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Lot splitting is a technique for accelerating the flow of work by splitting job lots into sublots. In this paper we investigate the lot
splitting scheduling problem in a two-machine flow-shop environment with detached setups and with batch availability. The
performance measure considered is the average flow-time which is indicative of the increasingly important manufacturing lead-
time. Our contribution is both theoretic and practical for the case of general (not necessarily equal) sublots. We identify properties
of the optimal solution and develop a solution procedure to solve the problem. We then present a computational study which
indicates that our solution technique is very efficient.

1. Introduction and literature review

Traditional scheduling problems typically assume that lot
sizes are given from upper level production planning. The
problem then becomes how to determine the order in
which jobs are processed (see for example, Conway et al.
(1967), Baker (1974), and Pinedo (1995)). The lot-sizing
problem which is solved in the first stage does not take
into account operational performance measures such as
flow-time. Based on the lot-sizing decisions a lot is
transferred from one-machine to the next only when all
items in the lot have completed their processing. Thus,
when expensive setups induce large lots, an item may
spend most of the time waiting to be processed or waiting
for the rest of its lot to be processed.

Lot splitting is a technique for accelerating the flow of
work by splitting job lots into sublots (Kropp and Smunt,
1990). This technique improves the overall performance
of the production system by releasing all items included in
a sublot upon its completion. When only one-machine is
involved, the flow-times of these items become shorter
than in the single lot case, at least for the early sublots. If
more than one-machine is involved, this allows the items
in a sublot to proceed to the next machine even before all
items have completed their processing on the current
machine, thus creating overlapping consecutive opera-
tions and releasing items sooner.
The vast majority of research on lot splitting has been

concerned with the makespan objective function and is
often referred to as the lot streaming problem (see Tri-

etsch and Baker (1993), Baker and Jia (1993) and many
others). Other terminology that is used especially in the
one-machine case is batching (Dobson et al. 1987; Santos
and Magazine, 1985; Naddef and Santos, 1988). The
problem is typically how to split a single lot into sublots
given various other considerations such as the existence
of a setup at the beginning of each sublot, or possible
restrictions on the number and the size of the sublots.
In this paper we investigate the lot splitting problem

with the performance measure of average flow-time which
is indicative of the increasingly important manufacturing
lead-time. We consider a two-machine flow-shop envi-
ronment, where a setup time is attached to each sublot
and both variable unit processing times, as well as the
sublot setup times, are machine-dependent. We consider
the case of general (not necessarily equal) sublots/batches
under the assumption of batch availability. This problem
was not considered before. We provide a theoretical
contribution to the problem on hand in the two machines
framework which may be used in future research as a
building block for analyzing and solving problems of
multiple products and more than two machines. A prac-
tical contribution arises from it in two ways: one is by
enhancing managerial intuition and the other is by con-
sidering cases in which planning is carried out hierarchi-
cally.
We first identify properties of the optimal solution. We

then develop a solution procedure to solve the problem.
For some parameter combinations of the problem
this solution procedure provides an optimal solution,
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otherwise the suggested procedure becomes a heuristic
method. We then present a computational study that in-
dicates that our solution technique is very efficient. Fi-
nally, in the second part of the computational study, we
compare the results of our model to the same model, albeit
with the makespan objective function. This comparison
enhances managerial intuition regarding differences and
similarities of using flow-time and makespan objectives.
The motivation for implementing lot splitting tech-

niques is well-addressed in Santos and Magazine (1985).
The first motivation is bridging the gap mentioned above
between the lot-sizing decision making and the traditional
scheduling problems. Another somewhat related moti-
vation is the contribution of these problems to the
scheduling/sequencing literature. These problems can be
viewed as sequencing problems with processing times that
are decision variables.
The third motivation is related to the resulting flow-

time reduction. Reducing flow-time is associated with
lead-time reduction which has recently become an im-
portant goal in industrial environments that produce
expensive products. An example for such an environment
is the semiconductor industry where a stepper machine is
used in a photolithographic process. In this process a
setup time is associated with each sublot of wafers which
are loaded on the machine. Subsequently, the wafers in
the sublot are processed sequentially and hence the total
variable process time of a sublot increases linearly with
the number of parts in the sublot. In the semiconductor
industry, flow-time (also known as ‘cycle time’) is a very
important performance measure and large efforts are
made in an attempt to reduce it. For example, in the
photolithographic process described above, loading less
than the maximum possible number of wafers on the
machine may improve average flow-time. To obtain the
maximum improvement the quantities to be loaded on
the machine at each sublot need to be determined.
Other examples for using lot splitting in industrial en-

vironments are given in Cheng et al. (1996), where flexible
manufacturing systems environments are addressed. In
these production systems a wide variety of part types are
produced and items are generally mounted on standard
pallets while moving from one machining center to an-
other. Again it may not be beneficial to fill a pallet to its
full capacity due to the existence of setup times. Then a
trade-off exists between producing more sublots, thereby
incurring more setup times and producing fewer sublots,
which entails longer job completion times. Therefore,
a technique to determine the exact sublot sizes is again
required.
The nature of the machine setups used in this paper is

related to other machine setups mentioned in the litera-
ture in the following way: Truscott (1985) distinguishes
between two major setups: the first where the setup can be
done in advance and when the first item arrives the ma-
chine is ready. The other is when the machine requires one

item to be set up, but items that follow do not require a
setup. Chen and Steiner (1996, 1998), who consider
makespan minimization use the term detached (or antic-
ipatory) setup for the former type and attached (or
non-anticipatory) setup for the latter, but with a slight
variation which requires a minimal number of items
(usually one) to be available during the setup. Potts and
Kovalyov (2000) define an attached or non-anticipatory
setup of a batch as a setup that cannot be initiated before
all jobs of the batch are released and have completed their
processing on any previous machine. In our model all
three definitions of non-anticipatory setup are satisfied
since we assume batch availability, hence all items in a
sublot arrive together to the machine. Chen and Steiner
(1998) assume that a setup exists only for the first sublot
but we assume an attached or non-anticipatory setup at
the beginning of every sublot.
Truscott (1986) addresses a resource called transporter,

which requires the same processing time regardless of
the sublot size. Trietsch and Baker (1993) observe that
transporters are equivalent to ovens, which also require
the same processing time regardless of the sublot size. The
setup structure we use is of the transporter/oven type.
However, unlike the transporter/oven system, we con-
sider in addition to the setup, a variable processing time
for each individual item.
As mentioned above, the setup structure we use is ap-

propriate for the semiconductor industry and for other
environments where loading a sublot is associated with a
setup time in which the machine cannot operate. Another
example for this setup structure can be found in a recent
paper by Cheng et al. (2000), who describe a problem
observed by a manufacturer of pneumatic valves, which
are produced on a two-stage production line. In the first
stage the valves are produced and the second stage is an
inspection station. The part-types are mounted on pallets
for machining and the rest of the procedure is described
as follows: ‘‘The part-types mounted on the same pallet
are processed together as a batch for their first operation
at the machining center and are transferred to the in-
spection station only when all part-types on the same
pallet have finished processing. Thus, the part-types as-
signed to the same pallet share the same completion time
which is called the batch completion time. A setup time is
needed to remove a processed pallet and to install a new
one on either the machining center or the inspection
station.’’ They also mention that: ‘‘loading a pallet to its
full capacity may not necessarily be beneficial as it may
lead to long batch processing times. Hence, the number of
part-types to be mounted on the pallet is a decision
variable.’’
Other assumptions in Cheng et al. (2000) differ from

ours in the following points: (i) they assume identical
setup times on both machines; (ii) they use makespan as an
objective function; (iii) they consider combining different
part-types into a batch, rather than splitting one lot into

954 Bukchin et al.



sublots. Finally, as in our model, in addition to the above
described setup times, there are variable processing times.
There are numerous studies on lot splitting, lot

streaming and batching. We complete the literature re-
view by discussing additional references that deal with the
flow-time objective function in models which include
setups, since this is the part which is most related to our
study. The single machine single- and multi-products
batching problem is addressed in Santos and Magazine
(1985) and Dobson et al. (1987), who assume continuous
batch (sublot) sizes. Closed-form formulas for the num-
ber of batches and the batch sizes are given for the single
product case. In Naddef and Santos (1988) and in
Shallcross (1992) the single machine problem with integer
batch sizes is addressed; the latter concludes that the in-
teger solution resembles the continuous solution.
The multiple machine case is mainly investigated using

the makespan objective function and only a few address
the flow-time objective function. One type of multiple
machine problem is the multiple parallel machines, which
is discussed in Dobson et al. (1989) and Cheng et al.
(1996). The former solves the continuous case of a single
product problem, finding a closed-form solution for a
special case of equal setup times on the machines. The
latter discusses the discrete case of the multi-product
problem with setups, developing a dynamic programming
algorithm to solve the problem.
The lot streaming problem in a two-stage flow-shop

environment for minimizing flow-time is discussed in S�en
et al. (1998) where the number of sublots is given and no
setup times are considered. Kropp and Smunt (1990)
consider the multi-machine flow-shop where the number
of sublots is given and a setup time exists for starting the
first sublot only; the problem is solved using a quadratic
programming approach. The work of Kalir and Sarin
(2001) deals with the lot streaming problem for mini-
mizing the mean flow-time in a flow-shop environment
where a setup is attached to every sublot and the sublot
sizes are restricted to be equal. A closed-form formula for
the number of sublots and the sublot sizes is presented in
the continuous case and an algorithm for solving the
discrete problem is developed.
The problem we consider in this paper generalizes the

current state of the art research on lot splitting from two
directions. First, our problem is a generalization of the
single machine problem studied in Santos and Magazine
(1985) and in Dobson et al. (1987). Second, our problem
relaxes the restriction of equal sublot sizes imposed in
Kalir and Sarin (2001), although their analysis is for the
m-machine flow-shop setting.
The rest of the paper is organized as follows: in Section

2 we present the model formulation and discuss some
preliminary results. In Section 3 we define and analyze a
property called: ‘Single Machine Bottleneck’ (SMB). In
particular, we prove that the property is satisfied in all
optimal solutions under various parameter combinations

of the problem. In Section 4 we restrict our attention to
solutions that satisfy the SMB property and develop a
solution procedure that finds the optimal solution in this
class. Experiments, including a comparison with the
makespan objective function are presented in Section 5,
and conclusions are drawn in Section 6.

2. Problem formulation and preliminaries

We summarize here the definitions and assumptions that
describe our model:

1. A two-machine flow-shop environment is considered.
2. A sublot is defined as the number of parts processed
continuously on a machine with a single setup.

3. The sublots are consistent, that is sublot sizes are the
same on both machines.

4. Sublot sizes are general, that is they don’t have to be
equal.

5. An attached or non-anticipatory setup time is associ-
ated with each sublot, that is a setup time is incurred
before the beginning of the processing of each sublot
on each machine. This setup is associated with a time
when the machine is not working, for example, in
order to load the parts on the machine, or in order to
set the machine up again.

6. We assume batch availability, that is all items in a
sublot leave the machine together at the end of the
processing of the last item in the sublot. Hence, the
flow time of each item is defined as the finish time of
the last item of the sublot to which it belongs.

7. We assume that the sublot sizes are continuous in order
to be able to gain an insight on the problem without
being affected by integrality issues. We expect that
rounding the continuous solution will be a good ap-
proximation to the integral solution, as was concluded
in Shallcross (1992) for the single machine problem.

The problem is defined by the following parameters:

d = demand, number of parts waiting to be processed
(all parts are identical);

sm = setup time on machine m prior to processing a
sublot (the setup time is independent of the sublot
size), m ¼ 1, 2;

tm = processing time (of each part) on machine m,
m ¼ 1, 2.

The decision variables are:

qk = size of sublot k, that is the number of parts it
contains, k ¼ 1; . . . ;M ; (As in Dobson et al. (1987,
1989), we useM as an upper bound on the number
of actual sublots, where only sublots with qk > 0
are counted as actual ones; in practical situations
we expect the actual number of sublots to be
smaller than the number of units that need to be
processed.)
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n = the number of actual sublots (i.e., with a positive
size); n � M and it is given by the highest index of
the positive sublots.
The values of the qk variables determine the flow-
time of all parts, as well as the idle time on the
machines, which we represent through the follow-
ing notation:

Ik = cumulative idle time on machine 2, up to the time
when the kth sublot finishes its processing on ma-
chine 1;
We assume that there exists an infinite buffer be-
tween machines 1 and 2, therefore machine 1 is
never blocked, operating continuously.

fk = flow-time of sublot k (ready time of all parts is
zero).

The formulation of the problem is described next:

min
XM
k¼1

fkqk; ð1Þ

subject to

fk ¼ ks2 þ t2
Xk
i¼1

qi þ Ik k ¼ 1; . . . ;M ; ð2Þ

I1 ¼ s1 þ t1q1; ð3Þ

Ik ¼ max Ik�1; t1
Xk
i¼1

qi þ ks1

 !
� t2

Xk�1
i¼1

qi þ k � 1ð Þs2

 !( )

k ¼ 2; . . . ;M ; ð4Þ
XM
k¼1

qk ¼ d; ð5Þ

qk � 0 k ¼ 1; . . . ;M : ð6Þ
The objective function describes the total flow-time of all
parts in all sublots. Constraint (2) defines the flow-time of
sublot k as the processing time of all sublots up to k on
machine 2, including setups, plus the cumulative idle time
on machine 2 at the end of this sublot. Constraint (3)
defines the first idle time on machine 2 as the processing
time of the first sublot on machine 1, including setups.
Constraint (4) defines the cumulative idle time at the end
of sublot k as the maximum between the cumulative idle
time at the end of the former sublot and the cumulative
idle time that may have been created by the current sub-
lot. The latter is the difference between the processing
time of all sublots (including setups) on machine 1, and
the process time of all sublots up to the former sublot
(including setups) on machine 2. Constraint (5) states that
the total number of parts to be processed equals the de-
mand, and finally constraint (6) requires non-negative
sublot sizes. We refer to the problem defined in (1)–(6) as
the general problem.
Constraint (4) may be replaced by two linear con-

straints, however the formulation remains non-linear due

to the objective function. Another important observation
regarding the formulation (1)–(6) is that although the
flow time fk is convex in the vector q (since it is the
maximum and sum of convex functions), the objective
function is not necessarily convex. Only if the number of
sublots n is restricted to two, the objective function can be
shown to be convex (and the solution is easily obtained in
closed-form), but this is no longer true for n � 3. For
n ¼ 3, for example, the objective function is combined of
four cases; each of these cases represents a combination
of the expressions which achieve the maximum in con-
straint (4) for k ¼ 2 and k ¼ 3. In other words, each case
represents the situation at the completion of the second
and third sublots on machine 1, that is: I1 ¼ I2 ¼ I3, I1 ¼
I2 < I3, I1 < I2 ¼ I3 and I1 < I2 < I3. A strict inequality
between Ik�1 and Ik implies that the right-hand expression
in (4) is larger than the left-hand one. On the other hand,
equality between Ik�1 and Ik occurs when the left-hand
expression in (4) is no smaller than the right-hand one.
Using some algebra to obtain closed-form expressions for
the objective function for each of the cases, one discovers
that the expression in the third case is not convex for all
parameter values, therefore the entire objective function
is not convex in general.
Examining the meaning of the third case (I1 < I2 ¼ I3)

raises the question whether such a solution is likely to be
optimal. Indeed, one would intuitively expect to find in an
optimal solution the existence of a single machine bottle-
neck situation (denoted as SMB from now on) through-
out the production process. We refer to an SMB situation
when in Equation (4) the same expression always achieves
the maximum. For example, if the first expression in (4)
always achieves the maximum, then no new idle time is
created on machine 2 as a result of sublot k. Therefore
machine 2 is the bottleneck in proceeding from sublot
k � 1 to sublot k (for all k > 1) on machine 2. If the
second expression in (4) always achieves the maximum,
then the reverse situation occurs and machine 1 is the
bottleneck throughout the process. (A rigorous definition
of the SMB property is given in the next section.)
In the following example we show that the SMB

property is not always satisfied in an optimal solution,
hence non-convex situations as described above may oc-
cur in an optimal solution. We demonstrate it by pre-
senting an instance of the problem and a solution to it, in
which not the same expression in (4) achieves the maxi-
mum for all sublots. This solution has a better objective
value than the optimal solution, which does satisfy the
SMB property (in Section 4 we describe how an optimal
solution, which satisfies the SMB property can be ob-
tained.)
Example: the parameters are: d ¼ 50; t1 ¼ 2:1; t2 ¼ 1:0,
s1 ¼ 26, s2 ¼ 30. A solution which does not satisfy the
SMB property is: qk ¼ ð22:21; 15:63; 9:35; 2:81Þ, and is
associated with cumulative idle times: Ik ¼ ð72:64; 79:25;
79:25; 79:25Þ and an objective function value of 8265.13
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(see Fig. 1). In this solution, for k ¼ 2, 3 and 4, the left-
hand expression in (4) is smaller, equal and larger, re-
spectively, than the right-hand expression in (4).
The example was also solved for the two cases in which

either machine 1 or machine 2 were a bottleneck machine
for all sublots. In the first (second) case, respectively, the
right- (left-hand) term in the maximum expression in
Equation (4) was constrained to achieve the maximal
value for all sublots. The optimal solution when machine
1 (2) was constrained to be a bottleneck, produced a
solution with three (four) sublots, where qk ¼ ð23:00;
16:67; 10:33Þ (and qk ¼ ð23:21; 12:96; 8:08; 5:75Þ), respec-
tively, and the resulting objective value was 8268.46
(8280.96), respectively. We conclude from this example
that the SMB property is not necessarily satisfied in an
optimal solution.

3. The single machine bottleneck property

In the previous section we showed that the SMB property
does not hold in general. However, we prove now that for
a restricted set of parameters it is satisfied. In Section 5 a
numerical study is performed, providing empirical sup-
port for using this property.

Definition 1. Machine 1(2) is a bottleneck at sublot k þ 1 if
the completion time of sublot k þ 1 on machine 1 occurs no
earlier (no later) than the completion time of sublot k on
machine 2.

Definition 2. Machine 1(2) is a unique bottleneck at sublot
k þ 1 if the completion time of sublot k þ 1 on machine 1
occurs later (earlier) than the completion time of sublot k
on machine 2.

Definition 3. Machine 1(2) is a bottleneck machine, if it is
a bottleneck at sublot k þ 1, for all k � 1.

Theorem 1. If t1 � t2 and s1 � 2s2 then in all optimal so-
lutions machine 1 is a bottleneck machine.

Proof. Assume in contradiction that there exists an op-
timal solution in which machine 2 is a unique bottleneck
at sublot k þ 1 for some k � 1, and that this is the earliest
sublot for which this is the case. In particular, this means
that machine 1 is a bottleneck at sublot k (possible jointly
with machine 2) and therefore the starting time of sublot
k þ 1 on machine 1 and sublot k on machine 2 are iden-
tical (see Fig. 2, where w.l.o.g. machine 2 is also a bot-
tleneck at sublot k). Therefore we get:

s2 þ qkt2 > s1 þ qkþ1t1: ð7Þ
We now show that the solution may be improved by

transferring e > 0 units of the product from sublot k to
sublot k þ 1. Note that (7) states that the time required to
perform sublot k on machine 2 is larger than the time
required to perform sublot k þ 1 on machine 1; we choose
e to be sufficiently small so that this situation is preserved
after the transfer of e also, hence:

s2 þ ðqk � eÞt2 > s1 þ ðqkþ1 þ eÞt1: ð8Þ
This transfer does not affect the completion time of sub-
lots 1; . . . ; k � 1 and the completion times of sublot k
and all subsequent sublots remains unchanged or become
earlier (in case that machine 2 is not a bottleneck at sub-
lot k). Therefore the total contribution to the objective
function of all sublots other than k and k þ 1 is either
unchanged or reduced as a result of this transfer. It re-
mains to examine the change in contribution of sublots k
and k þ 1 to the objective function as a result of the
transfer.
Let S be the contribution of sublots k and k þ 1 to the

objective function before transferring e, and S0 is the
contribution after transferring e. Then:

Fig. 1. Shifting bottleneck example.

Fig. 2. Machine 2 is a unique bottleneck of sublot k + 1 for the first time.
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S ¼ qkfk þ qkþ1fkþ1;

and

S0 � ðqk � eÞðfk � et2Þ þ ðqkþ1 þ eÞfkþ1:
We now show that S � S0 > 0, which implies that the
solution is improved.
Note that:

fkþ1 � fk ¼ s2 þ t2qkþ1; ð9Þ
since machine 2 is a unique bottleneck at sublot k þ 1.
Therefore, the difference between the new and the old
solution is:

S � S0 ¼ eð�s2 þ qkt2 � qkþ1t2 � et2Þ: ð10Þ
From (8) we get:

qk �
s1 � s2 þ qkþ1t1 þ et1

t2
þ e: ð11Þ

Using (11) in (10) and we get:

S � S0 � eðs1 � 2s2 þ qkþ1ðt1 � t2Þ þ et1Þ: ð12Þ
Now, given t1 � t2 and s1 > 2s2, S � S0 > 0 and the
modified solution is better than the original one, a con-
tradiction. Therefore, in none of the sublots it is possible
for machine 2 to be a unique bottleneck, concluding our
proof. j

Theorem 2. If t2 � t1 and

s2 � s1 	
2t2

t1 þ 2t2
;

then in all optimal solutions machine 2 is a bottleneck
machine.

Proof. Assume in contradiction that there exists an op-
timal solution in which machine 1 is a unique bottleneck
at sublot k þ 1 for some k � 1. Since sublot k cannot
start on machine 2 before its completion time on machine
1 (it may start even later than that, as can be observed
without loss of generality in Fig. 3), we have: s1 þ t1qkþ1
> s2 þ t2qk.

We next show that the objective function can be im-
proved in this case, by transferring e > 0 units of the
product from sublot k þ 1 to sublot k. We choose e to be
sufficiently small so that machine 1 remains a bottleneck
at sublot k þ 1. This transfer does not affect the com-
pletion time of sublots 1; . . . ; k � 1. The completion times
of sublots k þ 2 and all subsequent sublots has not in-
creased as a result of the transfer, and even may have
been reduced (see Fig. 3). Therefore, the total contribu-
tion to the objective function of all sublots, other than k
and k þ 1, has not increased as a result of this transfer. It
remains to examine the change in contribution of sublots
k and k þ 1 to the objective function.
Let S be the contribution of sublots k and k þ 1 to the

objective function before transferring e, and S0 the con-
tribution after the transfer. Then

S ¼ qkfk þ qkþ1fkþ1;

and

S0 � ðqk þ eÞðfk þ et1 þ et2Þ þ ðqkþ1 � eÞðfkþ1 � et2Þ:
ð13Þ

(Inequality (13) will be satisfied as equality if originally
sublot k started on machine 2 immediately when it fin-
ished on machine 1, in which case the completion time
after the transfer becomes: fk þ et1 þ et2. Otherwise it is
satisfied as a strict inequality, for example, according to
Fig. 3 the completion time after the transfer becomes:
fk þ et2.)
We show that the new solution is improved, namely

that S � S0 > 0.

S � S0 � eðfkþ1 � fk þ qkþ1t2 � qkt2 � qkt1 � eðt1 þ 2t2ÞÞ:
ð14Þ

We use now two more inequalities: first, since machine 1
is a unique bottleneck at sublot k þ 1,

fkþ1 � fk > s2 þ qkþ1t2: ð15Þ
Second, since the starting time of sublot k þ 1 on machine
2 has not changed as a result of the transfer of e (ac-
cording to our choice of e that leaves machine 1 a bot-
tleneck at sublot k þ 1), s1 þ t1ðqkþ1 � eÞ � s2þt2ðqk þ eÞ,

Fig. 3. Machine 1 is a unique bottleneck of sublot k + 1.
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Therefore

qkþ1 �
s2 � s1 þ et1 þ qkt2 þ et2

t1
: ð16Þ

Now using inequalities (15) and (16) in (14), we get:

S � S0 > eðs2 þ 2ðs2 � s1 þ et1 þ qkt2 þ et2Þ
t2
t1

� qkt2 � qkt1 � eðt1 þ 2t2ÞÞ: ð17Þ
Given t2 � t1 and

s2 � s1 	
2t2

t1 þ 2t2
;

the right-hand-side of (17) is non-negative, therefore
S � S0 > 0 and the modified solution is better than the
original one, a contradiction. Therefore, in none of the
sublots it is possible for machine 1 to be a unique bot-
tleneck, concluding our proof. j

Remark. When t2 � t1, the ratio 2t2=ðt1 þ 2t2Þ yields val-
ues between 2/3 and 1. Thus, independently of the exact
values of t1 and t2, the second condition of the theorem may
be replaced by s2 � s1.

Remark. From Theorems 1 and 2 we note that it is ‘‘eas-
ier’’ for machine 2 to become a bottleneck machine, since at
the beginning it is idle until sublot 1 on machine 1 is com-
pleted. In particular, when both the setup and the pro-
cessing times are equal for the two machines, i.e., t2 ¼ t1
and s2 ¼ s1, machine 2 is the bottleneck machine in all
optimal solutions.

4. Formulation and analysis of SMB problems

In this section we analyze the problem in which the set of
admissible solutions is restricted to those who satisfy the
SMB property. We first show in Section 4.1 (4.2) how to
obtain an optimal solution to the problem in which the
set of admissible solutions is restricted to those in which
machine 1 (2) is the bottleneck machine. In Section 4.3,
the complete solution procedure is presented.

4.1. Machine 1 is the bottleneck machine

The problem formulation (1)–(6) is simplified now in the
following way: in Equation (4), since machine 1 is the
bottleneck at sublot k for all k, the right-hand expression
always achieves the maximum. Substituting Ik in Equa-
tion (2) by the right-hand expression of the maximum, we
get (after some algebra) a new expression for fk which
may also be obtained directly:

fk ¼ s2 þ t2qk þ t1
Xk
i¼1

qi þ ks1: ð18Þ

Equation (18) states that the flow-time of sublot k is equal
to the total processing time of all k sublots on machine 1,
plus the processing time of sublot k on machine 2. This
represents the fact that sublot k can start processing on
machine 2 immediately after it is completed on machine
1, since the latter is the bottleneck machine.
The objective function can now be written as follows:

XM
k¼1

fkqk ¼ s1
XM
k¼1

qkk þ s2d þ 1

2
t1 þ t2

� �XM
k¼1

q2kþ
1

2
t1d2:

ð19Þ
Now that we have ignored the possibility of machine 2

being a bottleneck, an additional constraint is required,
to make sure that this assumption is satisfied by any
admissible solution (otherwise, the flow-time expression
in (18) is not the correct one):

s1 þ t1qk � s2 � t2qk�1 � 0 2 � k � n; ð20Þ
where n is the number of positive sublots.
Since n is not known, (20) may be written in the fol-

lowing way:

ðs1 þ t1qk � s2 � t2qk�1Þ 	 qk � 0 2 � k � M : ð21Þ
We summarize the problem formulation for the case of
machine 1 as the bottleneck machine, denoted (SMB1):

min s1
XM
k¼1

qkk þ s2d þ 1

2
t1 þ t2

� �XM
k¼1

q2k þ
1

2
t1d2; ð22Þ

subject to

ðs1 þ t1qk � s2 � t2qk�1Þ 	 qk � 0 2 � k � M ; ð23Þ
XM
k¼1

qk ¼ d; ð24Þ

qk � 0 k ¼ 1; . . . ;M : ð25Þ
We note that the objective function expression is qua-
dratic, therefore convex. Constraints (24) and (25) are
linear, but constraint (23) is neither linear nor convex.
Therefore, problem (22)–(25) is not a convex program-
ming problem, and cannot be immediately solved.

4.1.1. The pure SMB1 case

We define the pure (SMB1) problem denoted as (P-SMB1)
as a relaxation of the (SMB1) problem, in which con-
straint (23) is removed. It is clear that if the optimal so-
lution to (P-SMB1) satisfies (23), that solution is also the
optimal solution to (SMB1). We refer to an instance in
which this occurs as the pure case, and to the solution
obtained as the pure solution. Pure cases are easily solv-
able since (22), (24) and (25) define a convex program-
ming problem that can be solved through its KKT
conditions. Derivation of the pure solution of SMB1 is
given in Appendix 1. The resulting solution can be rep-
resented by closed-form formulas, as follows:
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n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 2dðt1 þ 2t2Þ

s1

s
� 1
2

& ’
; ð26Þ

qk ¼
d
n
þ s1ðnþ 1Þ
2 t1 þ 2t2ð Þ � k

s1
t1 þ 2t2

¼ d
n
þ s1ðnþ 1� 2kÞ

2 t1 þ 2t2ð Þ

k ¼ 1; . . . ; n; ð27Þ
qk ¼ 0 k > n: ð28Þ

We observe that the sublot sizes are linearly decreasing
with a slope of s1=ðt1 þ 2t2Þ. Note also that n, the number
of sublots, is non-increasing with s1; in the extreme case
when s1 ! 1, n would be equal to one, and in the other
extreme case when s1 ! 0, n would approach infinity. All
these results are independent of the value of s2, since
machine 1 is the bottleneck machine in this case.
As claimed earlier, if the solution described by (26)–

(28) satisfies constraint (23) then the optimal solution to
(SMB1) is found. Using (27) we are able to identify suf-
ficient conditions under which this will occur, as follows:
For qk > 0, (23) implies that s1 þ t1qk � s2 � t2qk�1 � 0

should be satisfied (for qk ¼ 0, (23) is trivially satisfied).
Using

qk�1 ¼ qk þ
s1

t1 þ 2t2
;

from (27) results in the condition:

s1 þ t1qk � s2 � t2qk � t2
s1

t1 þ 2t2
� 0;

or

qkðt1 � t2Þ þ s1 � s2 �
t2s1

t1 þ 2t2
� 0:

If t1 � t2, then the above condition is satisfied when:

s1
t1 þ t2
t1 þ 2t2

� �
� s2 � 0: ð29Þ

Therefore, we have the following result:

Theorem 3. If t1 � t2 and

s1
t1 þ t2
t1 þ 2t2

� �
� s2 � 0;

then the pure (SMB1) solution given in (26)–(28) is optimal
for problem (SMB1).

When t1 ¼ t2 condition (29) requires s1 � 1:5s2, when
t1 � t2 the condition approaches the requirement s1 � s2
(reduces exactly to s1 � s2 when t2 ¼ 0).
Theorem 3 states sufficient but not necessary condi-

tions for a pure solution to be feasible. Therefore, when
Theorem 3 is not satisfied, it is still possible that the pure
solution is feasible, in which case it is also optimal for
(SMB1). If the pure solution is not feasible for the
(SMB1) problem, then an alternative solution technique
is required, and is described in Section 4.1.2.

Combining Theorems 1 and 3 results in the following
corollary:

Corollary 1. If t1 � t2 and s1 � 2s2 then the pure (SMB1)
solution given in (26)–(28) is optimal for the general
problem (1)–(6).

4.1.2. The non-pure (SMB1) case

The formulation of (SMB1) was given in (22)–(25), but
as discussed there due to constraint (23) the problem is
not convex and cannot be solved in a straightforward
manner. The problem does become convex if we fix the
number of sublots, n, in which case we replace Equation
(23) by Equation (20), and consider only q1; . . . ; qn in all
other constraints. We denote the resulting problem by
(SMB1(n)). Given n, (SMB1(n)) is a convex programming
problem, hence it can be solved by a standard non-linear
optimization software. In addition, the KKT conditions
of (SMB1(n)) can be established. However, closed-form
formulas for the solution cannot be obtained without the
knowledge of which of the indices 2; . . . ; n satisfy Equa-
tion (20) as equality, and which as a strong inequality.
Therefore, we used the AMPL software (Fourer et al.,
1993) with the MINOS solver to solve the (SMB1(n))
problem.
The next question is how to determine the optimal

value of n. Here we use the following conjecture:

Conjecture 1. The values of the optimal solution of
(SMB1(n)) form a unimodal function of n.

We note that in all the numerous examples that we have
examined the conjecture was satisfied.

Given that (SMB1(n)) is a convex programming
problem when n is fixed, we suggest solving (SMB1) by
solving a sequence of (SMB1(n)) problems, searching for
the optimal value of n. If the conjecture is used, this can
be done for example by performing a binary search on the
value of n. Without using the conjecture the search would
be performed on all possible values of n. The resulting
solution is optimal for the (SMB1) problem.

4.2. Machine 2 is the bottleneck machine

The general problem formulation (1)–(6) is simplified
now in the following way: in Equation (4), since machine
2 is the bottleneck at sublot k for all k, the left-hand
expression always achieves the maximum. Consequently,
the idle time on machine 2 remains I1, therefore the flow-
time of sublot k is:

fk ¼ s1 þ t1q1 þ ks2 þ t2
Xk
i¼1

qi: ð30Þ

The objective function becomes (after some algebra):
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XM
k¼1

fkqk ¼ s1d þ t1q1d þ s2
XM
k¼1

kqk þ
1

2
t2
XM
k¼1

q2k þ
1

2
t2d2:

ð31Þ
The constraint that is required to ensure that machine 2 is
a bottleneck is:

Xk�1
j¼1

ðs2 þ t2qjÞ �
Xk
j¼2

ðs1 þ t1qjÞ � 0 2 � k � n: ð32Þ

Here the constraint is on cumulative times, reflecting the
fact that there is an infinite buffer at machine 1, therefore
it is never idle.
Since n, the number of positive sublots is not known,

we may write (32) as follows:

Xk�1
j¼1

ðs2 þ t2qjÞ �
Xk
j¼2

ðs1 þ t1qjÞ
 !

	 qk � 0 2 � k � M :

ð33Þ
We summarize the problem formulation for the case of
machine 2 as the bottleneck machine, denoted (SMB2):

min s1d þ t1q1d þ s2
XM
k¼1

kqk þ
1

2
t2
XM
k¼1

q2k þ
1

2
t2d2; ð34Þ

subject toXk�1
j¼1

ðs2 þ t2qjÞ �
Xk
j¼2

ðs1 þ t1qjÞ
 !

	 qk � 0 2 � k � M ;

ð35Þ
XM
k¼1

qk ¼ d; ð36Þ

qk � 0 k ¼ 1; . . . ;M : ð37Þ
Again, the objective function is quadratic, therefore
convex. Constraints (36) and (37) are linear, but con-
straint (35) is neither linear nor convex. Therefore,
problem (34)–(37) is not a convex programming problem
and cannot be immediately solved.

4.2.1. The pure (SMB2) case

Similarly to the pure (SMB1) case we define the pure
(SMB2) problem, denoted as (P-SMB2), as a relaxation of
the (SMB2) problem in which constraint (35) is removed.
If the optimal solution to the pure (SMB2) problem sat-
isfies (35), that solution is also the optimal solution to
(SMB2). We refer to an instance in which this occurs as
the pure case and to the solution obtained as the pure
solution. The pure problem defined by (34), (36) and (37)
is easily solvable since it is a convex programming
problem that can be solved through its KKT conditions.
Derivation of the pure solution of (SMB2) is given in

Appendix 2. The resulting solution can be represented by
closed form formulas as follows:

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 2dðt1 þ t2Þ

s2

s
� 1
2

& ’
; ð38Þ

qk ¼
� t1d

t2
þ d
n

t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� k
� �

k ¼ 1,

d
n

t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� k
� �

2 � k � n,

8>>><
>>>:

ð39Þ
qk ¼ 0 k > n: ð40Þ

The sublot sizes are again linearly decreasing with a
constant slope (here the slope is s2=t2), but only from the
second sublot on. From the first to the second sublot
there is an increase in the amount of t1d=t2. Here, the
value of n is non-increasing in s2 and is independent of s1.
As opposed to the pure (SMB1), here we were not able

to find simple conditions that ensure the optimality of the
above pure solution to the (SMB2) problem, i.e., problem
(34)–(37). Therefore, in finding the best solution of the
(SMB2)-type, we first check whether the solution given by
(38)–(40) satisfies constraint (35). If it does, then this is
the optimal solution to (34)–(37); otherwise we develop
another solution procedure in a similar way as we did for
the (SMB1) case.

4.2.2. The non-pure (SMB2) case

We consider the formulation of (SMB2) given in (34)–
(37) with the following modifications: fix the number of
sublots to be n, replace constraint (35) by constraint (32)
and consider only q1; . . . ; qn in all other constraints.
Given n the resulting problem denoted by (SMB2(n)),
is a convex programming problem and can be solved
by standard non-linear optimization software. Again,
closed-form formulas are not easily obtained from the
KKT conditions.
Determining the optimal solution is easy to obtain in

the following case:

Theorem 4. If s2 � s1 and M is an upper bound on the
number of sublots, then the optimal solution for (SMB2) is
given by the optimal solution of (SMB2(M)).

Proof. We prove the theorem by showing that any solu-
tion with n sublots ðn � MÞ is feasible for problem
(SMB2(M)). Consider a solution with n sublots denoted
by q1ðnÞ, q2ðnÞ; . . . ; qnðnÞ, and consider the associated
solution for (SMB2(M)) given by: qjðMÞ ¼ qjðnÞ for
j ¼ 1; . . . ; n and qjðMÞ ¼ 0 for j ¼ nþ 1; . . . ;M . Given
s2 � s1, the latter solution is feasible where s2 � s1 is re-
quired in order to satisfy the kth constraint in (32), for
k ¼ nþ 1; . . . ;M . Since any solution with n sublots is
feasible for problem (SMB2(M)) this also holds for the
optimal solution for (SMB2). j
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Combining Theorems 2 and 4 results in the following
corollary:

Corollary 2. If t2 � t1 and s2 � s1 then the solution of
problem (SMB2(M)) is optimal for the general problem
(1)–(6).

If the condition s2 � s1 is not satisfied we search again
for the optimal value of n. We again have a conjecture:

Conjecture 2. The values of the optimal solution of
(SMB2-(n)) form a unimodal function of n.

As with Conjecture 1 we observed this behavior in
all instances that we examined. Again, we suggest solving
problem (SMB2) through a sequence of (SMB2-(n))
problems (on all possible values of n or through a binary
search).

4.3. A solution procedure for the general problem

We combine the results obtained thus far in order to
obtain a complete solution procedure to solve the general
problem (1)–(6). If according to Theorem 1 (Theorem 2),
machine 1 (2) is known to be a bottleneck machine in
the optimal solution, we solve (SMB1), ((SMB2)) to op-
timality, and the solution obtained is optimal for the
general problem. (Obtaining an optimal solution for
problems (SMB1) and (SMB2) was described in Sections
4.1 and 4.2, respectively.) Otherwise, we solve both the
(SMB1) and (SMB2) problems to optimality, and select
the better solution of the two. The resulting solution is
optimal for the class of solutions that satisfy the SMB
property, but it is a heuristic for the general problem. A
summary of the solution procedure is shown in Fig. 4.

5. Experiments

In this section we investigate empirically various aspects
of our solution procedure (Sections 5.1 and 5.2). In ad-
dition we present (in Section 5.3) a comparison with a
problem that is identical to ours except for using the
makespan as its objective function.

5.1. SMB Justification

We have investigated 200 problems (problem set 1), in
which the parameters were randomly generated from a
uniform probability distribution of the following ranges:
d  Uð50,10 000Þ, sm  U (0,1000) for m ¼ 1,2, tm 
U (0,10) for m ¼ 1,2. Relatively wide ranges were chosen
in order to enable all combinations among the para-
meters, while the setup time would almost always be
larger than the process time as in real world environ-
ments.

The general formulation of the problem (1)–(6) was
used. The 200 instances were solved using the AMPL
software with the MINOS solver for non-linear problems.
Recall that the general formulation of the problem is not
convex and therefore the solution found is not guaranteed
to be optimal. Therefore, a ‘shifting bottleneck’ solution
could be either better or worse than an SMB solution.
The results indicate that only in 18 out of the 200

problems a ‘shifting bottleneck’ solution type was ob-
tained namely 9%. The rest of the problems provided
solutions that were SMB-type. In addition comparing the
objective function of the ‘shifting bottleneck’ solutions
with SMB solutions obtained for those problems indi-
cated that the average difference was 0.022% and the
maximal was 0.27%. We conclude that SMB-type solu-
tions provide satisfying results.

5.2. SMB results

We have investigated 40 additional problems (problem
set 2). For all instances the unit processing time was
generated from a uniform distribution between zero and
one, and d ¼ 500 was used. The setup time in the first 20
instances was generated from a uniform distribution be-
tween one and 10 and in the other 20 from a uniform
distribution between one and 100.
In 16 out of the 40 instances the identity of the bot-

tleneck machine was known according to Theorems 1 and
2. Out of those 16 instances, in six the pure solution was
known to be optimal (according to Theorem 4) and in the
other 10 the problem (SMB2(d)) was known to provide
the optimal solution (according to Corollary 2). There-
fore in those 16 instances (40%) obtaining the optimal
solution was immediate, either through a closed-form
formula or through one run of a convex programming
problem. In these cases our procedure found the optimal
solution for the general problem. Out of the other 24
instances, which imply the need to solve 48 problems
(looking for the (SMB1) solution and the (SMB2) solu-
tion for each instance), we obtained 17 cases in which the
pure solution was feasible and therefore optimal for its
category. In the remaining 31 problems a search over the
optimal n value was required.
The solutions obtained by our SMB procedure were

compared to those obtained in Kalir and Sarin (2001),
where the m-machine flow-shop problem was investigated
with the restriction that the sublot sizes are equal. Given
this restriction only one decision variable exists namely
the number of sublots (or equivalently – the sublot size)
and the optimal continuous solution may be obtained by
a closed-form formula. The parameters used and the re-
sults are presented in Table 1 where the objective function
refers to the average flow-time.
The differences between our solutions and the equal

sublot size solutions are shown in the second column
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from the right. The average and maximal differences were
2.28 and 6.62% respectively. An interesting observation is
that in all cases the number of sublots in the general
sublot size solutions was larger than in the equal sublot
size solutions. On average it was 10.9 versus 8.6 batches
respectively.
We also developed a lower bound for the objective

value (see Appendix 3) and it is presented in the right-
hand column of Table 1. We observe the magnitude of
the lower bound compared with the optimal solution
value. Empirically, for these 40 instances, the lower
bound is on average around 70% of the optimal solution
value.

5.3. Comparison with the makespan objective function

As most of the literature on lot splitting and lot streaming
consider the makespan as the objective function, we in-
corporate here a comparison of the flow-time and the
makespan objective functions, for the model analyzed in
this paper. Our aim is to help the reader develop an un-
derstanding of the differences in scheduling that are
caused by the objective function’s choice. Another pur-
pose is to learn whether a solution that minimizes flow-
time may be achieved by considering the makespan
objective. As can be observed from the results below the
answer is no and the two solutions are in fact quite dif-
ferent.

Fig. 4. The solution procedure.
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Towards that and since no earlier study has considered
the same model as ours with the makespan objective
function, we have adjusted our mathematical program-
ming formulation which was presented in Section 2 to
consider the makespan rather than the flow-time objec-
tive function. In addition to changing the objective
function itself, we had to introduce new binary variables
and define them through the constraints. Due to the
change in the objective function there are no more non-
linearities in the formulation.

The resulting formulation is presented in Appendix 4.
We used the AMPL software with the CPLEX solver for
integer programming to solve the resulting problem for
the 40 instances investigated in Section 5.2 (problem set
2). The results are presented in Table 2. In this table we
present a comparison of two solutions: one is the solution
obtained by our procedure which is designed to minimize
the average flow-time, and the other is the solution that
minimizes the makespan, obtained by solving the ILP
discussed above. For each solution we compute both the

Table 1. Results of problem set 2

Problem s1 s2 t1 t2 Equal sublot size General sublot size Improvement (in %) LB

Avg. F.T. Number of
sublots

Avg. F.T. Number of
sublots

1 6.72 2.32 0.77 0.69 282.1 13 278.3 18 1.35 198.4
2 9.01 3.40 0.97 0.46 343.3 10 337.5 14 1.73 252.0
3 6.21 4.50 0.97 0.95 343.7 15 339.1 21 1.35 247.9
4 7.70 3.58 0.98 0.74 351.0 13 344.2 18 1.96 253.8
5 1.70 1.03 0.61 0.22 184.8 18 182.6 25 1.24 154.6
6 1.35 7.32 0.80 0.23 236.4 22 235.6 26 0.35 200.6
7 7.45 7.69 0.58 0.15 215.2 8 210.5 11 2.26 153.7
8 1.20 6.04 0.77 0.09 224.3 20 221.7 25 1.17 194.9
9 6.11 7.44 0.68 0.34 245.4 11 241.3 14 1.71 176.7
10 1.16 3.82 0.43 0.35 139.9 15 139.1 18 0.59 109.0
11 6.22 7.61 0.10 0.79 268.9 8 265.8 11 1.20 211.2
12 6.61 8.54 0.13 0.63 228.9 7 225.7 9 1.43 171.5
13 1.42 9.22 0.72 0.84 319.4 11 299.5 12 6.62 221.4
14 5.90 8.60 0.45 0.95 337.3 10 323.5 12 4.25 252.4
15 1.78 8.03 0.14 0.66 231.8 8 227.4 10 1.97 174.4
16 6.61 3.73 0.07 0.70 223.9 11 220.9 14 1.36 186.1
17 9.00 1.84 0.64 0.97 298.2 23 296.5 25 0.56 253.6
18 3.26 1.82 0.43 0.95 283.0 22 274.9 25 2.92 243.3
19 4.02 2.27 0.05 0.91 265.9 15 264.8 21 0.44 233.3
20 6.42 5.75 0.32 0.56 207.4 10 200.2 12 3.60 151.4
21 60.52 25.86 0.89 0.42 507.0 4 495.3 5 2.38 282.3
22 93.52 56.48 0.43 0.03 365.0 2 356.6 2 2.37 200.5
23 97.84 16.77 0.81 0.61 583.2 3 567.1 5 2.83 299.5
24 77.79 61.93 0.66 0.02 431.5 2 423.6 3 1.87 243.1
25 78.05 23.18 0.61 0.56 474.9 3 461.1 5 2.99 230.1
26 3.75 19.37 0.85 0.54 302.0 10 300.4 11 0.53 217.3
27 52.52 76.76 0.97 0.31 550.6 4 539.2 5 2.11 295.4
28 55.92 74.82 0.75 0.62 530.5 4 528.5 4 0.37 242.7
29 93.19 98.98 0.40 0.03 396.9 2 386.8 2 2.60 192.9
30 63.52 86.24 0.90 0.54 594.5 4 583.7 5 1.86 289.6
31 32.88 52.96 0.62 0.90 524.1 5 503.0 5 4.18 311.3
32 3.23 55.69 0.13 0.87 426.6 3 421.6 4 1.19 276.1
33 59.66 60.68 0.59 0.70 505.7 4 496.0 5 1.94 296.4
34 1.14 16.98 0.36 0.97 373.0 7 357.6 9 4.30 261.3
35 3.85 69.37 0.48 0.64 436.5 3 414.0 4 5.42 233.4
36 88.40 5.77 0.38 0.56 403.4 3 389.5 4 3.58 234.1
37 40.90 7.90 0.03 0.07 97.6 2 93.1 2 4.86 65.9
38 96.77 32.60 0.02 0.63 374.5 3 370.6 4 1.05 285.9
39 73.35 42.22 0.47 0.53 434.7 3 421.2 5 3.22 248.0
40 53.62 2.81 0.54 0.76 400.8 4 386.9 6 3.59 247.3

Remarks: (i) d ¼ 500 in all instances. (ii) the numbers are associated with the average flow-time.
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average flow-time (denoted FT) and the makespan (de-
noted MS), and indicate the number of sublots included
in the solution. In the third, second and most right-hand
columns we compare the two solutions with respect to the
ratio of the flow-time values, the ratio of the makespan
values and the ratio of the number of sublots, respec-
tively. In these columns the performance measure and the
solution type are indicated outside and inside the paren-
thesis, respectively.

We draw some important conclusions from the results.
As expected, the solution which minimizes the make-
span objective, is not optimal for the flow-time objective
function. In fact, the differences are quite large. The op-
timal makespan solution yields an objective value for the
flow-time that is on average 21.2% higher than the ob-
jective value obtained by our procedure. The maximum
difference among all 40 problems was 71%. Therefore,
it is clear that using the makespan solution does not

Table 2. A comparison of the flow-time and the makespan objective functions

Problem Min. of flow-time Min. of makespan FT ðMSÞ
FT ðFT Þ

MSðFT Þ
MSðMSÞ

Number of sub-
lots FT/MS

FT MS Number of
sublots

FT MS Number of
sublots

1 278.3 509.1 18 299.9 456.6 8 1.078 1.115 2.25
2 337.5 616.7 14 459.5 534.2 4 1.361 1.155 3.50
3 339.1 622.8 21 357.1 587.3 9 1.053 1.061 2.33
4 344.2 633.0 18 397.0 559.0 7 1.153 1.132 2.57
5 182.6 348.7 25 283.5 315.4 5 1.553 1.106 5.00
6 235.6 443.5 26 370.3 416.9 4 1.572 1.064 6.50
7 210.5 380.1 11 269.0 306.5 4 1.278 1.240 2.75
8 221.7 421.7 25 379.2 395.8 3 1.710 1.065 8.33
9 241.3 435.4 14 313.9 384.2 4 1.301 1.133 3.50
10 139.1 255.9 18 149.3 243.9 9 1.073 1.049 2.00
11 265.8 488.5 11 382.6 421.9 2 1.439 1.158 5.50
12 225.7 401.0 9 297.6 349.0 3 1.319 1.149 3.00
13 299.5 539.2 12 311.3 498.2 7 1.039 1.082 1.71
14 323.5 590.4 12 380.4 526.7 4 1.176 1.121 3.00
15 227.4 413.8 10 307.8 356.9 3 1.354 1.159 3.33
16 220.9 410.5 14 336.1 367.5 2 1.522 1.117 7.00
17 296.5 554.5 25 320.1 526.6 8 1.080 1.053 3.13
18 274.9 526.5 25 341.2 492.6 6 1.241 1.069 4.17
19 264.8 507.8 21 440.9 465.0 2 1.665 1.092 10.50
20 200.2 362.9 12 220.0 323.6 5 1.099 1.121 2.40
21 495.3 786.1 5 588.0 648.1 2 1.187 1.213 2.50
22 356.6 463.2 2 380.0 380.0 1 1.066 1.219 2.00
23 567.1 913.2 5 636.3 713.6 2 1.122 1.280 2.50
24 423.6 626.4 3 479.7 479.7 1 1.132 1.306 3.00
25 461.1 723.9 5 511.5 592.0 2 1.109 1.223 2.50
26 300.4 518.3 11 330.3 498.4 6 1.100 1.040 1.83
27 539.2 838.2 5 623.7 710.2 2 1.157 1.180 2.50
28 528.5 759.6 4 594.2 710.5 2 1.124 1.069 2.00
29 386.8 489.8 2 407.2 407.2 1 1.053 1.203 2.00
30 583.7 914.3 5 656.7 773.1 2 1.125 1.183 2.50
31 503.0 788.7 5 523.7 694.6 3 1.041 1.136 1.67
32 421.6 682.4 4 539.2 551.2 2 1.279 1.238 2.00
33 496.0 778.5 5 551.0 665.5 2 1.111 1.170 2.50
34 357.6 646.5 9 471.3 546.7 3 1.318 1.182 3.00
35 414.0 632.3 4 441.0 537.2 3 1.065 1.177 1.33
36 389.5 569.9 4 400.6 488.4 3 1.028 1.167 1.33
37 93.1 113.8 2 98.8 98.8 1 1.061 1.152 1.00
38 370.6 546.0 4 454.4 454.4 1 1.226 1.202 4.00
39 421.2 646.2 5 459.4 547.9 2 1.091 1.180 2.50
40 386.9 608.4 6 394.8 537.7 4 1.020 1.132 1.50

Average 10.9 3.6 1.212 1.147 3.191
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produce good solutions for the flow-time minimization
problem.
The opposite direction is also true, but the differences

are smaller. Namely, our procedure for minimizing the
flow-time is not optimal for the makespan objective, but
the average and the maximum differences are only 14.7
and 30.6%, respectively.
Finally, it is interesting to compare the number of sub-

lots that are obtained under both solutions. In all 40
problems the number of sublots obtained for the flow-time
solution was much higher than the number of sub-lots
obtained for the makespan solution. On average the flow-
time solution yields a number of sublots that is 3.19 higher
than in the makespan solution. The maximum ratio is
obtained for problem 19 in which the flow-time solution
used 21 sublots, while the makespan solution used two
sublots only (a ratio of 10.5). We explain the difference in
the number of sublots used as follows: when minimizing
flow-time – all sublots participate in the objective func-
tion, therefore it is important to release initial sublots
early by using additional sublots. In makespan minimi-
zation only the last sublot is considered in the objective
function, therefore it is important to perform it as early as
possible, regardless of the flow-time of initial sublots.
One case in which the results of the flow-time model

would be similar to the results of the makespan model is
in the extreme case in which the setup is negligible. In that
case in both models the sublots would be as small as
possible, therefore there would be a large number of sub-
lots. This intuition is used in developing our lower bound
for the flow time model (see Appendix 3).

6. Conclusions

We presented a solution procedure for the two-machine
flow-shop lot splitting problem with sublot-attached set-
up times and a flow-time objective function. This is the
first work which suggests how to obtain a solution which
may consist of non-equal sublot sizes for this system.
We developed a solution procedure which is based on
an intuitive solution structure, namely the SMB (Single
Machine Bottleneck) property. We say that a solution
satisfies the SMB property, when the same machine is the
bottleneck machine (i.e., has no idle time between sub-
lots) throughout the production process. Although the
SMB property does not always achieve the optimal so-
lution, it is shown empirically to be very close to optimal.
For some cases we proved that the SMB property is
satisfied in all optimal solutions.
Empirical results demonstrate an improvement of the

objective value over the optimal value given equal sublot
sizes. Note that when the sublot sizes are restricted to be
identical the solution automatically satisfies the SMB
property. In addition, we compared the solution obtained
by our solution procedure to the solution of the same

model with the makespan objective function and observed
that the solutions behave differently. The superiority of
the objective value when considering minimization of
flow-time is quite significant. The applicability of lot
splitting decisions to industries that produce expensive
products implies that any reduction in the average flow-
time is very meaningful.
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Appendices

Appendix 1: The pure solution for (SMB1)

We derive the pure solution of (SMB1) by using the KKT
conditions of problem (22)–(25) excluding constraint (23).
The problem in hand, denoted as (P-SMB1) is the

following:

min s1
XM
k¼1

qkk þ s2d þ 1

2
t1 þ t2

� �XM
k¼1

q2k þ
1

2
t1d2; ðA1Þ

subject to XM
k¼1

qk ¼ d; ðA2Þ

qk � 0 k ¼ 1; . . . ;M : ðA3Þ
Associating a Lagrange multiplier v with constraint

(A2) and a Lagrange multiplier uk with the kth non-
negativity constraint (A3), we get the following KKT
conditions:

s1k þ t1 þ 2t2ð Þqk þ uk þ v ¼ 0 1 � k � M ; ðA4Þ
ukqk ¼ 0 1 � k � M ; ðA5Þ
uk � 0 1 � k � M : ðA6Þ

A solution that satisfies conditions (A4)–(A6) together
with constraints (A2)–(A3) is an optimal solution to (P-
SMB1). We find it by solving a system of 2M þ 1 vari-
ables (the q variables, the u variables and v) and 2M þ 1
equations ((A2), (A4), and (A5)) under the additional
conditions of (A3) and (A6).
We solve (A4) for qk:

qk ¼ � s1k
t1 þ 2t2

� uk
t1 þ 2t2

� v
t1 þ 2t2

: ðA7Þ

We use n to denote the number of positive sublots and
note that for qk > 0, (A5) implies uk ¼ 0.
Then, summing (A7) for k ¼ 1; . . . ; n we get:

d ¼ � nðnþ 1Þ
2

	 s1
t1 þ 2t2

� n	 v
t1 þ 2t2

;

and therefore:

� v
t1 þ 2t2

¼ d
n
þ s1

nþ 1
2 t1 þ 2t2ð Þ : ðA8Þ

Using (A7) and (A8), we get for qk > 0:

qk ¼
d
n
þ s1ðnþ 1Þ
2 t1 þ 2t2ð Þ � k

s1
t1 þ 2t2

¼ d
n
þ s1ðnþ 1� 2kÞ

2 t1 þ 2t2ð Þ :

ðA9Þ
Since n is the largest index of k for which qk > 0, n is
the largest index for which (A9) results in: qn > 0 and
qnþ1 � 0, which can be written as:

qn ¼
d
n
þ s1ðnþ 1� 2nÞ

2 t1 þ 2t2ð Þ ¼ d
n
� s1ðn� 1Þ
2 t1 þ 2t2ð Þ > 0; ðA10Þ

qnþ1 ¼
d
n
þ s1ðnþ 1� 2n� 2Þ

2 t1 þ 2t2ð Þ ¼ d
n
� s1ðnþ 1Þ
2 t1 þ 2t2ð Þ � 0:

ðA11Þ
After some algebra, we get:

nðn� 1Þ < 2dðt1 þ 2t2Þ
s1

� nðnþ 1Þ; ðA12Þ

where the first inequality in (A12) results from (A10) and
the second from (A11).
Since the interval defined in (A12) by n does not

overlap with the interval defined in (A12) by nþ 1, there
is only one value of n that satisfies (A12). This value is
found by solving (A12) and we obtain:

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 2dðt1 þ 2t2Þ

s1

s
� 1
2

& ’
: ðA13Þ

To conclude the verification of the optimality condi-
tions, we show that for k > n we can solve (A7) subject to
the condition uk � 0 is satisfied. Plugging (A8) into (A7)
for k > n for which qk ¼ 0 results in:

uk
t1 þ 2t2

¼ � s1k
t1 þ 2t2

þ d
n
þ s1ðnþ 1Þ
2ðt1 þ 2t2Þ

;

which indicates that uk � 0 due to: k � nþ 1 which im-
plies nðnþ 1Þ � nk and also:

2dðt1 þ 2t2Þ
s1

� nðnþ 1Þ;

from (A12), implying:

2dðt1 þ 2t2Þ
s1

� nk:

Appendix 2: The pure solution for (SMB2)

We derive the pure solution of (SMB2) by using the KKT
conditions of problem (34)–(37), excluding constraint
(35).
The problem in hand denoted as (P-SMB2) is the fol-

lowing:

min s1d þ t1q1d þ s2
XM
k¼1

kqk þ
1

2
t2
XM
k¼1

q2k þ
1

2
t2d2; ðA14Þ

subject to XM
k¼1

qk ¼ d; ðA15Þ

qk � 0 k ¼ 1; . . . ;M : ðA16Þ
Associating a Lagrange multiplier v with constraint

(A15) and a Lagrange multiplier uk with the kth non-
negativity constraint (A16), we get the following KKT
conditions:

t1d þ s2k þ t2qk þ uk þ v ¼ 0 k ¼ 1,
s2k þ t2qk þ uk þ v ¼ 0 2 � k � M ,

�
ðA17Þ
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ukqk ¼ 0 1 � k � M ; ðA18Þ
uk � 0 1 � k � M : ðA19Þ

A solution that satisfies conditions (A17)–(A19) to-
gether with constraints (A15)–(A16) is an optimal solu-
tion to (P-SMB2). We find it by solving a system of
2M þ 1 variables (the q variables, the u variables and v)
and 2M þ 1 equations ((A15), (A17), and (A18)) under
the additional conditions of (A16) and (A19). We solve
(A17) for qk:

qk ¼
� t1d

t2
� s2k

t2
� uk

t2
� v
t2

k ¼ 1,

� s2k
t2

� uk
t2

� v
t2

2 � k � M .

8>><
>>: ðA20Þ

We use n to denote the number of positive sublots and
note that for qk > 0, (A18) implies uk ¼ 0. Then, sum-
ming (A20) for k ¼ 1; . . . ; n we get:

d ¼ � t1d
t2

� nðnþ 1Þ
2

	 s2
t2
� n	 v

t2
;

and therefore:

� v
t2
¼ d

n
þ t1
t2
	 d

n
þ nþ 1

2
	 s2

t2
: ðA21Þ

Using (A20) and (A21) we get for qk > 0:

qk ¼
� t1d

t2
þ d

n
t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� k
� �

k ¼ 1,

d
n

t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� k
� �

2 � k � n.

8>><
>>:

ðA22Þ
Since n is the largest index of k for which qk > 0, n is
the largest index for which (A22) results in: qn > 0 and
qnþ1 � 0, which, given that n � 2, can be written as:

qn ¼
d
n

t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� n
� �

> 0; ðA23Þ

qnþ1 ¼
d
n

t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� ðnþ 1Þ
� �

� 0: ðA24Þ

After some algebra, we get:

nðn� 1Þ < 2dðt1 þ t2Þ
s2

� nðnþ 1Þ; ðA25Þ

where the first inequality in (A25) results from (A23) and
the second from (A24). Since the interval defined in (A25)
by n does not overlap with the interval defined in (A25)
by nþ 1, there is only one value of n that satisfies (A25).
This value is found by solving (A25) and we obtain:

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 2dðt1 þ t2Þ

s2

s
� 1
2

& ’
: ðA26Þ

To conclude the verification of the optimality condi-
tions, we show that for k > n we can solve (A20) subject

to the condition uk � 0 is satisfied. Plugging (A21) into
(A20) for k > n, for which qk ¼ 0, results in:

uk
t2

¼ d
n

t1 þ t2
t2

� �
þ s2

t2

nþ 1
2

� k
� �

;

which indicates that uk � 0 due to: k � nþ 1 which im-
plies nðnþ 1Þ � nk and also:

2dðt1 þ t2Þ
s2

� nðnþ 1Þ;

from (A25), implying:

2dðt1 þ t2Þ
s2

� nk:

Appendix 3: A lower bound

We develop a lower bound on the total flow-times
(over all units) by considering a solution in which:

1. the sublot sizes are as small as possible; and
2. the setup cost is incurred on each machine only at the
beginning of the first sublot.

The total flow-time of the specified solution forms a
lower bound on the total flow-time of any solution. This
is true since the first condition provides a lower bound on
the contribution of the variable processing times and the
second condition provides a lower bound on the contri-
bution of the setup times.
Accordingly, we assume that in the specified solution,

there are d=e sublots and the size of each sublot is e,
where e � 0 is arbitrarily small. We analyze the total flow-
time of the above solution by distinguishing between two
cases:
Case 1: t1 > t2
In this case, the flow-time of the kth sublot is: s1þ
ekt1 þ et2, see Fig. A1.
Since the size of the kth sublot is e its contribution to

the total flow-time is: eðs1 þ ekt1 þ et2Þ, and the total flow-
time of all d=e sublots is:Xd=e

k¼1
eðs1 þ ekt1 þ et2Þ ¼ ds1 þ e2t1

Xd=e
k¼1

k þ edt2

¼ ds1 þ e2t1
d
e

d
e
þ 1

� ��
2þ edt2

� ds1 þ
1

2
t1d2

� LB1:
Case 2: t2 � t1
In this case the flow time of the kth sublot is: s1 þ s2þ
et1 þ ekt2, see Fig. A2.
Since the size of the kth sublot is e, its contribution to

the total flow-time is: eðs1 þ s2 þ et1 þ ekt2Þ and the total
flow-time of all d=e sublots is:
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Xd=e
k¼1

eðs1 þ s2 þ et1 þ ekt2Þ ¼ ds1 þ ds2 þ edt1 þ e2t2
Xd=e
k¼1

k

¼ ds1 þ ds2 þ edt1

þ e2t2
d
e

d
e
þ 1

� ��
2

� dðs1 þ s2Þ þ
1

2
t2d2 � LB2:

Conclusion:

A lower bound on the total flow-time of any instance is:

ds1 þ
1

2
d2 maxft1; t2g:

A higher lower bound can be determined when t2 � t1
as follows:

LB2 ¼ dðs1 þ s2Þ þ
1

2
t2d2:

That is:

LB ¼
ds1 þ 1

2 t1d
2 if t1 > t2,

dðs1 þ s2Þ þ 1
2 t2d

2 if t2 � t1.

(

Appendix 4: Formulation for the makespan objective

We use the following additional variables:

pk ¼ 1 if sublot k is the last positive sublot,
0 otherwise.

n
The definition of the rest of the variables remain un-
changed.

min IM þ dt2 þ s2
XM
k¼1

pk; ðA27Þ

subject to
I1 ¼ s1 þ t1q1; ðA28Þ

Ik � Ik�1 k ¼ 2; . . . ;M ; ðA28Þ

Ik � t1
Xk
i¼1

qi þ s1
Xk
i¼1

pi

 !
� t2

Xk�1
i¼1

qi þ s2
Xk�1
i¼1

pi

 !

k ¼ 2; . . . ;M ; ðA29ÞXM
k¼1

qk ¼ d; ðA30Þ

qk � dpk k ¼ 1; . . . ;M ; ðA31Þ
pk � pk�1 k ¼ 2; . . . ;M ; ðA32Þ

qk � 0 k ¼ 1; . . . ;M : ðA33Þ

Fig. A2. Case 2.

Fig. A1. Case 1.
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