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Abstract: In this paper, we explore trade-offs between operational flexibility and operational complexity in periodic distribution
problems. We consider the gains from operational flexibility in terms of vehicle routing costs and customer service benefits, as
well as the costs of operational complexity in terms of modeling, solution methods, and implementation challenges for drivers and
customers. The period vehicle routing problem (PVRP) is a variation of the classic vehicle routing problem in which delivery routes
are constructed for a period of time; the PVRP with service choice (PVRP-SC) extends the PVRP to allow service (visit) frequency
to become a decision of the model. For the periodic distribution problems represented by PVRP and PVRP-SC, we introduce
operational flexibility levers and a set of quantitative measures to evaluate the trade-offs between flexibility and complexity. We
develop a Tabu Search heuristic to incorporate a range of operational flexibility options. We analyze the potential value and the
increased operational complexity of the flexibility levers. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 54: 136150, 2007
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INTRODUCTION

In periodic distribution problems, vehicles visit customers
over a given period of time, resulting in a schedule that
may be repeated. One such problem is the period vehi-
cle routing problem (PVRP), an extension of the vehicle
routing problem (VRP) in which delivery routes are con-
structed over a period of time (for example, multiple days)
to visit customers according to preset visit frequencies. The
PVRP with service choice (PVRP-SC) extends the PVRP
by making service (visit) frequency to customers a deci-
sion of the model. In these systems, customers may be
heterogeneous in their demand levels, visit requirements, and
willingness-to-pay for more frequent service. Operational
flexibility can help to avoid under-serving customers with
high service requirements and over-serving customers with
low requirements.

While introducing operational flexibility in periodic distri-
bution problems can increase efficiency in terms of vehicle
routing costs and customer service benefits, it poses chal-
lenges in (i) modeling flexibility accurately, (ii) addressing
the computational effort needed to solve problems with such
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flexibility, and (iii) implementing resulting solutions. Francis
et al. [11] introduce a formulation and an exact solution
method for the PVRP and PVRP-SC; however, the for-
mulation and solution method are limited in the range of
operational flexibilities that can be incorporated.

In this paper we develop a Tabu Search method that can
incorporate a range of operational flexibility options, includ-
ing the ability to increase the set of visit schedules, decide
visit frequency, vary the drivers who visit a customer, and
decide delivery amounts per visit. Further, we develop a set
of quantitative measures to evaluate the trade-offs between
flexibility and complexity in distribution problems. These are
new and novel measures that may be used in various distribu-
tion problems. We analyze the trade-offs between the system
performance improvements due to operational flexibility and
the resulting increases in implementation, computational,
and modeling complexity as they relate to the PVRP. Our
results provide insights into the value of flexibility options
and the associated increase in complexity. Using the Tabu
Search method, problems with other characteristics may be
examined with respect to the trade-offs between operational
flexibility and solution complexity.

Section 1 reviews the literature related to the periodic
distribution problems discussed in this paper, including the
exact method of Francis et al. [11]. Section 2 presents the
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flexibility options and complexity measures and introduces
a Tabu Search method to study general PVRPs and a set of
performance metrics to evaluate resulting solutions. Section 3
presents a computational study of the trade-offs between flex-
ibility and complexity and provides insights into these results.
Finally, Section 4 summarizes the paper and discusses future
work.

1. PERIODIC DISTRIBUTION PROBLEMS

Section 1.1 discusses related literature and Section 1.2
reviews the exact method of Francis et al. [11].

1.1. Related Literature

Periodic distribution problems occur in many industries,
including courier services, elevator maintenance and repair
[5], the collection of waste [17], and the delivery of inter-
library loan material [11]. The PVRP, introduced in [4]
and [17], finds a set of vehicle tours over a period of
days that minimizes total travel time while satisfying opera-
tional constraints (vehicle capacity and pre-determined visit
requirements for each customer). A set of visit schedules is
available for each customer (node), and one schedule from
this set must be chosen. A schedule represents the days on
which a node is visited. All feasible schedule options for a
node must provide the pre-determined number of visits for
that node. For example, if over the period of 1 week a node is
to be visited three times, the feasible schedule options may
include Mon-Tue-Thu, Mon-Wed-Fri, or Tue-Wed-Fri.

Heuristic solution methods for the PVRP are presented
in[1,7,8,16,18]. Francis et al. [11] introduce the PVRP-SC,
which allows customers to be visited more often than their
pre-determined frequencies. Service choice may be advanta-
geous if, for example, two customers with different minimum
requirements are located in isolation of all other customers
and the depot. If the schedule options for these customers do
not contain overlapping days, it may be beneficial to raise the
visit frequency of one customer such that both customers are
visited together. Francis et al. [11] show that this is also true in
less extreme cases in which arriving at a certain region makes
it beneficial to visit neighboring customers, hence increasing
the frequency with which some nodes are visited. Francis and
Smilowitz [10] present a continuous approximation model
of the PVRP-SC and show that the value of service choice
depends on the relative density of customers of different visit
requirements.

When flexibility in service choice is introduced, the prob-
lem begins to resemble the Inventory Routing Problem (IRP).
The IRP, like the PVRP-SC, determines visit frequency and
route configuration simultaneously, but with an additional
decision of how much to deliver to the customers (see [3,6]),
and the surveys in [2,9, 14,15] model the IRP as an integrated

IRP/PVRP with Time Windows. In the IRP, service-related
costs are modeled as holding costs associated with each item
unit. In the PVRP-SC, the amount delivered to a customer is
determined by the schedule chosen for the customer and the
adopted delivery strategy, as defined in Section 2.1. Service
is modeled as a benefit term related to each customer.

1.2. Exact Method from Francis et al. [11]

We review the formulation and the exact method for the
PVRP-SC from [11], which can also be used for the PVRP.
Let D denote the set of days in the period and S denote the
set of visit schedules. The parameter a,, links schedules to
days: a;q = 1 if day d € D isin schedule s € S and a,y =
0 otherwise. Each schedule s € § has an associated visit
frequency y* measured by the number of days in the schedule,
y® = Y 4cpdsq, and an associated benefit o* related to a
monetary benefit of the corresponding frequency.

The PVRP-SC is defined for a set of nodes, Ny, which
consists of customers nodes, N, and a depot, i = 0, and a
set of arcs connecting the nodes, A = {(i, j) : i,j € Np}.
Each customer node i € N has a known daily demand, W;,
and a visit requirement, f;, measured in days per period.
The demand accumulated between visits, wy, is a function
of the schedule s € § and the daily demand of the node,
which is set at the maximum accumulation between succes-
sive visits. The stopping time at a node, 7/, is a function
of the frequency of the schedule since more items accumu-
late with less frequent service and, therefore, require more
time to load/unload. Associated with each arc (i, j) € A is
a known travel time, c;;. There is a set, K, of vehicles, each
with capacity C.

The following allocation and routing variables are used.

1 if node i € N is visited by vehicle k € K

Vik = on schedule s € S
0 otherwise
1 if vehicle k € K traverses arc (i, j) € A
xgik = ondayd € D
0 otherwise

We introduce a parameter, § > 0, which weighs the ser-
vice benefit relative to vehicle travel and stopping times. The
formulation of the PVRP-SC from [11] is

YARES minZ Z Z c,-jxfijk + Z Z VAT

keK | deD (i,j)eA seS ieN

—BY D Wiy | (la)

seS ieN
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subject to
Y3 v'yi=fi VieN (1b)
seS kekK
Y3 =1 VieN (lc)
seS keK
> wlawyy <C  VkeKideD  (1d)
seS ieN
Y xly=> auay, VieNkeKideD (le)
JENy seS
ngik:ijik VieNpkeK;de D (If)
JENy JENy
Y oxfi<l0l-1 YOS NikekideD (lg)
i,jeQ
y5, €{0,1} VieN;keK;seS (1h)
xle€{0, 1} VG, j)eAkeKideD.  (li)

The objective function (la) balances travel time, stop-
ping time, and demand-weighted service benefit. Francis and
Smilowitz [10] analyze the impact of the value of «* on the
resulting solution. Constraints (1b) enforce the visit require-
ment for each node. Constraints (1c) ensure that one schedule
and one vehicle are chosen for each node. Constraints (1d)
represent vehicle capacity constraints. Constraints (le) link
the x and y variables. Constraints (1f) ensure flow conserva-
tion at each node. Constraints (1g) are the subtour elimination
constraints and ensure that all routes contain a visit to the
depot. Constraints (1h) and (1i) define the binary variables
for allocation and routing, respectively.

The exact solution method in [11] consists of a Lagrangian
relaxation phase, which relaxes constraints (le) to decom-
pose the problem into a capacitated assignment subproblem
in the y variables and a prize-collecting traveling salesman
subproblem in the x variables. If a gap remains after the
Lagrangian relaxation phase, it is closed using a branch-and-
bound phase that incorporates information from the earlier
phase. A heuristic variation of this approach truncates nodes
of the branch-and-bound tree that are within §% of the lower
bound, obtaining solutions within §% of the optimal. Using
this variation, PVRP-SC instances with up to 50 nodes are
solved to within § = 2% of optimality.

2. OPERATIONAL FLEXIBILITY
AND COMPLEXITY IN THE
PVRP AND THE PVRP-SC

Section 2.1 presents the flexibility options and complexity
measures for the PVRP. Section 2.2 introduces a Tabu Search
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heuristic capable of incorporating all levers of operational
flexibility discussed in Section 2.1. Section 2.3 defines
performance metrics to quantify the operational complexity
of resulting solutions.

2.1. Flexibility Options and Complexity Measures

Francis et al. [11] highlight the difficulties in formulat-
ing and solving the PVRP-SC that result from introducing
service choice. Several assumptions are made regarding
schedule options and visit conditions to accommodate ser-
vice choice in their formulation. Their exact solution method
yields optimal solutions to the PVRP-SC for moderate-
size instances with these assumptions. In this paper, we
develop a Tabu Search heuristic to solve more general
cases of the PVRP and the PVRP-SC. As a result, we
can relax some modeling assumptions of the exact method
and evaluate the value and increased complexity of addi-
tional levers of operational flexibility. Throughout this paper,
we use the following terminology to discuss flexibility and
complexity:

1. Operational flexibility: The ability to make changes to
operating conditions. We focus on the following levers
of operational flexibility that are commonly found in
distribution systems:

(a) Service choice. The ability to determine customer
visit frequency subject to the stated visit require-
ment. A customer’s visit frequency is the number
of times the customer is visited in the period.
A customer’s visit requirement is the minimum
number of visits allowed. Without service choice
flexibility, customers are served at their visit
requirements.

(b) Crew flexibility. The ability to have multiple drivers
visit a customer during the period. Without crew
flexibility, each customer is visited by one driver
throughout the period.

(c) Schedule options. The ability to offer a greater num-
ber of schedule options of different visit patterns
that can be chosen by the service provider to serve
a customer.

(d) Delivery strategy. The ability to choose the amount
delivered during each customer visit by allow-
ing inventory or shortage, assuming all demand is
eventually served.

2. Operational complexity: The difficulty of solution
implementation, from the perspective of the service
provider and its customers. Solutions with high opera-
tional complexity may be difficult to convey (e.g., no
simple rules characterize the service selection deci-
sion), may involve a high learning cost for drivers,
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and/or may cause dissatisfaction to customers. We

consider three measures of operational complexity:

(a) Arrival span: The variability in the time of day
when customers are visited over the period. In
applications where staffing at customer locations
is tied to vehicle visits, high variability in visit time
can increase customer staffing complexity.

(b) Driver coverage: The portion of the total service
region visited by a driver over the period. Zhong
et al. [20] model a learning/forgetting behavior for
drivers and show that dispatching drivers consis-
tently to the same geographic areas results in driver
familiarity and improved driver performance.

(c) Crewsize: The number of different drivers visit-
ing a customer over the period. Smaller crewsize
indicates consistent dispatching of drivers to cus-
tomer locations, building relationships between
drivers and customers. UPS Corp. [19] cites driver—
customer relationships as a competitive advantage
in its package delivery operations, attributing 60
million packages a year to sales leads generated by
drivers.

Using the Tabu Search heuristic, we consider the four
dimensions of operational flexibility in periodic routing prob-
lems and explore their impact on the three measures of
operational complexity. Next, we show how these measures
of flexibility and complexity are modeled in the periodic
routing problems.

Results from [11] indicate that the magnitude of the sav-
ings obtained by introducing service choice in the PVRP for
a given instance depends on geographic distribution of nodes
(in particular, nodes of highest visit requirements). In this
paper, we explore how additional levers of operational flex-
ibility impact the magnitude of savings and the complexity
of the resulting solutions and how the impact of these levers
depends on problem characteristics such as node distribution.
We make the following observations regarding these levers
in the context of the model and solution method of Francis
etal. [11]:

1. Service choice: Service choice flexibility can be
restricted by modeling the problem with constraint (1b)
fixed at equality.

2. Crew flexibility: The allocation variables, y7,, are
defined such that nodes are always visited by the
same driver. In the motivating example in [11], this
is required due to access restrictions. Assigning nodes
only to schedules, y?, relaxes this assumption and may
reduce routing costs. However, since the capacity con-
straints of the PVRP-SC depend on the vehicle index
and service level at each node, crew flexibility requires

either a non-linear capacity constraint or a fifth index
on the routing variables for schedule choice.

3. Schedule options: Computational limitations may
restrict the number of schedule options considered by
the exact method. Choosing schedule options care-
fully can offer more discriminating choices with limited
variation in driver routes. Francis et al. [11] observe
that for any set of schedules S consisting of S| —1
disjoint schedules (schedules that do not share any
common days) and a schedule that is the union of all
disjoint schedules, there are at most |S|— 1 different
routes for each vehicle. Thus, the number of routing
variables, xf]jk, is reduced significantly since it is not
necessary to model each day d € D, butrather only one
unique delivery day for each disjoint schedule, which
is repeated each day of that schedule.

4. Delivery strategies: It is assumed in most periodic dis-
tribution problems that the amount delivered to a node
is fixed a priori. Relaxing this assumption may improve
routing costs and service benefits; however, adding a set
of decision variables for the delivery amount increases
the difficulty of the problem significantly.

As discussed above, modeling the levers of flexibility
(apart from service choice) using the exact solution method
is difficult and the resulting computational effort is signifi-
cant. Therefore, we develop a Tabu Search heuristic that can
incorporate all levers of flexibility.

2.2. Tabu Search

Cordeau et al. [8] implement a Tabu Search heuristic for
the PVRP and obtain solutions equal to or better than the best
solutions for PVRP test cases in the literature. Angelelli and
Speranza [1] also successfully use a Tabu Search method to
solve an extension of the PVRP. We develop a Tabu Search
method based on that of Cordeau et al. [8], with suitable
extensions to model the PVRP-SC and incorporate opera-
tional flexibility. The principal change to the Tabu Search
algorithm is the definition of a move (in Step 2b below), con-
sidering moves from one schedule to another, rather than from
one route to another. This change also allows for exploration
of the different flexibility levers.

Tabu Search is a local search improvement method in
which neighbors of the current solution are explored at each
iteration; see [13]. For the PVRP-SC, a solution is a complete
specification of the allocation variables (either y;, or y/) and a
set of routes for each vehicle on each day (the x;’lj « variables),
such that each node i € N is assigned a schedule that satis-
fies or exceeds its visit requirement, f;. An attempt is made to
improve the solution by changing the schedule allocation of
a given node at each iteration. Routes are constructed based
on these schedule allocations, using the GENI heuristic of

Naval Research Logistics DOI 10.1002/nav
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Gendreau et al. [12], which evaluates various tour configura-
tions through a limited number of insertions and reinsertions.
The solutions are allowed to be infeasible with respect to
capacity but not with respect to visit requirements. Capacity
infeasibilities are penalized in the objective function using a
penalty term as in the TABUROUTE procedure of Gendreau
et al. [12]. Briefly, the algorithm is as follows:

1. Construct an initial solution:

(a) Allocate each node i € N to the lowest fre-
quency schedule that satisfies the visit requirement
fi (choosing randomly if more than one schedule
is a candidate).

(b) Construct routes to visit nodes for each day with
the GENI heuristic. Without crew flexibility (i.e.,
vi;), each node is always allocated to the vehicle
chosen for the first day of the schedule.

(c) Create a tabu list (initially empty) to store moves
that are temporarily prohibited.

2. Construct a set of possible moves:

(a) Randomly select a set of nodes as possible candi-
dates for movement.

(b) For each node, consider all moves from its present
schedule allocation to another (frequency-feasible)
allocation, which contains at least one of its p-
closest geographic neighbors.

(c) Calculate the change in the objective function for
each candidate move using the GENI heuristic to
evaluate changes in routing costs with penalties for
capacity infeasibility.

3. Identify the best move and check its tabu status from
the tabu list. A tabu move may be accepted only if
its solution is feasible and better than the best feasible
solution; otherwise, the best non-tabu move is accepted
(according to standard Tabu Search acceptance criteria
for feasible and infeasible solutions) and the solution
is updated accordingly.

4. Update the tabu list to include the implemented move;
the move is declared tabu for a random number of
iterations.

5. Return to Step 2 and repeat until no improvements in
the best feasible or infeasible solutions are found for
60 iterations.

Suitable values for the number of candidate nodes cho-
sen in Step 2 and the value of p are discussed in [12]. In
cases with many schedule options, requiring the presence
of a geographic neighbor in any candidate schedule limits
the complexity of the evaluation phase; in cases where this
requirement results in very few schedule choices, the algo-
rithm randomly chooses from all frequency-feasible choices
to ensure diversity of moves.

Naval Research Logistics DOI 10.1002/nav

The Tabu Search method is used to solve the PVRP by not
allowing service choice in Step 2. With crew flexibility in
Step 2 (i.e., y{), we pick the least-cost vehicle assignments
for each individual day, given the chosen schedule. With-
out crew flexibility, we explore all possible vehicle—schedule
combinations. Schedule options are controlled by the set S,
which can also model delivery strategy, as described in
Section 3.4.4.

Note that unlike some Tabu Search implementations, no
post-optimization is attempted on the routes after each move-
ment as numerical tests show that resulting improvements
are minimal and the post-optimization improvement routines
are computationally expensive.

2.3. Performance Metrics

We use two sets of performance metrics to quantify the
trade-offs between operational flexibility and operational
complexity in periodic distribution problems, all of which
apply to PVRP and PVRP-SC solutions. Metrics in the first
set, related to routing cost and service benefit, are explic-
itly considered in the objective function of both the exact
solution method and the Tabu Search method; therefore,
the solution methods attempt to optimize these metrics.
Metrics in the second set are related to operational com-
plexity (driver coverage, crewsize, and arrival span). These
metrics are calculated after solutions are obtained and,
therefore, are not optimized by the solution method. It is
possible, however, to consider these metrics implicitly dur-
ing the solution phase through restrictions on variable and
parameter definitions. For example, without crew flexibil-
ity, we define allocation variables by y!, and the crew-
size is always one driver at each node. Further, restricting
schedule choices in the set S (for example, only disjoint
schedules and their union) reduces complexity in driver
coverage and arrival span by limiting the number of dif-
ferent routes each driver performs. In the following, we
describe how the metrics for operational complexity are
calculated.

Obtaining the arrival span is straightforward given a solu-
tion (X,¥) to the PVRP-SC. All routes are assumed to be
performed in a counter-clockwise direction so that visit times
are not affected by the choice of route direction. If node i is
allocated to schedule s and visited by vehicle k on day d, the
time at which it is visited is

= Y [cmjf:';,-ﬁZr,;&:,,k} (20)

(m,j)eArq(i) res

where Ayy(i) is the set of arcs traversed before node i by
vehicle k on day d. For each s € S, we define Dy as the set of
days d € D where a;; = 1. Note that | D;| = y*. The mean
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and standard deviation of the visit times for a node, given a
chosen schedule s, are

n=—ZTd (2b)

deDy

0 if y° = 1

B e (20)
' —de”;lﬁl Il if y* > 1.

We define the average arrival span of a solution over all nodes
i €N as

= Nl - > (2d)

Calculating driver coverage and crewsize is straight-
forward without crew flexibility (i.e., with y7,); however,
calculating these metrics requires additional processing of
solutions with crew flexibility (i.e., with y7). With crew flexi-
bility, the vehicle index k € K assigned to a route is arbitrary
for any PVRP-SC solution, as shown with the example in
Figure 1. Figure 1 depicts a PVRP-SC solution for an instance
with six nodes, two vehicles, and a period of 2 days. On day 1,
the vehicle indexed by k = 1 visits the nodes on the left side
of the service region and the vehicle indexed by k = 2 vis-
its the nodes on the right side. On day 2, the indices are
reversed. Without crew flexibility, the solution must assign
the same vehicle index to the left region (and to the right
region) on both days; however, with crew flexibility, there
is no incentive to assign the same vehicle index to the left
region on both days. It would be an overestimation of the
operational complexity to say that the drivers serve different
regions on the two days, when the indices may be switched
without affecting the objective function. In this example,
the complexity-minimizing assignment of indices is obvi-
ous. However, one can envision many instances in which the
assignments of indices are not straightforward, particularly
with multiple vehicles and multiple days. Therefore, we intro-
duce a mathematical programming approach to assign the

driver indices to the arbitrary vehicle indices of the PVRP-SC
solution. The goal of this approach is to minimize total driver
coverage. We focus on areas rather than nodes since the set
of nodes visited changes by day. Such a policy corresponds
to an industry practice in which a dispatcher may allocate
service areas to drivers familiar with certain neighborhoods
and/or customers.

We partition the service region into a set L of cells (cells
may represent city blocks), indexed by /, such that each cell
contains at least one node. In Figure 1, the service region
is divided into four cells: [ = .,4. Let N; denote the
set of nodes contained in cell / € L and let V be the set of
drivers. We assume that |V | = |K|. A driver covers a cell if he
visits at least one node in that cell. The assignment problem
minimizes the number of cells that each driver covers. Given
a PVRP-SC solution (X, ¥), we define a parameter by, as

1 if vehicle index k € K visits cell [ € L
ondayd € D;ie.if 3,y >
0 otherwise.

>1

bua = jeN ,jk >

We define two decision variables:

1 if driver v € V visitscell/ € L

Uy = at least once during the period
0 otherwise
1 if driver v € V is assigned to vehicle
Woka = index k € K onday d € D
0 otherwise.

The assignment problem is formulated as

Z, = min Z Z Uy (3a)

veV leL

O

Vehicle index =

Vehicle index
k 1

Day 1 solution

Figure 1.

Day 2 solution

Same solutions may be assigned different vehicle indices.

Naval Research Logistics DOI 10.1002/nav
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subject to
Uy =Y buaWoa  YveV,eLdeD  (3b)
keK

> Wua=1 VveV,deD (3¢)

keK
> Wua<1 VkeK.deD (3d)

veV
Wuka € {0, 1} YVve V;ke K;d e D (3e)
Us>0 YveV,iel. (3f)

Objective (3a) minimizes the number of cells covered by
the drivers. Constraints (3b) set U,; to 1 if driver v € V is
assigned to a vehicle index k € K that visits cell/ € L on at
least 1 day. Constraints (3¢) ensure that each driver is assigned
to a vehicle index on each day. Constraints (3d) ensure that
only one driver is assigned to a vehicle index on a given day.
Constraints (3e) and (3f) define the decision variables (note
that U, is binary, given binary values for Wy,).

Given a solution (U, W) to the assignment problem, we can
calculate driver-dependent metrics. Recall that driver cover-
age measures the portion of the geographic area covered by
drivers. For each driver v € V, the number of cells visited
is > e, U,;. Driver coverage is defined as the ratio of the
number of cells visited to the total number of cells:

1 \

O, =—Y Uy (4a)
|L| leL

The average driver coverage for a given PVRP-SC solution is

IVIILI 2.2 U ILIIVI @0

veV lelL

where Z, is the objective value for Formulation (3). Clearly,
the number of cells and vehicles affects the possible values
of 8. We would expect 6 ~ ﬁ for solutions that equally

partition neighborhoods between drivers (with no overlap).

High values of the average driver coverage, 0 > \V\ indi-
cate a complex solution in which drivers may visit many
neighborhoods.

Using the solution W from Formulation (3) and the PVRP-
SC solution (X,¥), we can determine which drivers visit a
node during the period. Let indicator ¢;,, = 1 if node i € N
is visited by driver v € V during the period and 0 otherwise.
For each node i € N and driver v € V, we have

iy = {é lf ZdED ZkEK Zje[\/ ’Jkakd > 1 (Sa)

otherwise.
We calculate the crewsize for a node i over the period as

o = Zeiv- (Sb)

veV
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The average crewsize in the PVRP-SC solution is

=i Z@ (5¢)

ieN

Accordingly, ¢ ranges from 1 to |V|. A high value of
¢ indicates that, on average, many drivers visit a node,
which may be undesirable in applications that require drivers
to have knowledge/training specific to customer locations
(configuration of the facility layout, security clearance, etc.).

In the numerical analysis in Section 3, we evaluate PVRP
and PVRP-SC solutions relative to the following metrics:
objective function Z; average arrival span o; average driver
coverage 6; and average crewsize ¢. Additionally, we con-
sider the computational complexity of the solution methods
with solution times.

3. NUMERICAL ANALYSIS

Section 3.1 evaluates the Tabu Search heuristic relative
to the exact method from [11]. Section 3.2 introduces the
test cases in the numerical studies. Section 3.3 introduces
the measures used in the numerical analysis and Section 3.4
presents and analyzes the results.

3.1. Evaluation of Tabu Search

We implement the Tabu Search heuristic in C4-+ and exe-
cute on a Sun Fire 150 workstation with two UltraSPARC Ili
processors. To evaluate the Tabu Search method, we use prob-
lem instances from Francis et al. [11] solved with the exact
method. The test cases range in size from 12 to 40 nodes, with
3 and 4 vehicles, and various capacity levels. We impose the
same assumptions as Francis et al. [11] (i.e., allowing service
choice, no crew flexibility, a schedule set of {Mon-Wed-Fri,
Tue-Thr, daily}, and delivery of accumulated demand).

Table 1 compares the average difference (aggregated over
vehicle and capacity values) in the two solution methods,
examining the percentage differences among the objective,
the performance measures o and @, and the solution time.
Since there is no crew flexibility, the crewsize measure ¢ = 1

Table 1. Comparison of Tabu Search solutions with exact
solutions.
Optimality Change in sol.
Nodes gap (%) o gap (%) 0 gap (%) time (%)
12 0.0 0.3 0.1 81.2
16 0.1 0.2 04 —5.2
20 0.0 0.3 0.4 —39.0
28 0.1 0.4 0.3 —59.3
36 0.3 0.7 0.5 —71.9
40 0.4 0.9 0.7 —84.6
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in all cases. The average objective values of Tabu Search
solutions are within 0.4% of optimality. The operational com-
plexity of solutions obtained by the two methods differ by less
than 1% across all above measures. Thus, the Tabu Search
finds solutions that are close to optimal and provide a good
representation of the operational complexity of the optimal
solutions given the assumptions of the exact method.

An important advantage of the Tabu Search method is its
significantly lower computation times compared to the exact
method. The exact solution method takes more than 8 hours
for instances of the PVRP-SC with 40 nodes, yet the Tabu
Search can solve these instances in roughly 40 CPU min-
utes. Additionally, the Tabu Search obtains solutions within
a reasonable amount of time for larger instances that cannot
be solved with the exact method. While the heuristic version
of the exact method could be used with the precision (§) set
to high values for larger instances, we expect that the Tabu
Search method would outperform such solutions, in terms of
both solution quality and solution times. Further, even with
large & values, the heuristic version cannot be used to test all
flexibility levers due to modeling and computational limits.
Given the ability of the Tabu Search to incorporate flexibil-
ity levers, as well as its speed and quality, we use the Tabu
Search to produce solutions for our analysis.

3.2. Test Cases

Francis et al. [11] find that the routing efficiency gains
from service choice in the PVRP-SC are impacted by the
geographic distribution of customer nodes. We examine how
geographic distribution impacts the gains from other flexibil-
ity levers. Further, we examine how these flexibility levers in
turn impact the magnitude of savings from service choice.

We create a set of randomized instances in idealized pat-
terns of various city configurations. Figure 2 displays the
four configurations of the service region for instances with
characteristics of demand patterns and node distributions that

2 days and 3 days

a. Traditional city model, b. Traditional city with

TC sprawl model, TCSP

mimic trends in cities today. Each city covers a circular
area of 100miles in diameter, and the service region is
divided into square cells (10 x 10 mi) for calculation of the
driver-dependent metrics. Cells that do not contain nodes are
eliminated from the set L. In all configurations, the depot
is located in the center of the region. The service region is
divided by customer visit requirements over a 5-day period
(2, 3, or 5 days).

Configuration TC in Figure 2a represents a traditional city
in which high demand customers are located near the cen-
ter of the region and demand density decreases with distance
from the center. Configuration TCSP in Figure 2b is a varia-
tion of the traditional city in which there is a mix of low and
moderate demand levels beyond the region of high demand
in the center. Configuration SP in Figure 2c represents mod-
ern sprawl in which demand levels are scattered throughout
the region with no central business district. Configuration
VC in Figure 2d represents a city in which high demand has
left the central business district and moved to the outlying
areas.

Numerical studies from Francis et al. [11] suggest that
test cases resembling Configuration TC observe significant
improvements in routing efficiency and customer service with
service choice flexibility, while cases resembling Configu-
ration SP experience lower routing efficiency gains (while
still increasing customer service). We use the city configu-
rations here to study the interplay between geographic node
distribution and a broader range of operational flexibility.

Ten problem instances with 200 nodes are randomly gen-
erated for each configuration. Nodes are uniformly scattered
within each subregion. Demands are drawn from a truncated
normal distribution (mean 125, standard deviation 100), and
the resulting demand value is accepted if it fits the subregion
characteristics, given as follows: 0 to 75 items/day for f;=
2 days, 76 to 150 for f;= 3 days, and 151 to 250 for fi=5
days. Otherwise, the demand value is discarded and another
realization is created.

2 days, 3 days,
and 5 days

(=]

c. Sprawl model, SP

d. Vanishing city model,
vC

Figure 2. Test case configurations.
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Table 2. Schedule options for 5-day test cases.

Visit

Label |S| requirements Schedule set

A 3 235days (TR),(MWF),(MTWRF)

B 5 235days (TR),(TF),(MWF),(MWR),
(MTWRF)

C 5 1-5days  (W),(TR),(MWF),(MTRF),
(MTWRF)

D 7 1-5days (W),(TR),(TF),(MWF),
(MWR),(MTRF), MTWRF)

E 10 1-5days (W), (R),(F),(MR),(TR),

(TF),(MWF),(MWR),(MTRF),
(MTWRF)

For each test case, we consider the sets of schedule options
listed in Table 2. The first column lists the label for the sched-
ule set. The second column lists the number of schedules in
the set S and the third column lists the visit requirement val-
ues (f;) for the nodes. The schedule set is shown in the fourth
column. The set A includes only disjoint schedules and their
union, which is used with the exact solution method in [11].
All other sets include non-disjoint schedules that cannot be
easily incorporated into the exact method. The service benefit
(a*) values are 0.05, 0.1, 0.15, 0.175, and 0.2 for schedules
with y* values of 1, 2, 3, 4, and 5, 1res.pectively.1

3.3. Measuring Efficiency and Complexity

We examine the impact of introducing flexibility levers in
pairwise comparisons with and without flexibility. The super-
script cons denotes the value of the constrained solution and
the superscript flex denotes the value of the flexible solution,
both with respect to a certain flexibility lever.

Zflex _ geons

Objective improvement Ay = e 6)
O,flex — geons

Arrival span complexity rise A, = e @)

Qflex — geons

Driver coverage complexity rise Ay = —geom ®)
¢fle)c _ ¢conx

Crewsize complexity rise Ay = ——  (9)

¢COV!S

The objective improvement is decomposed into two parts:
the contribution due to the routing cost component, Az__,
and the contribution due to the service benefit component
Az,. The driver coverage metric 6 is bounded by ﬁ <

6 < 1. Hence, the corresponding change in driver coverage
is bounded by —(|V| — 1) < Ay < (V| — 1). The value of

! Benefits specific to each schedule option can be incorporated in
the Tabu Search procedure easily.
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crewsize ¢ isbounded by 1 < ¢ < |V|and the corresponding
change by —(IV] — 1) < Ay < (IV] = D).

While we cannot derive such bounds for Az and A,, we
use the example in Table 3 to illustrate how the magnitude
of the measures may be interpreted. For a Traditional City
instance with 200 nodes and 5 vehicles, the PVRP-SC solu-
tion with schedule set A and without crew flexibility yields
an objective value of Z = $3,961 (routing cost: $5,082; ser-
vice benefit: $1,121), 0 = 1.86 hours, & = 0.22 (15.5/70
cells), and ¢ = 1 driver, shown in the base case column of
Table 3.

Adding crew flexibility (Variation 1 in Table 3), the objec-
tive function decreases by $16 and Ay = —0.4%. Further,
we observe A, = 2.2%, corresponding to a rise in arrival
span o to 1.9 hours. Similarly, Ay = 4.5%, corresponding to
arise in 6 to 0.23 (16.1/70 cells). Finally, Ay = 4.0% and
¢ = 1.04 drivers per customer (2 customers are visited by
3 drivers, 5 customers are visited by 2 drivers, and the remain-
ing 193 customers by a single driver). This is representative
of a small change in the solution.

Increasing the set of schedules from A to E (Variation 2
in Table 3), we obtain Az = —8.1%, with 6.1% savings due
to routing and 2.0% savings due to service benefit increases
(12 more nodes are served at higher frequencies). We observe
A, = 18.3%, with arrival span o rising to 2.2 hours. We
observe Ay = 13.6% as 6 rises to 0.25 (17.5/70 cells). In the
flexible solution, Ay, = 18%. Here, 2 nodes are visited by
3 drivers, 32 nodes by 2 drivers, and the remaining 166 nodes
by 1 driver, yielding ¢ = 1.18 drivers per customer. This is
representative of a large change in the solution.

3.4. Effect of Flexibility

In what follows, we examine the effect of the flexibil-
ity levers on the performance metrics. Section 3.4.1 shows
the effect of crew flexibility and Section 3.4.2 shows the
effect of flexibility in schedule options. Section 3.4.3 con-
siders the tradeoffs between flexibility and complexity when
schedule options and service choice are considered together.
Section 3.4.4 considers the effect of flexibility in delivery
strategies. Finally, Section 3.4.5 presents managerial insights
from our analysis.

Table 3. Example of metric changes.

Variation 1 Variation 2

Metric Base case value Value A (%) Value A (%)

Z $3,961 $3,945 —0.4 $3,640 -8.1

o 1.86 hours 1.9 hours 2.2 2.2 hours 18.3

0 0.22 0.23 45 0.25 13.6
(15.5/70) (16.1/70) (17.5/70)

) 1 driver 1.04 drivers 4.0 1.18 drivers 18.0
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Table 4. Effects of introducing crew flexibility (all values are in %).

PVRP PVRP-SC,puing PVRP-SC
Az Dz As  Ae Dy Dz, Az As Ag Ay Az, Azg A Ap A
TC -04 NA 04 28 22 -18 NA 15 78 61 —19 00 16 78 6.l
TCSP —04 N/A 04 26 23 —13 NA 08 66 54 —13 —01 09 66 54
SP -03 NA 03 22 21 -12 NA 10 67 54 -11 —02 10 67 54
vC -01 NA 04 24 18 17 NA 14 70 59 16 —01 14 70 59

3.4.1. Crew Flexibility

Table 4 shows the average percentage change in the metrics
between solutions without crew flexibility (cons) and with
crew flexibility ( flex). In both cases, we use schedule set E,
which provides the most schedule options. We show the met-
rics under three conditions: without service choice (PVRP);
with service choice and 8 = 0, (PVRP-SC,,/ine); and with
service choice and B = 1 (PVRP-SC). The PVRP-SC,,/ing
option allows for routing improvements due to frequency
changes, but these changes do not affect the objective function
through the service benefit term.

The average objective improvement in all cases in Table 4 is
consistently less than 2%, with uniform variance of less than
1% in individual observations. While crew flexibility appears
to improve the PVRP-SC objectives more than PVRP objec-
tives, the improvement is still small. PVRP-SC solutions have
a larger feasible region (more schedule choices are possible);
therefore, crew flexibility expands the feasible region more
when used in conjuction with service choice flexibility. For
the PVRP-SC, the relative magnitude of the change in the
two components of the objective indicates that most of the
savings are due to improved routing efficiency without sig-
nificant change in the service allocation of the nodes. Overall,
the geographic configuration does not have a large effect on
the objective improvement.

As expected, adding crew flexibility has a noticeable
impact on the complexity measures 6 and ¢ since crew
flexibility expands the set of solutions by specifically those
solutions that are characterized by higher values of individual
@ (visiting more nodes increases U,; for drivers) and ¢ (by
definition). Again, this impact is larger when service choice
is allowed since more solutions are feasible. The change in

o is not significant since nodes are visited in an order that is
affected mostly by their position relative to the depot and less
by changing the vehicle routes (particularly in dense delivery
areas).

From a practical standpoint, these results suggest that
system regularity can be enforced by removing crew flexi-
bility, without significantly affecting the objective function.
The benefit from removing crew flexibility is in creating
solutions with driver delivery districts that have fewer over-
lapping areas, which reduces complexity for customers and
drivers. Solution times for the Tabu Search are not signifi-
cantly affected by allowing or removing crew flexibility, with
the average solution time of 190 minutes with a standard
deviation of less than 8 minutes across all instances.

3.4.2.  Schedule Options

Table 5 shows the average percentage change in the met-
rics, comparing solutions with schedule set A (cons) with
solutions with schedule set E ( flex). Crew flexibility is used
in both cases to allow the system to choose the best vehi-
cle assignments for all days, which allows us to examine
the unrestricted change in crewsize under schedule option
flexibility.

Table 5 suggests that the geographic distribution of nodes
impacts efficiency and complexity when increasing the num-
ber and type of schedule options. While the individual
difference between instances results in variances ranging
from 0 to 4% for Az, _, increasing schedule options appears
to be more beneficial for configurations with high frequency
nodes distributed close to the depot. In other cases, such
as Configurations SP and VC, limiting the set of sched-
ules is less costly. There are two reasons for this variation

Table 5. Effects of increasing number of schedules (all values in %).

PVRP PVRP-SC, oysing PVRP-SC
Azc,r Aza Ay Ay A¢ AZC,t Aza Ay Ay A¢ Azc,r Aza Ay Ay A¢
TC 2.8 N/A 33 1.7 2.1 —54 N/A 8.3 3.1 4.9 —5.3 2.9 9.8 4.9 6.2
TCSP -25 N/A 29 0.7 1.6 —4.8 N/A 7.1 1.9 3.6 —4.7 -2.7 8.5 2.1 4.8
SP 2.1 N/A 23 1.0 1.8 -39 N/A 6.8 2.8 4.0 —-3.8 —2.4 72 3.0 7.9
VvC -1.5 N/A 1.0 1.1 1.9 -32 N/A 3.1 2.1 42 -2.9 —-1.4 33 33 5.6
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between centralized demand configurations and dispersed
demand configurations. First, the magnitude of routing costs
differs between the configurations. Routing costs tend to be
higher when the most frequently visited nodes are far away
from the depot, as is the case in Configurations VC and SP.
Hence, the same absolute improvement in objective appears
smaller for dispersed configurations as opposed to the cen-
tralized configurations. Second, the presence of nodes with
high visit requirements at the outer periphery requires vehi-
cles to serve neighborhoods near such nodes on each day
of the week. Nodes lying on the path of such routes, or near
the outer periphery, can receive higher levels of service since
the marginal cost of including these nodes on the routes is
relatively low (Francis et al. [11] illustrate this principle). In
fact, when the fixed portion of the stopping cost t is negli-
gible, nodes receive higher service as long as the increased
benefit offsets the marginal cost, subject to vehicle capacity
constraints. Hence, adding additional flexibility by extending
the set of schedule options has less value for the dispersed
configurations as opposed to the centralized configurations.
Including service benefit in the objective of the PVRP-SC
has the expected effect of raising visit frequency as more
schedule options are allowed. The improvement from raising
frequencies ranges from 1.4 t02.9%. InPVRP-SC, ,;ing solu-
tions, visit frequencies are raised as well in some instances to
increase routing efficiency. If these changes were rewarded
in the objective function, they would contribute an improve-
ment of 0.6-1.6% in Z, (this is not shown in Table 5 since
service benefits in PVRP-SC, ;. are not rewarded).
Schedule set A is designed specifically to limit the com-
plexity of driver routes, i.e., drivers perform at most two
different routes. As expected, complexity measures rise when
schedule set E is used. The increase in arrival span o suggests

that adding more flexibility in schedule options is at the
expense of consistency in customer visit times. The day-
to-day composition of routes has more variance when more
diverse schedule choices are available and hence the number
of nodes to be visited changes from day to day. A similar
effect corresponds to ¢ and . Further, these metrics rise
with service choice since the number of customers visited
each day increases, which may force vehicles to cover wider
areas. When service benefit is considered in the objective,
the metrics increase more since the routes generated are not
as efficient as those created when routing cost is the only
objective.

Finally, solution times for the Tabu Search are sensitive
to the size of the schedule set |S|. For our 200-node data
sets, the solution times are found to increase from 168 CPU
minutes for |S| = 3 to about 192 CPU minutes for |S| = 10
with a standard deviation of less than 12 minutes across all
instances.

3.4.3. Interaction of Service Choice
and Schedule Options

The preceding analysis suggests that introducing flexibility
in schedule options has an impact on the objective func-
tion, with or without service benefit in the objective. Next,
we examine the trade-offs between flexibility and complex-
ity when increased schedule options and service choice are
considered together. We include crew flexibility to allow the
system the flexibility to pick the best vehicle assignment for
each visit to a node.

Figures 3 and 4 illustrate how the performance metrics
change as both service choice and schedule option flexibility
are introduced for Configurations TC and VC, respectively.

Schedule A Schedule B Schedule C Schedule D Schedule E
|| [ | ] ] | o
=== [Eradisws] [ | [ ai] flsccadosaal E
== BT 3| g2 - s
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Figure 3. Increasing flexibility in node visitation: traditional city configuration.
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Figure 4. Increasing flexibility in node visitation: vanishing city configuration.

The results for Configurations TCSP and SP (not shown here)
lie between Configurations TC and VC in terms of changes in
operational performance and operational complexity. Hence,
Configurations TC and VC are representative of the extreme
conditions of geographic configurations. Along the horizon-
tal direction in Figures 3 and 4, from left to right, we change
the schedule options from A to E; along the vertical direc-
tion, we introduce service choice (PVRP-SC solutions) in the
upper row and restrict service choice (PVRP solutions) in the
lower row. Recall that schedule set C has the same number
of schedule options as B, but a wider range of visit require-
ments. All metrics are measured with respect to a common
base case, the PVRP with schedule set A (lower left corner).

Figures 3 and 4 indicate steady improvement in the objec-
tive function as schedule option flexibility is introduced.
Improvements in the objective function are accompanied by
increases in operational complexity in most cases. The effects
are larger for Configuration TC than any other configuration,
as in the previous section. Also, as before, the PVRP with VC
configuration has the least increase in complexity measures.
Adding three schedules from schedule set D to E results in a
1.4% change in A 7 on the average, with variance in individual
observations ranging from 0 to 4%. The additional schedule
options increase the solution time of the Tabu Search, on
average, by 7 minutes.

The rises in crewsize and driver coverage indicate that
adding flexibility through service choice and/or new sched-
ule options affects the number of different drivers to train
for operations specific to each customer location. There are
also significant differences in the arrival span. While all
city configurations appear to be affected, Configuration TC,
which shows the highest efficiency gains, also has the greatest
change in arrival span with increased flexibility.

Displaying the metrics for varying levels of schedule
options and service choice relative to a common base case
facilitates comparisons of the relative costs and benefits
of flexibility levers. Using Figures 3 and 4, it is possible
to compare the relative complexity increases for a given
improvement in the objective function for flexibility in ser-
vice choice versus flexibility in schedule options. Figures 3
and 4 indicate that flexibility in schedule options can pro-
duce efficiency gains comparable to service choice with lower
rises in complexity. For example, in Configuration TC, using
service choice flexibility with schedule set A yields a 5%
improvement in the objective function over the base case
with complexity increases between 5 and 10%. Using set
E without service choice also yields an objective function
improvement of 5%, but with smaller rises in complexity.

Service providers should evaluate the relative gains from
increased operational efficiency against operational costs
such as driver training and possible customer dissatisfaction.
These metrics provide a way of quantifying the changes. For
instance, consider a distribution operation offering schedule
set A to customers in a city of Configuration VC. If transporta-
tion costs are high compared to the cost of training drivers to
visit different customers and regions, then a 5% increase in
operational efficiency by introducing service choice may jus-
tify a 4% increase in average driver coverage and 8% increase
in crewsize. A relative weighting of these metrics is likely to
be application specific depending on the costs associated with
increased complexity.

3.4.4. Delivery Strategies

The PVRP/PVRP-SC literature assumes that the amount
delivered at each customer visit is equal to the demand
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accumulated since the last visit. In this section, we explore
how flexibility in delivery amounts can improve operational
efficiency of the PVRP-SC. In order to model this flexibility,
we first look at the way in which demand accumulation is
modeled in periodic routing problems.

In the PVRP literature, demand accumulation is modeled
as the average accumulation between visits. In the PVRP-SC
model of Francis et al. [11], the accumulation is modeled
as the maximum demand accumulation between visits. With
both approximations, the delivery quantities, w;, can be deter-
mined for node i € N and schedule s € S, and the day is
not needed in capacity constraints (1d). The true accumula-
tion includes the day, w;‘d, which significantly increases the
complexity of the model (constraint (1d) in particular) for the
exact method of Francis et al. [11].

Using average accumulation may lead to capacity-
infeasible solutions if capacity is tight and the time between
visits is not uniform in certain schedules. This approxima-
tion is reasonable if at least one of the following conditions
is satisfied:

1. Demand at each node does not vary significantly over
the period, and the time between visits is uniform
for all schedules. Further, there is sufficient slack
in the vehicle capacity to accommodate the existing
variability.

2. Customers are willing to accept average delivery
amounts rather than the requested delivery amount
(thereby incurring shortages or carrying additional
inventory).

Similarly, the maximum accumulation approximation is
reasonable when Condition 1 above holds or if customers are
willing to accept more deliveries in excess of the accumu-
lated demand. Using the maximum accumulation guarantees
feasibility but may lead to suboptimal solutions. In practice,
when operating under the maximum accumulation modeling,
only the required demand is delivered, but vehicle capacity is
reserved for the maximum accumulation, which is used fully
at least once during the period.

Other solution methods (and in particular our Tabu
Search method) may consider the true demand accumulation
between visits, which can incorporate non-uniform separa-
tion between visits, as well as non-stationary demand and
service choice.

Delivery flexibility allows the delivery amount to become
adecision variable so that efficiency is increased. As such, the
PVRP-SC begins to resemble the Inventory Routing Problem
(IRP), in which the amount delivered is a separate decision
variable. We consider two ways in which the PVRP-SC can
be modeled as a special case of the IRP with deterministic
demand. The first is an IRP where no shortages are allowed,
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a zero inventory policy is followed, and there exists a lim-
ited set of visit frequencies. As a result, a vehicle always
delivers an amount exactly equal to the demand accumulated
between visits. However, unlike the traditional PVRP-SC, the
service benefit term is modeled as the cost of holding inven-
tory between visits rather than as the benefit of increased
frequency. The service benefit term depends on the demand
at the node, as well as the time that each unit of demand
is held. In the second case, we relax the assumptions of a
zero inventory policy and allow shortages. Allowing short-
ages guarantees feasibility in cases that are not feasible in
the first case. Note that continuous IRP models may choose
any amount to be delivered at nodes; however, we signifi-
cantly limit the delivery choices to solve this variation in a
reasonable amount of time using the Tabu Search method. In
particular, we allow either the delivery of the average demand
or the true accumulated demand. The maximum-demand
strategy is excluded because it reserves more capacity than
required on the vehicle, resulting in less efficient routing
solutions.

Two delivery options are compared to measure the bene-
fit of modeling delivery strategy: (1) no delivery flexibility
(cons), a PVRP-SC in which the service benefit is mod-
eled as holding and shortage cost savings and exactly the
true demand is delivered every time; (2) delivery flexibil-
ity (flex), a PVRP-SC in which service benefit is modeled
as holding and shortage cost savings, and the system can
choose between delivering the average-demand amount or
the true-demand amount. For each node, a cost is assigned to
each schedule based on the holding and shortage costs of the
amount delivered, the demand, and the visit days. We use a
holding cost of $0.05 per item per day and a shortage cost of
$0.1 per item per day.

The Tabu Search is modified to solve these special cases of
the IRP as follows. Without delivery flexibility, we model | S|
schedule options. With delivery flexibility, we create copies
of each schedule for each delivery strategy. In this case, there
are two delivery strategies (average amount and required
amount), yielding 2|S| schedule options. Thus, when con-
sidering candidate moves in each Tabu Search iteration, both
the frequency and the accumulation option of a candidate
schedule are simultaneously evaluated. We solve the prob-
lem for the 200-node, city configuration test cases assuming
crew flexibility and schedule set E. The average solution
times increases from 194 minutes for |S| = 10 to about
486 minutes for | S| = 20. While this approach can be used
to consider a wider range of delivery options, the increase
in solution time limits the number of options that can be
practically considered.

Table 6 shows the effect of adding delivery flexibility on the
objective function and the complexity measures. The objec-
tive improvements are aggregated over all instances of each
configuration and vary slightly by city configuration type.
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Table 6. Impact of introducing delivery flexibility.

Azer () Azy (%) Ao (%) Ao (%) Ay (%)
TC —4.8 -2.6 6.8 2.4 4.2
TCSP —4.1 —24 6.4 2.2 4.0
SP —4.0 2.6 6.4 2.6 4.4
vC -3.6 —-1.8 6.6 2.4 4.0

However, there exists a wide variance in individual observa-
tions, which suggests that the choice of delivery strategy is
partially dictated by other factors such as route design and
capacity utilization of vehicles. Nevertheless, the ability to
control the amount of demand delivered is shown to be a
useful means of flexibility.

Overall, for the given inventory costs, adding the deliv-
ery strategy flexibility is beneficial. The objective function
improves by 2-13% across individual instances when the
system is allowed to choose between delivering the aver-
age amount and true amount. These savings are achieved
with changes in delivery quantity for only a small num-
ber of nodes. In all cases, fewer than 20 nodes are served
using average demand rather than true demand, with the
average number of such nodes ranging between 12 and 20.
The resulting change in the objective appears to be partly
due to more efficient routing and vehicle assignments made
possible by the demand adjustments and partly due to the
savings in holding/shortage costs. The exact contribution of
these two components to the objective improvements varies
widely among instances, even within instances of the same
configuration type.

3.4.5. Managerial Observations

We make the following managerial observations based on
the findings in this section:

1. Tradeoff between flexibility and complexity. As
expected, introducing operational flexibility increases
the operational complexity of the solutions. In most
cases, the increase in the complexity is related to the
efficiency gains obtained; however, certain levers of
operational flexibility (such as crew flexibility) tend to
increase complexity without corresponding efficiency
gains. The complexity measures facilitate the choice
of flexibility levers to maximize efficiency gains with
allowable complexity increases.

2. Significance of geographic distribution. In general, the
results confirm earlier results in [11] on the significance
of geographic distribution on value of service choice.
Further, the results extend to other flexibility levers as
well. The results indicate that introducing flexibility is
more beneficial when high frequency nodes are located
near the depot (as in Configurations TC and TCSP).

3. Effect of crew flexibility. Restricting crew flexibility
is often required by customers (e.g., inter-library loan
application of Francis et al. [11]). It is found to have
a limited effect on the objective, which suggests that
reducing operational complexity in this way may be
desirable.

4. CONCLUSIONS AND FUTURE RESEARCH

We provide insights from both a managerial and amodeling
perspective on the trade-offs between operational flexibility
and complexity in periodic vehicle routing problems. Specif-
ically, we quantify the gains from operational flexibility in
terms of vehicle routing costs and customer service bene-
fits, along with the costs of additional complexity in terms
of modeling and implementation difficulty. We identify four
levers of operational flexibility—service choice in determin-
ing customer visit frequency, crew flexibility—that expands
the number of drivers visiting nodes, schedule options offered
by the service provider, and the delivery quantity at each
visit. We show how these levers can be modeled and ana-
lyze their effect on the efficiency and complexity of resulting
solutions.

We provide three metrics to quantify the operational
complexity of the resulting solution—arrival span, driver cov-
erage, and crewsize. These are the first known metrics in the
literature to quantify the desirability of routing solutions in a
periodic distribution context.

We introduce a Tabu Search method that can incorpo-
rate a wide range of flexibility options. The Tabu Search
method obtains solutions within 3% of optimality for test
cases from the literature. We quantify the operational savings
from adding flexibility to periodic distribution as a function
of geographic dispersion of nodes using the Tabu Search
method.

The complexity measures considered in this paper are
either considered endogenously through variable and param-
eter definitions or exogenously in post-processing. Future
work could focus on adding complexity measures into the
objective function of the PVRP-SC, thereby allowing the
solution method to choose the appropriate balance between
complexity and flexibility. In the routing literature, time
windows for node visits have been incorporated with soft
penalties for violations, which could form the basis for adding
soft penalties for variations in visit times for nodes across
days in the PVRP-SC. Further, variation in driver routes could
be incorporated in the objective function. Such extensions
would involve parametric analysis of the relative weight-
ing of complexity costs to operational benefits. Further,
when the complexity costs are known, we could deter-
mine a frontier of efficient solutions for different levels of
complexity.
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