demand of nodes
(i, ui), . . . , (i, vi − 1).

The definition of a hole of a block does not include the situation where ui = si (without loss
of generality let i = 2) because then the ‘‘hole’’ would be a block by itself and the block (s1,
s2) →→→ (e1, e2) would contain two disjoint blocks, i.e., (s1, s2) →→→ (s1, v2) and (s1, v2) →→→ (e1,
e2) and the definition of a hole of a block would not be required here. For similar reasons the
definition of a hole does not include the situation where vi = ei. Returning to Figure 2, we see
one example of Definition 4, namely, we see that (22) →→→ (32) is a hole of the block (1, 1) →→→
(4, 4).

As will be seen in Theorem 2 below, only blocks, which we call basic, with a very specific
replenishment structure are of interest.

DEFINITION 5: A basic block is a block which has the following properties:



Herer and Tzur: The Dynamic Transshipment Problem 393

1. If a block is a single-location block with sj = ej , then a replenishment occurs
in period si at location i (i 6= j) which is used to satisfy the demand at location
i in periods si, . . . , ei − 1.

2. If a block is a two-location block, then a replenishment occurs either in period s1
at location 1 or in period s2 at location 2 which is used to satisfy the demand for
location 1 in periods s1, . . . , e1 − 1 and for location 2 in periods s2, . . . , e2 − 1
except possibly for demand in periods whose replenishment is associated with
a hole of the block.

Again returning to Figure 2 we see that out of the five two location blocks, only two are basic
blocks [(1, 1) →→→ (4, 4) and (4, 4) →→→ (7, 5)]. All the single-location blocks are also basic blocks
[(t, 2) →→→ (t, 3) and (t, 5) →→→ (t, 7), where 1 ≤ t ≤ T + 1; note that the first one is also a hole of
the block (1, 1) →→→ (4, 4)].

In the sequel, we denote the location which replenishes as location p (p = 1 or p = 2).

THEOREM 2: There exists an optimal solution to the dynamic transshipment problem which
can be described as a collection of disjoint basic blocks.

PROOF: Assume that the theorem is false and consider a problem for which there does not
exist an optimal solution which can be described as a collection of disjoint basic blocks.

Of all optimal solutions satisfying Corollary 1, choose the one that has the maximal number of
disjoint blocks. Such a solution always exists since in every solution the block (1, 1) →→→ (T + 1,
T + 1) is a collection of one or more disjoint blocks. Choose a block that is not basic and call this
block (s1, s2) →→→ (e1, e2). Such a block exists due to the assumption made at the beginning of
the proof. We consider two cases depending on whether the block (s1, s2) →→→ (e1, e2) is a single
or two location block.

Case 1. (s1, s2) →→→ (e1, e2), is a single location block. Let location p be the location where
sp < ep. We first note that we must replenish at location p in period sp; this is because we do not
allow backorders. Then, due to Corollary 1, these units cannot be transshipped from location p
to the other location and back in some future period. Since the block is not basic, we know that
there is another period (call it ŝp, sp < ŝp ≤ ep − 1) in which replenishment occurs, and from
Corollary 1 we know that the starting inventory at location p in period ŝp is zero. Hence, the block
can be split into two disjoint blocks (thus contradicting our maximality assumption).

Case 2. (s1, s2) →→→ (e1, e2) is a two location block. Since the block (s1, s2) →→→ (e1, e2) is
not basic, there must be at least two replenishments within the block which are not holes. We
shall examine the latest of these replenishments and refer to it simply as the latest replenishment.
(If there is replenishment both at location 1 and location 2 in this period, then we arbitrarily
choose one of them.) We now assume, for the ease of exposition, that the latest replenishment is
at location 1. Let ŝ1 be the period in which the latest replenishment occurs. The case in which
the latest replenishment is at location 2 is analogous. We again consider two cases depending on
whether the latest replenishment is used to satisfy some of the demand at location 2.

Case 2a. The latest replenishment does not satisfy any demand at location 2. According
to Corollary 1 the units in the latest replenishment can not pass through location 2 on their
way to satisfying demand at location 1. Thus the units of this replenishment are held at location 1
until they are depleted. If these units are used to satisfy demand at node (1, e1 − 1) [and therefore
at all nodes (1, ŝ1 + 1), . . . , (1, e1 − 2) as well], then the block (s1, s2) →→→ (e1, e2) can be split
into two disjoint blocks [namely, (s1, s2) →→→ (ŝ1, e2) and (ŝ1, e2) →→→ (e1, e2)], a contradiction
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to the maximality assumption. If these units are not used to satisfy demand at node (1, e1 − 1),
then this replenishment forms a hole, a contradiction to the definition of the latest replenishment.

Case 2b. The latest replenishment does satisfy some of the demand at location 2. Let the first
period in which some of the demand at location 2 is satisfied by the latest replenishment be
called period ŝ2. Since demand at nodes (2, ŝ1), (2, ŝ1 + 1), . . . , (2, ŝ2 − 1) is not satisfied from
this replenishment, the demand at node (2, ŝ2) must be received from location 1 in period ŝ2;
therefore, the demand at node (1, ŝ2) [and nodes (1, ŝ1), (1, ŝ1+1), . . . , (1, ŝ2−1) as well] is also
satisfied from the replenishment at (1, ŝ1). From Corollary 1 applied to nodes (1, ŝ2) and (2, ŝ2)
(a cut set in the network) we know that the demand at nodes (1, ŝ2), (1, ŝ2 + 1), . . . , (1, e1 − 1)
and nodes (2, ŝ2), (2, ŝ2 + 1), . . . , (2, e2 − 1) are all met from the replenishment at node (1, ŝ1)
(possibly except for holes). Putting this all together, we have that this latest replenishment satisfies
all the demand (possibly except for holes) at nodes (1, ŝ1), (1, ŝ1 + 1), . . . , (1, e1 − 1) and nodes
(2, ŝ2), (2, ŝ2 + 1), . . . , (2, e2 − 1) and nowhere else. Therefore, the block (s1, s2) →→→ (e1, e2)
can be split into two disjoint blocks [namely, (s1, s2) →→→ (ŝ1, ŝ2) and (ŝ1, ŝ2) →→→ (e1, e2)], a
contradiction to the maximality assumption.

Now that the form of an optimal solution has been identified, let us consider the cost of a
solution that takes this form. Since the costs of disjoint blocks are independent, the total cost is
simply the sum of the cost of the basic blocks that make up the solution. The cost of a basic block
is the minimum cost of satisfying the demand of all the nodes in the block with replenishment
being as outlined in the definition of a basic block. A detailed algorithm for calculating the cost
of a block is presented in the next section.

We now turn our attention to finding an optimal series of basic blocks, assuming that the cost of
each basic block is already known. For this we define the following network which is illustrated
in Figure 3.

DEFINITION 6: The block network is the network whose nodes are all ordered pairs of the
form (s1, s2), 1 ≤ s1, s2 ≤ T + 1 and an arc exists between two nodes (s1, s2) and (e1, e2)
whenever s1 ≤ e1) and s2 ≤ e2 (except, of course, if s1 = e1 and s2 = e2).

DEFINITION 7: The cost of an arc in the block network from node (s1, s2) to node (e1, e2)
is the cost of the basic block (s1, s2) →→→ (e1, e2), and is denoted by M(s1, s2; e1, e2). We also
denote this arc in the same notation as a block, i.e., (s1, s2) →→→ (e1, e2).

We note that each path in the block network from node (1, 1) to node (T + 1, T + 1) corresponds
to a series of mutually disjoint basic blocks which, when considered together, cover all the nodes in
the replenishment network. Thus each such path corresponds to a feasible solution of the dynamic
transshipment problem. Furthermore, since the costs associated with the arcs in the block network
correspond to the costs of these basic blocks, the sum of the costs of the arcs on a path from node
(1, 1) to node (T + 1, T + 1) corresponds to the costs of a feasible solution. Moreover, any series
of mutually disjoint basic blocks which, when considered together, cover all the nodes in the
replenishment network, is associated with a path in the block network from node (1, 1) to node
(T + 1, T + 1). In particular this is true for the optimal solution characterized in Theorem 2. Thus,
an optimal solution can be identified by finding the shortest path in the block network from node
(1, 1) to node (T + 1, T + 1).

The block network can be viewed as a generalization of the network which one defines in order
to solve the Wagner–Whitin problem (Wagner and Whitin [27]). The network used to solve this
problem has one node for every time period and an arc going from every node s to every other
node e, such that s < e. An arc from node s to node e in this network indicates that
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Figure 3. The block network.

• replenishment occurs in periods s and e and nowhere in between,
• all the demands in periods s through e − 1 are met through the single replen-

ishment in period s, and
• the starting inventory is zero in periods s and e and nowhere in between.

The block network used to solve our dynamic transshipment problem has one node for every
pair of time periods and an arc from every node (s1, s2) to every other node (e1, e2) whenever
s1 ≤ e1 and s2 ≤ e2 (and at least one of these inequalities is strict). An arc from node (s1, s2)
to node (e1, e2) in this network indicates that:

• Replenishment may occur only at nodes (1, s1) or (2, s2), and (1, e1), and/or
(2, e2) and nowhere in between (except possibly for holes).

• All demands of the block are met from replenishment either at node (1, s1) or
at node (2, s2) (except possibly for holes).
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• The starting inventory is zero at nodes (1, s1), (2, s2), (1, e1), and (2, e2) and
nowhere in between at location 1 [i.e., there does not exist a node (1, b1), s1 <
b1 < e1, such that its starting inventory is zero]. If the block is a single location
block at location 2, then there does not exist a node (2, b2), s2 < b2 < e2, such
that its starting inventory is zero.

For both problems a shortest path in the associated network corresponds with an optimal solution.
To complete the analogy, we use the following definition:

DEFINITION 8: u →→→ v, 1 ≤ u < v ≤ T is a Wagner–Whitin basic block if a replenishment
in period u is used to satisfy all the demand in periods u, . . . , v − 1 and no other demand.

Now we see the full extent and limitation of the analogy between the basic blocks of the
Wagner–Whitin problem and the basic blocks of the dynamic transshipment problem. In each
case there exist an optimal solution which is a series of basic blocks. However, in the Wagner–
Whitin problem these blocks are always ‘‘whole,’’1 whereas in the dynamic transshipment problem
they may contain ‘‘holes.’’ These holes create exceptional and nontrivial situations in each of the
above-mentioned points.

In order to illustrate the relationship between the replenishment network, basic blocks, and the
block network for the dynamic transshipment problem, consider a four period problem (T = 4)
in which an optimal solution is as described in the following example.

EXAMPLE 1:

• Replenish location 1 in period 1 for location 1 in periods 1 and 2 and for location
2 in period 1.

• Replenish location 2 in period 2 for location 2 in periods 2 and 3.

• Replenish location 1 in period 3 for location 1 in periods 3 and 4 and for location
2 in period 4.

This solution is represented in the replenishment network of Figure 4 in which the arcs with
positive flow have again been bolded. This solution corresponds to the following three basic
blocks. (1, 1) →→→ (3, 2), (3, 2) →→→ (3, 4), and (3, 4) →→→ (5, 5) and is represented in the block network
of Figure 5. The arcs corresponding to basic blocks in the optimal solution have been bolded and,
for the purpose of clarity, the other arcs have been eliminated.

5. THE SOLUTION TO THE DYNAMIC TRANSSHIPMENT PROBLEM

In the previous section we showed that there exists an optimal solution which is a series of
disjoint basic blocks. We also showed that given the cost of all the basic blocks we can efficiently
find an optimal solution. In this section we

1. show how one can determine the cost of a basic block,

2. show how these calculations can be performed efficiently.

1That is, without holes.
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Figure 4. The replenishment network for Example 1.

5. 1. Determining the Cost of a Basic Block

We first consider basic blocks without holes. In this case, we have a replenishment at node
(p, sp) (recall that p denotes the replenishing location and similarly we now use r to denote
the receiving location) that covers demand at nodes (p, sp), (p, sp + 1), . . . , (p, ep − 1) if it is a
single-location block and demand at these nodes and nodes (r, sr), (r, sr + 1), · · · (r, er − 1) if it
is a two-location block. Once a replenishment is performed, all the costs of sending the material
from node (p, sp) to the various nodes in the block are independent of each other. We thus let
SP (p, sp; i, k) be the shortest path (the minimum cost of transferring one unit of the item) in the
replenishment network from the node where replenishment occurs [i.e., (p, sp)] to an arbitrary
node in the block [e.g., (i, k)].

We now present some properties of optimal flows between two nodes of a block in the re-
plenishment network, leading to an expression for the cost of a basic block. These properties
follow from the holding cost differential assumption, h1 ≤ h2, which was made without loss of
generality.

PROPERTY 1: If a unit is replenished at location 1 for use at location 1, it is held in inventory
only at location 1. SP (1, s1; 1, k) =

∑k−1
t=s1

h1 = h1(k − s1).

PROPERTY 2: If a unit is replenished at location 1 for use at location 2, it is held in inventory
at location 1 until it is needed at location 2 at which time it is transshipped. SP (1, s1; 2, k) =∑k−1

t=s1
h1 + c12.

PROPERTY 3: If a unit is replenished at location 2 for use at location 1, then it is immediately
transshipped to location 1 and held there until it is needed. SP (2, s2; 1, k) = c21 +

∑k−1
t=s2

h1.

PROPERTY 4: If a unit is replenished at location 2 for use at location 2, then it is either held
in inventory at location 2 until it is needed, or it is immediately transshipped to location 1 and
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Figure 5. The block network for Example 1.

held there until it is needed at location 2 (at which time it is transshipped back). SP (2, s2; 2, k) =
min(

∑k−1
t=s2

h2, c21 +
∑k−1

t=s2
h1 + c12).

We can now write the cost of a basic block (both single and two location) that does not have
any holes [denoted by MNH(s1, s2; e1, e2)]] as follows:

MNH
p (s1, s2; e1, e2) = Kp +

e1−1∑
t=s1

SP (p, sp; 1, t)d1t +
e2−1∑
t=s2

SP (p, sp; 2, t)d2t. (1)

We now consider holes by first demonstrating that a hole [denoted (ui) →→→ (vi)] can only occur
at location 2 when location 1 is replenishing.

PROPERTY 5: A hole can not occur at location 1 when location 1 is replenishing because of
Corollary 1 and Property 1 above. If such a hole did exist, node (1, u1) would receive inventory
both from replenishment and from node (1, s1) [on its way to node (1, e1 − 1)].

PROPERTY 6: A hole can not occur at location 1 when location 2 is replenishing because of
Corollary 1 and Property 3 above. If such a hole did exist, node (1, u1) would receive inventory
both from replenishment and from node (2, s2) [on its way to node (1, e1 − 1)].

PROPERTY 7: A hole can not occur at location 2 when location 2 is replenishing because in
this case it would be cheaper to supply node (2, e2 −1) through the replenishment at node (2, u2)
rather than node (2, s2).
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We now consider the possibility of having holes at location 2 when location 1 is replenishing. To
motivate the existence of holes, we consider the following example problem in which the optimal
solution has a hole.

EXAMPLE 2:

Location 1: K1 = 100, h1 = 1, c12 = 2, d11 = 100, d12 = 2, d13 = 2;

Location 2: K2 = 100, h2 = 4.5, c21 = 2, d21 = 2, d22 = 100, d23 = 1.

After careful examination2 one can see that the optimal policy, which is illustrated in the first
three periods of the replenishment network found in Figure 2, is to replenish 107 units at node (1,
1) [for nodes (1, 1), (1, 2), (1, 3), (2, 1), and (2, 3)] and to replenish 100 units at node (2, 2) [for
node (2, 2)]. Here, (22) →→→ (32) is a hole in the block (1, 1) →→→ (4, 4).

Since we have already identified the optimal flow in the replenishment network except for
holes, the only question remaining is how to determine where the hole(s) are (if at all). As we
showed in Theorem 2, even though a basic block may contain holes, demands during periods s2
and e2−1 are satisfied from the replenishment at location 1. Thus, it remains to determine if holes
exist anywhere in the periods s2 +1, s2 +2, . . . , e2 − 2. First note, that the hole (u2) →→→ (v2) has
cost

H(u2; v2) = K2 +
v2−1∑

t=u2+1

(t − u2)h2d2t,

since, by the definition of a hole, replenishment in period u2 satisfies the demand of all periods in
the hole, i.e., periods u2, u2 + 1, . . . , v2 − 1. Note that, even though in general it may be optimal
to replenish items at location 2, transship them to location 1, hold them there, and transship them
back to location 2 in some future period, this will never occur with holes because this would mean
that node (1, u2) would have two sources of supply.

Recall that a Wagner–Whitin basic block u →→→ v consists of periods u, u+1, . . . , v − 1, where
the replenishment in period u satisfies the demand of all the periods in the block. This is clearly the
same structure as the blocks which are holes in our problem. Thus, the existence of holes implies
that Wagner–Whitin basic blocks may occur at location 2 as part of the optimal arrangement of a
basic block.

We define a modified Wagner–Whitin problem, whose purpose is to find the minimum cost
of satisfying the demand of periods s2 + 1, s2 + 2, . . . , e2 − 2, since those are the periods in
which holes may exist. Recall that a cost of a hole (a Wagner–Whitin basic block) is denoted by
H(u2; v2). Solving the standard Wagner–Whitin problem for periods s2 + 1, s2 + 2, . . . , e2 − 2

2For the two demand points of 100 (d11 and d22) it is preferable to make a special replenishment whose cost
is 100 each, since transferring or holding each of these 100 units would cost more than 100. For no other
demand points is it worth making a special replenishment; thus these are the only two replenishments. For
location 1, once the replenishment in period 1 is performed, the most economical way of satisfying the two
units demand of period 2 and the two units demand of period 3 is by holding them from period 1, at a cost
of 2 and 4, respectively. (Satisfying these demand points from transshipment is more costly.) For location 2,
once the replenishments were determined as above, the demand of the first period can only be satisfied from
transshipment. The one unit demand of period 3 can be satisfied either from the replenishment at location
2 in period 2, in which case the cost of holding the unit for one period is 4.5, or from transshipment from
location 1. In the latter case, the unit is ordered in period 1, held at location 1 until period 3, and then
transshipped to location 2. The cost of holding and transshipping is then 4, and therefore preferred over the
former possibility.
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[i.e., using H(u2; v2) as the cost of a Wagner–Whitin basic block] would mean satisfying these
nodes through a series of holes at minimal cost. However, in our optimal solution some of these
nodes may be supplied through the original replenishment at node (1, s1). To have the standard
Wagner–Whitin algorithm consider this, we must modify the cost of some Wagner–Whitin basic
blocks. Letting Ms1(u2; v2) be the cost of a modified Wagner–Whitin basic block, we observe
that if it contains two (or more) nodes, then it does not involve replenishment at node (1, s1)
because it is just as economical to supply the two (or more) nodes separately from node (1, s1);
thus, if u2 < v2 −1, then Ms1(u2; v2) = H(u2; v2). As a result, the only necessary modification
is with respect to Wagner–Whitin basic blocks that contain only one node. In this case the cost of
a special replenishment at node (2, u2) must be compared with the cost of receiving the supply
from node (1, s1). Therefore, the cost of this modified block is the least costly alternative, i.e.,
Ms1(u2;u2 + 1) = min(K2, SP (1, s1; 2, u2)d2u2). We conclude that, in order to determine
where the holes are, we need to solve this modified Wagner–Whitin problem at location 2 for
periods s2 + 1, s2 + 2, . . . , e2 − 2.

If we denote the cost of the solution to the modified Wagner–Whitin problem described above
by WW s1(s2 +1, e2 −2) [with WW s1(s2 +1, s2) = 0], then we have the cost of a two-location
block when replenishment is at location 1 as being:

MH(s1, s2; e1, e2) = K1 +
e1−1∑
t=s1

SP (1, s1; 1, t)d1t + SP (1, s1; 2, s2)d2,s2

+ WW s1(s2 + 1, e2 − 2) + SP (1, s1; 2, e2 − 1)d2,e2−1,

where the superscript H denotes the possibility of holes being included in the block. At the end of
this section we present a simple algorithm to calculate the cost of a basic block (s1, s2) →→→ (e1, e2)
based on the above analysis. In addition, we determine whether a given basic block is admissible
in the block network [i.e., whether the arc from (s1, s2) to (e1, e2) exists]. This determination is
based on the following properties:

PROPERTY 8: If replenishment is at location 1 for a two-location block, then we know that
s1 ≤ s2 ≤ e2 −1 ≤ e1 −1. The first inequality is due to the fact that we do not allow backorders.
The second holds by definition. Finally, the third inequality holds because, as explained in Property
2 above, units replenished at location 1 for location 2 are held at location 1 until they are needed;
if e1 −1 were less than e2 −1, then node (1, e2 −1) would have units from two different sources.

PROPERTY 9: If replenishment is at location 2 for a two-location block, then we know that
s2 = s1. The equality holds due to the fact that any replenishment intended for location 1 is
immediately transshipped, and if s2 were less than s1, then node (1, s2) would have units from
two different sources.

We now present the algorithm for determining whether a two-location basic block is an
admissible block in an optimal solution, and if so, we give its cost, M(s1, s2; e1, e2). Sin-
gle location basic blocks are all admissible and we can use Eq. (1) to calculate their costs,
M(s1, s2; e1, e2) = MNH

p (s1, s2; e1, e2).

Algorithm

STEP 1: If (s1 < s2 and e1 < e2) or (s2 < s1) then this block is not admissible; go to Step 4.
STEP 2: If s1 < s2 then p = 1,

if e2 = s2 + 1 then M(s1, s2; e1, e2) = MNH
1 (s1, s2; e1, e2); go to Step 4

else (e2 > s2 + 1) M(s1, s2; e1, e2) = MH(s1, s2; e1, e2); go to Step 4.
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STEP 3: If s1 = s2 then
if e1 < e2 then p = 2 and M(s1, s2; e1, e2) = MNH

2 (s1, s2; e1, e2); go to Step 4
else (e1 ≥ e2) # Is it cheaper to replenish at location 1 or 2?

M2 = MNH
2 (s1, s2; e1, e2)

If e2 = s2 + 1 then M1 = MNH
1 (s1, s2; e1, e2).

else (e2 > s2 + 1) M1 = MH(s1, s2; e1, e2).
If M1 ≤ M2 then p = 1 and M(s1, s2; e1, e2) = M1; go to Step 4
else (M1 > M2) p = 2 and M(s1, s2; e1, e2) = M2; go to Step 4

STEP 4: End.

5. 2. Efficiently Calculating the Cost of All Basic Blocks

The block network has O(T 2) nodes and O(T 4) arcs, and therefore a shortest path from node
(1, 1) to node (T + 1, T + 1) can be found in O(T 4) time, given that the costs of all arcs are known.
In this section we show how all arc costs can be calculated in O(T 4) time, therefore leading to a
total complexity of O(T 4) time for the entire algorithm.

In calculating the cost of an arc in the block network, the shortest path between the replenishing
location and the receiving location in the replenishment network is naturally used frequently;
therefore, we start by calculating the cost of these shortest paths. Since the replenishment network
has O(T ) nodes, the cost of all shortest paths can be calculated in O(T 2) time. Alternatively, the
formulas in Properties 1–4 may be used (and implemented efficiently) to calculate these costs,
with the same complexity.

The next step is to calculate the cost of all single-location basic blocks, i.e., arcs in the block
network with sj = ej for some j = 1, 2. We use the following recursive calculations for s2 = e2,
where we use the notation Mp(s1, s2; e1, e2) to denote the cost of the basic block (s1, s2) →→→ (e1,
e2) when replenishment is at location p:

M1(s1, s2; s1 + 1, s2) = K1,

M1(s1, s2; e1, s2) = M1(s1, s2; e1 − 1, s2) + SP (1, s1; 1, e1 − 1)d1,e1−1.

The above calculation can be done in constant time for given s1 and e1, therefore in O(T 2) time
for all pairs of s1 and e1. A similar recursive calculation applies for s1 = e1, which can be done
again in O(T 2) time.

The arc costs of the two-location basic blocks are calculated next, using the costs of sin-
gle location blocks as a starting point. In particular, for p = 2 we start with the basic block
(s2, s2) →→→ (s2, e2) and use the following relationship:

M2(s2, s2; e1, e2) = M2(s2, s2; e1 − 1, e2) + SP (2, s2; 1, e1 − 1)d1,e1−1.

The limitation of s1 = s2 is based on Property 9, and therefore does not exclude any admissible
blocks. Due to this limitation there are a total of O(T 3) possible combinations of s1(= s2), e1
and e2, for every combination the above calculation takes constant time and therefore these arc
costs can be calculated in O(T 3) time.

For the two location blocks when p = 1 there is one special case, associated with blocks that
necessarily don’t contain holes, whose calculation is different from the general case, namely,
when e2 = s2 + 1:

M1(s1, s2; e1, s2 + 1) = M1(s1, s2; e1, s2) + SP (1, s1; 2, s2)d2,s2 .
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A single-location block is again used as the starting point, and each calculation is performed in
constant time; for all possible combinations of s1, s2, e1, and e2 (= s2 + 1), the complexity is
O(T 3).

The general case of two-location blocks when p = 1 involves the preexecution of the dynamic
program of Wagner and Whitin on the modified Wagner–Whitin costs.3 Recall that the modified
Wagner–Whitin problem is associated with nodes s2 +1, s2 +2, . . . , e2 − 2, of location 2, where
holes may exist. It is well known (see, e.g., Federgruen and Tzur [6]) that for any starting period
u2 (u2 ≥ s2 + 1), the cost up to the end of the horizon [i.e., WW s1(u2, T )] can be calculated in
O(T 2) time, and the costs WW s1(u2, v2) for all u2 ≤ v2 < T are obtained as well during these
calculations. There are O(T ) possible starting points (values of u2) and O(T ) possible values for
s1, and therefore the complexity to calculate all WW s1(u2, v2) for 1 ≤ s1 < u2 ≤ v2 < T is
O(T 4). Given the costs of the modified Wagner–Whitin problem, the cost of a two-location block
with p = 1 and e2 − 1 > s2 is calculated as follows:

M1(s1, s2; e1, e2) = M1(s1, s2; e1, s2) + SP (1, s1; 2, s2)d2,s2

+ WW s1(s2 + 1, e2 − 2) + SP (1, s1; 2, e2 − 1)d2,e2−1.

This case is computationally the most expensive, with total complexity of O(T 4) time since all
O(T 4) combinations of s1, s2, e1, e2 have to be considered, each of which takes constant time
to calculate. As mentioned earlier, the calculation of all arc costs in O(T 4) time implies that the
complexity of the entire dynamic transshipment problem is O(T 4) time as well.

6. EXTENSIONS TO THE MODEL

The dynamic transshipment problem as defined in the Introduction includes fixed transshipment
and joint replenishment costs. To simplify the exposition and facilitate the reader’s understanding,
we have left these two aspects of the model to this section. We describe separately the impact
of each of these aspects on the analysis; when both aspects prevail together, the modifications
required are straightforward.

6. 1. Fixed Transshipment Costs

In this section we investigate the impact of introducing fixed transshipment costs into the model.
The variable transshipment costs as well as all other elements of the model remain unchanged.
When referring to the analysis of the previous sections, we sometimes call the model discussed
there the basic model.

With the existence of fixed transshipment costs the development up to and including Section 4
remains unchanged; most importantly, the definition of a basic block, Theorem 2, and its proof are
unaffected. In contrast, not all the properties stated in Section 5 continue to hold. More specifically,
Properties 2, 4, and 8 are no longer satisfied since, due to the fixed transshipment costs, it now
may be more economical to consolidate the items to be transshipped from location 1 to location 2
into one large transshipment rather than to transship small quantities whenever they are needed.
In other words, when transshipping units from a single source for use in two different periods,

3Because of the modification in the cost structure, it doesn’t appear that the enhancement of the recently
developed O(n log n) or O(n) algorithms (Federgruen and Tzur [6], Wagelmans, Van Hoesel, and Kolen
[26], and Aggarwal and Park [1]) can be used here, in any case this does not affect the complexity of the
overall algorithm.
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the two paths can no longer be determined independently of each other based on the shortest
path of each source/destination combination. In addition, Property 7 is no longer satisfied since
supplying node (2, e2 − 1) through location 1 from the replenishment at node (2, u2) now incurs
an extra fixed transshipment cost, and therefore may not be cheaper than supplying it through
node (2, s2).

On the other hand, a useful property which is preserved from the basic model is that a trans-
shipment from location 2 to location 1 may occur in only one situation, that is, when location
2 replenishes in a two-location block. In this case, units that satisfy the demand in the first few
periods of the block remain at location 2 until they are depleted; the rest of the units are trans-
shipped immediately to location 1 and return to location 2 in future period(s) in consolidated
transshipments.

In this section we again use a modified Wagner–Whitin problem in calculating the cost of the
block (s1, s2) →→→ (e1, e2) which may contain holes. This problem is very similar to the modified
Wagner–Whitin problem introduced in Section 5.1. The difference is that now, in addition to
a single node which may receive supply from the initial replenishment, we have to consider a
group of nodes which may receive supply from the initial replenishment. Because of Corollary
1 this supply must be enough to supply a whole number of periods. Thus, we consider Wagner–
Whitin basic blocks within the block (s1, s2) →→→ (e1, e2) which consist of nodes (2, u2) through
(2, v2 − 1) and are denoted (u2, v2), s2 ≤ u2 ≤ v2 ≤ e2. Most of these Wagner–Whitin basic
blocks may receive supply from either the initial replenishment of the basic block or through a
special replenishment associated with a hole of the block. For the same reason we did not consider
holes which included location 2 in period s2 or in period e2 − 1, we again do not consider holes
which include these periods. Thus, when u2 = s2 or v2 − 1 = e2 − 1 the Wagner–Whitin
basic block must receive its supply from the initial replenishment. In all other cases we must
decide whether the Wagner–Whitin basic block receives its supply from initial replenishment or
from the outside supplier, whichever is less costly. Moreover, since, with the presence of fixed
transshipment costs, transshipment from location 1 to location 2 may or may not be consolidated,
nodes (2, s2) and (2, e2 − 1) must be included in the modified Wagner–Whitin problem.

We now show how the analysis and cost calculations differ from the basic model with the
existence of fixed transshipment costs. To do that, we need to introduce some more definitions
and notations.

Aij fixed cost incurred whenever a transshipment is made from location i to
location j;

I
sp
p (u2; v2) the cost of satisfying the demand of all the nodes from u2 to v2−1 at location

2 using stock from location p in period sp, excluding any fixed transshipment
cost whenever period u2 coincides with period sp;

M̂
sp
p (u2; v2) the cost of the modified Wagner–Whitin basic block (u2, v2) when location

p replenishes in period sp;

ŴW
sp

p (s2, e2 − 1) the solution to the modified Wagner–Whitin problem at location 2 for periods
s2, s2 + 1, . . . , e2 − 1 when location p replenishes in period sp.

The definition of I
sp
p (u2; v2) is similar in spirit to the definition of H(u2; v2), except for the

source of the items. I
sp
p (u2; v2) can be represented mathematically as

Isp
p (u2; v2) = A121(u2 6=sp) + SP (p, sp; 2, u2)

v2−1∑
t=u2

d2t +
v2−1∑

t=u2+1

(t − u2)h2d2t,
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where 1(relation) is equal to 1 if the relation is true and 0 otherwise.
The reason for the indicator function (or equivalently, the exception in the definition) is that

the fixed transshipment cost from location 1 to location 2 should not be charged in two situations.
The first is when location 2 is replenishing; in this case, if u2 = sp, the units are not transshipped
from location 1 to location 2. In contrast, if u2 6= sp, the units will be transshipped to location
1, held there, and transshipped back to location 2 at a future time. The second is when location 1
is replenishing; in this case the units are actually transshipped from location 1 to location 2, but
in this case we know that there will invariably be a transshipment at this time. In this case, we
account for the fixed transshipment cost, A12, when developing the cost of the basic block of the
dynamic transshipment problem [see Eq. (2)].

The other parts of the equation are clear. The second term represents the cost of delivering
the material from the initial replenishment to node (2, u2). The third term represents the cost of
holding the material at location 2 through period v2 − 1.

Now the cost of the modified Wagner–Whitin basic block can be written as

M̂sp
p (u2; v2) =

{
I

sp
p (u2; v2) if u2 = s2 or v2 = e2,

min(Isp
p (u2; v2), H(u2; v2)) otherwise.

With these Wagner–Whitin basic block costs, the value of ŴW
s1

1 (s2, e2 − 1) is determined by
applying the standard Wagner–Whitin algorithm.

The expression for the cost of the entire dynamic transshipment problem block depends on
which of the locations is replenishing. If s1 < s2, then we know that location 1 is replenishing.
In this case, the cost of the block is

M1(s1, s2; e1, e2) = K1 +
e1−1∑
t=s1

SP (1, s1; 1, t)d1t + A12 + ŴW
s1

1 (s2, e2 − 1). (2)

The first term represents the fixed replenishment cost for the block, the second term the cost of
satisfying all the demand at location 1, the third term the fixed transshipment cost in period s2
which was not accounted for in the modified Wagner–Whitin basic blocks, and the fourth term
the cost of satisfying all the demand at location 2.

If s1 = s2 (as explained in Property 9, it is impossible for s2 < s1), then we must compare the
costs of location 1 and location 2 being the replenishing location. The cost for location 1 being
the replenishing location is given by Eq. (2). If location 2 is the replenishing location, then the
cost is as follows:

M2(s1, s2; e1, e2) = K2 + A21 +
e1−1∑
t=s1

SP (2, s2; 1, t)d1t + ŴW
s2

2 (s2, e2 − 1).

The first term represents the fixed replenishment cost for the block, the second term the fixed cost
of transshipping from location 2 to location 1 in period s2, the third term the cost of satisfying all
the demand at location 1, and the fourth term the cost of satisfying all the demand at location 2.
Finally,

M(s1, s2; e1, e2) = min(M1(s1, s2; e1, e2), M2(s1, s2; e1, e2)).

The algorithm to calculate the cost of a block remains mostly unchanged. One required modi-
fication is to remove the first clause of the if statement of Step 1 of the algorithm, since it refers
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to Property 8 which no longer holds; in the rest of the algorithm the expressions for the various
cases have to be replaced by their new formulas.

The complexity of finding the optimal solution to the dynamic transshipment problem with
fixed transshipment costs is still O(T 4). The complexity of calculating all ŴW

sp

p (s2, e2 − 1) is
O(T 4); the explanation parallels the explanation for WW s1(s2 + 1, e2 − 2) in Section 5.2. The
precalculation of the quantities I

sp
p (u2; v2), H(u2; v2), and M̂

sp
p (u2; v2) requires O(T 3) time.

Since the first clause of the if statement of Step 1 of the algorithm must be removed, there will
be more basic blocks, but the analysis of the complexity in Section 5.2 did not use this fact.

6. 2. Joint Replenishment Costs

Up to now we have considered only two possible replenishment modes, replenish at location
1 and replenish at location 2. In this section we consider a third possibility, replenishing jointly
at locations 1 and 2. Even though our model has considered the possibility of replenishing both
at location 1 and location 2 at the same time (i.e., in two separate basic blocks), this does not
address the fact that there are generally savings involved in replenishment coordination; this
means that fixed joint replenishment costs are generally less than the sum of the two individual
fixed replenishment costs. In this section we describe how to incorporate into our model a joint
replenishment cost of K12. While we expect the conditions max(K1, K2) ≤ K12 ≤ K1 + K2
to be satisfied, this is not technically required for the analysis that follows.

The definition of a block is unaffected by the presence of joint replenishment costs, but we
must add to the definition of a two-location basic block the following possibility: When s1 = s2,
a replenishment occurs both at location 1 and at location 2 which is used to satisfy the demand for
location 1 in periods s1, . . . , e1 − 1 and for location 2 in periods s2, . . . , e2 − 1 except possibly
for holes.

The proof of Theorem 2 must be modified to consider a third case for the ‘‘latest replenishment,’’
when the latest replenishment is a joint replenishment:

If the latest replenishment is a joint replenishment, let period t be the period at
which the joint replenishment occurs. Applying Corollary 1 at nodes (1, t) and
(2, t) (a cut set in the network) we see that the block (s1, s2) →→→ (e1, e2) can be
split into two disjoint blocks [namely, (s1, s2) →→→ (t, t) and (t, t) →→→ (e1, e2)],
a contradiction to the maximality assumption.

The rest of Theorem 2 and its proof remain unchanged.
The next issue is the cost of a basic block in which a joint replenishment is made. In order

to demonstrate how to calculate this cost we present the following properties of a basic block in
which a joint replenishment occurs.

PROPERTY 10: An item purchased at location 2 during a joint replenishment will not be
used to satisfy demand at location 1. The reason is that it is cheaper (because of the holding cost
differential and because no transshipment is necessary) to satisfy location 1’s demand through
location 1.

PROPERTY 11: There are no holes at location 1 for the same reason given in Property 5.

PROPERTY 12: If e1 < e2, then there are no transshipments within the basic block. This is
known from Property 10 and the fact that all of the demand at a location 2 is satisfied through
the initial replenishment at location 2, as a result of Properties 2 and 4 and Corollary 1 applied
at node (1, e2 − 1). That is, the demand at node (2, e2 − 1) is met through the replenishment at
node (2, s2) and is held in inventory only at location 2. Note that this also implies that there are
no holes.
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PROPERTY 13: If e1 ≥ e2, some of the demand at location 2 may be satisfied from location
1, but only after the units of location 2’s initial replenishment have been consumed. From this
point on location 2 may or may not contain holes.

If there are no transshipments within the basic block (as is the case when e1 < e2), then the
cost of the basic block is the sum of the cost of two separate single-location blocks, except that a
different fixed replenishment cost is used, namely,

MNT
12 (s1, s2; e1, e2) = M1(s1, s2; e1, s2) + M2(s1, s2; s1, e2) − K1 − K2 + K12.

If, however, e1 ≥ e2, we can again have no transshipments, but we must also consider the case
that we do have transshipments. In this latter case we must take the minimum over all possible
periods, k, at which the initial replenishment at location 2 can run out.

M12(s1, s2; e1, e2)
= min{MNT

12 (s1, s2; e1, e2), min
s2≤k<e2−1

[M2(s1, s2; s1, k + 1) + M1(s1, s2; e1, s2)

+ WW s1(k + 1, e2 − 2) + SP (1, s1; 2, e2 − 1)d2,e2−1 − K1 − K2 + K12]}.

The possibility of a joint replenishment considered here will not affect the far majority of the
arcs in the block network. In fact the only affected arcs are the ones originating on the diagonal, i.e.,
nodes of the form (s1, s1). Presently these arc costs are determined by considering replenishment
at location 2 (if e1 < e2) or by taking the cheaper of the two alternatives of replenishing at location
1 or replenishing at location 2. In addition to both of these, we need to consider the possibility of
a joint replenishment.

The complexity of the algorithm is unaffected. There are O(T 3) joint replenishment possibili-
ties, combinations of s1 = s2, e1, and e2, each of which requires O(T ) time to calculate its cost.
The O(T ) time factor comes from the need to compare all possible runout times of the initial
replenishment at location 2. Thus calculating the cost of all the joint replenishment possibilities
requires O(T 4) time, the same complexity as the algorithm as a whole.

7. DISCUSSION AND CONCLUSIONS

Transshipments are often used as a mechanism to improve supply chain management. This
work has made a first step towards studying transshipments in a dynamic as well as deterministic
environment, where the use of transshipments as emergency source of supply is not applicable. In
fact, we explored two (previously not mentioned) reasons for using transshipments, namely, the
presence of fixed replenishment costs and a holding cost differential between locations. Finally, we
have considered fixed transshipment costs. In this way, this work extends the extensive literature
available on dynamic deterministic inventory models, to the growing practice of transshipments.
The simple and intuitive structure and properties associated with the solution of the dynamic
transshipment problem identified in this work can be understood and implemented by practitioners.
For example, practitioners can use the fact that each location in each period has a single source of
supply and/or the fact that replenishment quantities are the sum of several demand points to aid
in planning.

Two structures of fixed replenishment costs were considered: In the first a fixed cost is incurred
in a given period for each replenishing location; in the second a joint replenishment cost is
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incurred when both locations replenish. In fact, the latter cost structure is the same as in the well
known Joint Replenishment Problem (JRP) (see, e.g., Federgruen and Tzur [7]), but we allow
transshipments between the locations. Thus, by appropriately defining K1, K2, and K12 and by
setting c12 = c21 = ∞, our algorithm can be used to solve the two location JRP.

We developed a polynomial [O(T 4)] time algorithm to solve the dynamic transshipment prob-
lem. This algorithm is based on our extensive analysis of the problem which includes the definition
of blocks, holes, and basic blocks and the demonstration that an optimal solution consists of a
series of basic blocks. The identification of the basic blocks which make up the optimal solution
is made by applying a shortest path algorithm on a properly defined network. Our analysis was
performed for two locations; this helped to simplify the analysis, which in turn enabled us to
obtain deep insights into the problem. We expect that further work on dynamic deterministic
transshipment problems, with an arbitrary number of locations, would most likely be based on
the two-location results presented here.

A topic closely related to transshipments is substitutions. Even though transshipments and
substitutions are related, they are two distinct recourses. A transshipment concerns the same
item located at two different locations, while a substitution concerns two different items located
at the same location. One may think that a substitution in which item A replaces item B can
be modeled as a transshipment from location A to location B; in fact, with certain inventory
models the two problems can be represented by one unified model, defining the transshipment
cost in one direction as infinite. However, the difference between the problems becomes clear
when one considers the question of whether a substitution can be made in a time period before
the demand occurs, as can be done with transshipments. Whereas the motivation to transship
before the demand occurs would be to save holding costs, this is meaningless in the substitution
problem where the substituting item never really changes to become the other (cheaper) item.
Thus solving the substitution problem would require a different analysis, but we feel that we have
laid the foundation for it in this paper.
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