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We consider a capacitated production-inventory problem in both discrete- and continuous-time, stationary settings. In the discrete-
time setting we analyze the infinite horizon capacitated dynamic lot-sizing problem, find the optimal solution and characterize its
properties. For the continuous-time setting we formulate a new problem, which we claim to be an appropriate counterpart of the
above discrete-time problem. No other counterpart model was found in the literature, including the vast literature on optimal control,
which presumably deals with similar problems but in a continuous-time framework. The new problem formulation is the basis for
a new class of models, which forms an alternative way of analyzing certain dynamic lot-sizing problems. This new alternative could
sometimes be simpler than the analysis in the discrete case.

1. Introduction

When formulating an optimization problem, a modeler may
choose either a discrete or continuous framework. In some
cases, the derivation of the results may be simplified un-
der one framework, compared to the other. The alternative
method may reach similar results and insights, but in a more
tedious and unstructured way. Hence, the ability to choose
the “appropriate” or “convenient” framework is useful,
provided that switching between the alternatives is easy.

In particular, discretization of time is a well-known idea.
In the production-inventory field, one of the earliest ex-
amples is the seminal paper by Wagner and Whitin (1958),
which aimed at solving a dynamic version of the continuous
Economic Order Quantity (EOQ) problem. Their approach
for solving the dynamic problem was by discretizing time,
which resulted in the well-known dynamic lot-sizing model,
then solved by dynamic programming.

The dynamic lot-sizing problem and its extensions have
become one of the most investigated production-inventory
problems. The motivation for analyzing these problems has
evolved from approximating continuous problems to de-
scribing situations in which a decision may actually be taken
only once in a period, thus leading naturally to the use of
discrete time periods. As far as we know, no other works
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have used a variation of the dynamic lot-sizing problem in
order to analyze its continuous counterpart, or vice versa.

The latter observation is somewhat surprising, given that
many of the extensions of the basic dynamic lot-sizing prob-
lems are difficult problems, in particular some of those that
involve capacity constraints; see for example, Florian and
Klein (1971) and Florian et al. (1980). Moreover, although
the broad area of optimal control deals with presumably
similar problems but in a continuous framework, we found
that none of the models considered there can serve as a
continuous counterpart of lot-sizing problems.

In this paper we first offer an explanation for the above
observation, which is related to the meaning of the produc-
tion cost component, referred to as the setup or the fixed
cost. We claim that the real meaning of this cost component
has implications for the type of model that appropriately
represents the problem, and therefore, in general, the two
terms are not interchangeable. Then, we identify a class of
models that has not been suggested previously in the lit-
erature, which forms a new continuous counterpart to the
class of dynamic lot-sizing problems. The new class of mod-
els brings an alternative path to analyzing certain dynamic
lot-sizing problems, which could sometimes be simpler than
the analysis in the discrete case.

2. Modeling framework

Our focus in this section is on the meaning and modeling
implications of the cost component, which is sometimes
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referred to as a setup cost, sometimes as a fixed cost, and is
denoted in this paper as K in both cases.

A setup cost is a cost component, which is incurred when-
ever an initiation of production occurs. It represents a one-
time cost of preparing the machine or the entire facility
for production, for example, the cost of the workforce that
makes the required preparations on the machine. In mod-
els where a batch is ordered from an outside supplier, the
setup cost may be the amount charged by the supplier, which
could represent, for example, the transportation cost asso-
ciated with the delivery. The notion of a setup cost is well-
known from the EOQ framework, where a cost is incurred
whenever production of a batch is initiated. The produc-
tion can be instantaneous, implying an infinite production
rate, or it may take some time, implying a finite production
rate. If the production rate is finite, the resulting model is
sometimes referred to as the Economic Production Quantity
(EPQ). In either case we refer to this family of models as
EOQ. Regardless of the production rate, the setup cost is
incurred exactly once, for a batch of any size.

On the other hand, a fixed cost is a cost component, which
is incurred during production, that is, at any time when
production occurs. It represents the cost of keeping the ma-
chine operating, for example, the electricity cost incurred
when the machine operates, or the cost of the workforce
that operates the machine. That is, the fixed cost depends
on the time in which the machine is on, regardless of the
quantity produced. Note that typically in production plan-
ning problems, there exists another cost component, the
variable production cost, which is also incurred whenever
production occurs. However, as opposed to a fixed cost, a
variable production cost is quantity dependent, regardless
of the length of time in which production occurs. (Only if
the production rate is a-priori constant, then do the fixed
and variable costs coincide.)

Thus, the common feature of both the setup and the fixed
cost is their independence of the quantity produced. This is
also the reason why they are sometimes referred to as inter-
changeable costs. However, we concur that the real mean-
ing of this cost component is important for an appropriate
modeling of the problem. It turns out that the difference in
modeling is much more notable in the continuous frame-
work than in the discrete framework, as discussed below.

In order to focus on the new modeling framework and to
obtain clear insights, we focus in this paper on a stationary
parameter environment, that is, on problems in which all
the parameters, and in particular the demand, are constant
over time. We consider a capacitated setting, that is, a setting
in which the amount produced at any time (or in a given
period) is limited.

Consider, for example, the EOQ problem. In this prob-
lem, the demand rate is constant over an infinite horizon, a
setup cost is incurred whenever an initiation of production
occurs, and holding costs are incurred per unit of inventory
held, per unit of time. The closest discrete counterpart of the
EOQ is the dynamic lot-sizing problem, in which demand

in every period is constant, and the same cost components
as in the EOQ are present. Even though typically in the
dynamic lot-sizing problem the demand varies from period
to period, we still refer to it as the discrete counterpart of
the EOQ, since it is merely a special case of the dynamic
demand case. With a capacity constraint, we obtain the
capacitated EOQ and the capacitated dynamic lot-sizing
problems, respectively.

Now consider how the above two problems (EOQ and
dynamic lot sizing) change, when the setup cost is replaced
by a fixed cost. For the discrete case, the dynamic lot-sizing
problem does not change, only the meanings of some of its
components change. In particular, a period represents the
length of time available for production and K represents
the fixed cost of producing during this length of time. The
production in two consecutive periods is in fact continuous
and therefore the fixed cost is proportional to the number
of periods in which production occurs and is not related to
the initiation of production as in the case of a setup cost.
However, for the continuous case, there is no variation of
the EOQ (or EPQ) model, which properly accounts for a
fixed cost component without also including a setup cost
component. The setup cost component in these models is
related to the initiation of production, as in the previous
context. In Silver (1990) both the setup and fixed cost com-
ponents are considered, but if the setup cost and time are
set to zero, the model is no longer realistic since it results
in a chattering regime, see below. (See Wolsey (1989) for a
discrete model that considers both setup and fixed costs.)
Instead, a natural framework to analyze the continuous
case with a fixed cost and without a setup cost appears to
be the optimal control framework. Moreover, in the opti-
mal control framework the production rate is allowed to
vary. The above discussion is summarized in Table 1.

Focusing now on the optimal control cell of Table 1,
we note that production-inventory planning problems, an-
alyzed by the optimal control methodology, have been
studied extensively in the literature. We mention here the
pioneering work by Hwang et al. (1967) who modeled
a simple problem of aggregate production planning in a
continuous-time form. Bensoussan et al. (1983) considered
both discrete- and continuous-time production planning
problems, and within the continuous-time framework they
considered both continuous and impulse control formu-
lations. More recent works for example Sethi and Zhang
(1995), Maimon et al. (1998) and Dauzere-Peres et al.
(2000), have extensively studied the continuous-time pro-
duction control models in deterministic and stochastic en-
vironments. The solution methodology is usually based on

Table 1. Modeling framework

Meaning of K/Time Continuous Discrete

Setup cost EOQ Lot sizing
Fixed cost Optimal control Lot sizing
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either Hamilton-Jacobi-Bellman dynamic programming or
the Pontryagin maximum principle. For linear costs and
simple demand functions (constant, cyclic, etc.) the opti-
mal production can be obtained in a closed form. For more
complicated cases, development of specific numerical pro-
cedures is required.

However, even with the existing extensive optimal con-
trol literature on production-inventory problems, we claim
that an appropriate counterpart of the lot-sizing problem
with fixed cost, has not yet been analyzed. One important
reason is that a straightforward “translation” of the discrete
model to a continuous one typically results in a production
regime known as chattering. Under a chattering regime,
the production rate jumps from zero to its maximum value
(back and forth) an infinite number of times at any (even
a very small) time interval. Clearly a chattering regime is
not practical, and cannot be implemented without modi-
fications. Moreover, the ability to change the production
rate at an infinite speed at any time is also not a realistic as-
sumption. We conclude that a new continuous-time model
is required, which overcomes both difficulties. Such a model
is suggested in this paper.

The rest of the paper is organized as follows. In Section 3
we describe the discrete-time model, discuss known and new
results and present the optimal solution for the problem.
In Section 4 we introduce the new continuous-time model,
analyze its properties and obtain its solution. Finally, in
Section 5 we discuss analogies between the results of the
previous two sections. We also define general guidelines for
a modeling analogy, based on which we further justify the
suggested new continuous-time model.

3. The discrete-time model

We consider a discrete-time production inventory problem
over an infinite planning horizon. Our analysis is based, in
part, on results from the literature for the finite horizon ver-
sion of the problem; those results are reviewed in Section
3.1. In Section 3.2 we provide a new analysis for the infi-
nite horizon problem. We derive structural properties and
obtain the optimal solution for this problem.

3.1. The finite horizon problem

The finite horizon problem, known as the capacitated dy-
namic lot-sizing problem, is defined by the following pa-
rameters:

T = number of periods;
d = demand in each period;
h = holding cost per unit per period;
p = variable production cost per unit;
K = fixed cost, incurred in any period in which production

occurs;
C = production capacity per period.

To solve this problem, one needs to determine the pro-
duction quantity in each period. A feasible production plan

has to satisfy demand on time without violating the ca-
pacity constraints. The objective is to minimize the total
cost (this is equivalent to minimizing the average total cost
per period), which consists of fixed and variable produc-
tion costs, and holding costs. We refer to this problem as
(F-CDLSP) (Finite Horizon, Capacitated Dynamic Lot-
Sizing Problem) and a Mixed Integer Linear Programming
(MILP) formulation of it is given in Appendix A.

Note that the total variable production cost, p per unit,
is contributing a constant to the objective value under any
feasible policy, and therefore may be ignored. (F-CDLSP)
with non-stationary demand and capacity parameters was
shown to be NP-hard by Florian et al. (1980). In fact, it is
NP-hard even in many special cases, as was shown in Bitran
and Yanasse (1982). However, for stationary capacity pa-
rameters, (F-CDLSP) has a polynomial-time solution, see
Florian and Klein (1971) and more recently Van Hoesel and
Wagelmans (1996). Some results from the above mentioned
papers are reviewed next, and will be used in the analysis of
the infinite horizon problem.

As in the MILP formulation, we denote Qt as the pro-
duction quantity in period t and St as the inventory level
at the end of period t . A production in period t is called
full if it equals C, i.e., Qt = C. A production in period t
is called fractional if it is strictly between zero and C, i.e.,
0 < Qt < C.

Lemma 1. (Florian and Klein, 1971): There exists an optimal
schedule such that between any pair of fractional production
periods there is at least one period with a zero inventory.
This property is often referred to as the fractional production
property.

The lemma is a direct result of the theory on concave
cost network flows, applied to the network describing our
problem. See Denardo (1982) for additional dynamic lot-
sizing applications. As a result of Lemma 1, we have:

Corollary 1. There exists an optimal schedule which satis-
fies the following; between any two consecutive periods with
zero inventory, there exists at most one fractional production
period.

Due to the corollary, the following definition is used.
A subplan (t1, t2)(1 ≤ t1 ≤ t2 ≤ T) is a set of consecu-

tive periods, starting with period t1 and ending with period
t2, such that St1−1 = St2 = 0, St > 0 for all t1 − 1 < t < t2
and at most one period within the subplan has fractional
production period.

Thus, a subplan (t1, t2) consists of at most one fractional
production period and as many full production periods as
required to cover all demand within the subplan. We refer
to the rest of the periods as zero production periods.

The following lemma is due to Baker et al. (1978).

Lemma 2.

(a) For any subplan (t1, t2), the fractional production period
(if one exists) is the first period of the subplan.
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(b) The locations of the full production periods within a sub-
plan are as late as possible (without incurring a backlog).

Intuitive arguments for this lemma are as follows:

(a) Suppose that in the optimal solution, the statement does
not hold. Then at the beginning of the fractional pe-
riod there is positive inventory, and a reduction in cost
can occur by reducing the amount of beginning inven-
tory by ε, and increasing the production amount in the
fractional period by ε. This is a contradiction to the
optimality of the suggested solution.

(b) This part is true due to the fact that the fixed costs in
a cycle are determined by the number of periods in the
subplan, and the above policy minimizes the holding
costs.

3.2. The infinite horizon problem

We now consider the infinite horizon version of problem
(F-CDLSP), i.e., when T → ∞, and the objective function
is the limit (when T → ∞) on the average cost. We refer to
this problem as (CDLSP).

Theorem 1 proves the periodicity property of the so-
lution, for the case of rational demand and capacity
parameters.

Theorem 1. If the d and C parameters are rational, then
there exists an optimal solution for the discrete-time prob-
lem which is cyclic and consists of subplans of identical
length. The length of those subplans is bounded by: n̄ ≡
min{n: nd/C is an integer}.

Proof. In Appendix B.

Define cycle (n) of length n, as a subplan (t1, t2) in which
t2 − t1 + 1 = n. Since all parameters are stationary, all sub-
plans with the same number of periods are identical. Note
that since the horizon of a subplan is finite, Lemmas 1 and
2 hold.

For ease of notation, and without loss of generality, we
slightly change the definition of a fractional period. Since
from now on we consider only solutions which consist of
subplans, we define a fractional production period to be as
before (strictly between zero and C) when nd mod(C) �= 0
and to be exactly C units (in the first period of the subplan),
when nd mod(C) = 0. As a result, all cycles have exactly one
fractional period and we have the following corollary:

Corollary 2.

(a) The optimal schedule of cycle (n) consists of one fractional
production period of size:

f (n) =
{

nd mod(C) if nd mod(C) �= 0,

C if nd mod(C) = 0,

c(n) full production periods where c(n) = (nd − f (n))/C,

and z(n) zero production periods where z(n) = n −
c(n) − 1.

(b) Only values of n for which f (n) ≥ d are possible cycle
length values. (Otherwise, the fractional production in
the first period of the cycle would not cover the demand
of that period.)

Next we would like to explore some properties of the
optimal solution, which are of interest and are useful for
the desired comparison with the continuous version of the
problem. As a result of Corollary 1 and Corollary 2 above,
the optimal solution could consist of one of the following
three types of cycles:

Cycle type 1: The production in every period is d. That is:
Qt = d ∀t , n = 1. As a result, no inventory
is ever carried. This cycle type is feasible for
every 0 < d ≤ C.

Cycle type 2: There is one fractional production period, at
least one full production period, and at least
one zero production period. This cycle type
is feasible for every 0 < d < C.

Cycle type 3: There is one fractional production period,
one or several zero production periods and
no full production periods. This cycle type is
feasible only for 0 < d ≤ C/2.

We refer to a solution that is a representative of cycle type
i as solution type i, i = 1,2,3. Note that given n, the values of
f (n), c(n) and z(n) are determined according to Corollary 2.
Given those values, the cycle type is determined according
to the above cycle type definitions.

We conclude that solving the discrete-time problem con-
sists in finding the best cycle length 1 ≤ n∗ ≤ n̄. Once n∗ is
determined, the optimal schedule within the cycle is deter-
mined by Lemma 2.

The next lemma presents a closed-form formula for the
average cost per period as a function of the cycle length,
n. Note that this formula is independent of the cycle type,
as for each value of n only one cycle type is well-defined.
The lemma is based on the following condition, which is
also used in other places in the paper: cycle(n) is feasible
if f (n) satisfies: d ≤ f (n) ≤ C (Corollary 2(b)). Recalling
that f (n) = nd − c(n)C, using it in the above inequalities,
dividing by d and using the integrality of n, we get:⌈

c(n)C
d

⌉
+ 1 ≤ n ≤

⌊
(c(n) + 1)C

d

⌋
. (1)

In Equation (1) and in the following, the term �x� corre-
sponds to the smallest integer which is greater than or equal
to x, and the term �x� corresponds to the largest integer
which is smaller than or equal to x.

Lemma 3. The average cost per period of a cyclic solution as
a function of n is:

j(n) = c(n) + 1
n

K + 1
2

hd(n − 1) − Chc(n) + Ch
n

c(n)∑
i=1

⌈
iC
d

⌉
.

(2)
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Table 2. The observed production and inventory quantities

Period 1 2 3 4 5 6 7 8 9 10

Qt 10 20 0 20 0 20 0 20 0 0
St 1 12 3 14 5 16 7 18 9 0

Proof. In Appendix C.

To demonstrate the behavior of the holding costs in the
above cost function, consider the following example:

Example 1: d = 9; C = 20; h = 1; K = 15; n = 10 ⇒
c(n) = 4, f (n) = 10.

The production and inventory quantities listed in Table 2
are observed during the cycle. There are five production
periods and a total of 85 units carried during the cycle,
therefore the average cost per period is: (5 × 15 + 85)/10 =
16. One can verify that this is also obtained by Equation (2).

For each point in the (C, d)-plane, the result of minimiz-
ing j(n) as a function of n determines the optimal cycle type
for that point. Therefore, according to the resulting opti-
mal cycle type, the (C, d)-plane may be partitioned into
three regions. In Fig. 1(a) we show our conjecture (which is
proved for some cases) regarding how these regions look.
The broken line d = C in the figure distinguishes between
the feasible area (C ≥ d) and the non-feasible area (C < d).
Bold digits 1, 2 or 3 denote the regions where cycle types 1,
2 or 3 are optimal, respectively. Note that region 2 of the
(C, d)-plane (where cycle type 2 is optimal) is not continu-
ous. It consists of an infinite number of closed “wings”, each
located right above the lines d = C/r , r = 2, 3, . . . , ∞, as
depicted in bold in the figure. To explain the partition of
Fig. 1(a), we consider the following five cases, correspond-
ing to the lines in the (C, d)-plane that distinguish between
the regions 1, 2 and 3. We conjecture the exact form of the
lines in cases 1–3 and prove it in cases 4–5. The conjectures
in cases 1–3 are based on and confirmed by an extensive
simulation study that we performed, with a wide variety of
parameter combinations.

Case 1: For C > 2K/h, the line d = K/h distinguishes be-
tween optimal cycle types 1 and 3.

Indeed, solution type 3 has the cost function:

j(n) = K
n

+ 1
2

hd(n − 1), (3)

which is obtained by substituting c(n) = 0 in Equation (2).
Comparing Equation (3) as a function of n with the cost of
solution type 1, K, we obtain that solution type 1 is better
when:

d > max
n≥2

2K
nh

= K
h

.

Since solution type 2 appears to have a higher cost in
this area of the (C,d)-plane, we conjecture that it does not

(a)

(b)

Fig. 1. Partition of the (C, d)-plane for: (a) the discrete-time prob-
lem; and (b) the continuous-time problem.

influence the comparison; see an example and an intuitive
explanation in Appendix D.

Case 2: For each m = 1, 2, . . . ,∞, the line:

d = C
2K/Ch + m(m + 1)

(m + 2)(m + 1)
,

distinguishes between optimal cycle types 1 and 2 in the
interval:

1
m + 1

2K
h

< C <
1
m

2K
h

.

Indeed, cycle type 3 does not exist in this area since
d > C/2 for all m, and cycle type 2 exists for only
c(n) ≥ m; otherwise, for c(n) < m no feasible n exists, see
Equation (1). We conjecture that the best solution of this
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type is characterized by c(n) = m and n = m + 2. By com-
paring this solution with the solution of cycle type 1, i.e.,
c(n) = 0 and n = 1, we obtain the line distinguishing be-
tween cycle types 1 and 2 for each m.

Case 3: For each r = 2, 3, . . . , ∞ and m = 1, 2, . . . , ∞, the
line:

d = C
2K/Ch + m(m + 1)r2

r (mr + r + 1)(mr + 1)
,

distinguishes between optimal cycle types 2 and 3 in the
interval:

1
r (m + 1)

2K
h

< C <
1

rm
2K
h

.

Here we conjecture that the best solution of cycle type 2
is characterized by c(n) = r − 1 with n = mr + 1 and that
the best solution of cycle type 3 is characterized by c(n) = 0
and n = m. By comparing the costs of these specific so-
lutions, we obtain the line distinguishing between optimal
cycle types 2 and 3. Since solution type 1 appears to have
a higher cost in this area of the (C,d)-plane, it does not
influence the comparison.

Unlike the previous three cases where some conjectures
have been adopted, in the following two cases we rigorously
prove that for each r = 2, 3, . . . , ∞ the line d = C/r , distin-
guishes between optimal cycle types 2 and 3 in the interval
0 ≤ C < 2K/((r − 1)h).

Case 4: For each r = 2, 3, . . . , ∞, a small ε > 0 and d =
(C(1 − ε)/r ), cycle type 3 is optimal in the interval 0 ≤ C <

2K/((r − 1)h). The optimal cycle length n∗ is r , and c(n∗) =
0.

We can prove this case by considering that for a sufficiently
small ε, and for each i = 1, . . . , c(n), we have:⌈

iC
d

⌉
=

⌈
ir

1 − ε

⌉
= ir + 1.

By substituting this expression into Equation (2), we find:

j(n) = c(n) + 1
n

K + 1
2

hd(n − 1) − Chc(n)

+ Ch
n

c(n) + Ch
2n

rc(n)(c(n) + 1). (4)

Let c(n) = 0. Then, from Equation (1), 1 ≤ n ≤ r . From
Equation (4), and by noting that j(n) is convex, the optimal
n is:

n =
√

2Kr
Ch(1 − ε)

,

rounded up or down, whichever has the lower j(n) value.
Since: √

2Kr
Ch(1 − ε)

>

√
(r − 1)r
(1 − ε)

,

the right hand side of this inequality equals either r or r − 1,
and n ≤ r , we conclude that n itself would equal either r or
r − 1, whichever has the lower j(n) value. By comparing j(r )
with j(r − 1), we find that for the case under consideration
n = r .

Let c(n) > 0. For a fixed c(n), and by plugging d into
Equation (2), we observe that j(n) is convex and that:

∂j(n)
∂n

∣∣∣∣
n=(c(n)+1)r

< 0.

Since n = (c(n) + 1)r is the upper limit of n, we con-
clude that n takes its maximum possible value, i.e., n =
(c(n) + 1)r . Now, by minimizing j(n) for n = (c(n) + 1)r as
a function of c(n), we find that the minimum is achieved
for c(n) = 1, i.e., n = 2r . From Equation (4) we calculate
j(r ) and j(2r ), which are optimal for the cases c(n) = 0 and
c(n) > 0 respectively, and conclude that j(r ) < j(2r ). Thus,
n∗ = r , c(n∗) = 0, which, by definition, means that cycle
type 3 is optimal.

Case 5: For each r = 2, 3, . . . , ∞, a small ε > 0 and d =
(C(1 + ε)/r ), cycle type 2 is optimal in the interval 0 ≤ C <

2K/((r − 1)h).

We can prove this case by considering that for a sufficiently
small ε and for each i = 1, . . . , c(n), we have:⌈

iC
d

⌉
=

⌈
ir

1 + ε

⌉
= ir.

By substituting this expression into Equations (2) and (1),
we find:

j(n) = c(n) + 1
n

K + 1
2

hd(n − 1) − Chc(n)

+ Ch
2n

rc(n)(c(n) + 1),

c(n)r + 1 ≤ n ≤ (c(n) + 1)r − 1.

Since for a fixed c(n), j(n) is convex and:

∂j(n)
∂n

∣∣∣∣
n=(c(n)+1)r−1

< 0,

we conclude that n takes its maximum possible value,
i.e., n = (c(n) + 1)r − 1. Now, by minimizing j(n) for n =
(c(n) + 1) r − 1 as a function of c(n), we find that the mini-
mum is achieved for:

n =
√

1
ε

(
2K
Ch

− r + 1
)

,

rounded up or down, which is a particular solution of cycle
type 2.

4. A new continuous-time model

In this section we present a new continuous-time produc-
tion control model. We build the model so that it represents
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the problem scenario of (CDLSP) of the previous sec-
tion as closely as possible but within a reasonable model
complexity.

In contrast to the previous section, continuous-time pro-
duction planning models assume that the decision about the
production quantity is made at each point in time, rather
than once per period. As a result, some of the notions intro-
duced in the previous section change, although their phys-
ical meaning is similar. The fixed cost, K, and the holding
cost per unit, h, become cost rates (measured in dollars per
time unit); the production and demand quantities Q(t) and
d, respectively, become rates (measured in units per time
unit) which satisfy the following material balance equation:

Ṡ(t) = Q(t) − d for 0 ≤ t < ∞, S(0) = 0, (5)

where Ṡ(t) represents the rate of change in the inventory
level at time t .

Backlogs are disallowed and the production rate is
bounded from above by a finite capacity, C:

S(t) ≥ 0, 0 ≤ t < ∞, (6)
0 ≤ Q(t) ≤ C, 0 ≤ t < ∞. (7)

The problem is to minimize the total cost of inventory
and production per time unit:

min J = lim
T→∞

1
T

∫ T

0
[hS(t) + Cost(Q(t))]dt, (8)

where

Cost(Q(t)) =
{

K + pQ(t) if Q(t) > 0,

0 if Q(t) = 0,

reflects both the fixed cost K which is incurred at each inter-
val of time (t ,t + dt) where Q(t) > 0, and the variable pro-
duction cost which is proportional to the production rate
Q(t) at time t(with a coefficient p); h is the cost of holding
a unit in inventory for a unit of time. Therefore, the cost
in Equation (8) has to be minimized subject to constraints
(5)–(7). We refer the reader to Remark 1 at the end of this
model description for a further discussion on the choice of
the above cost function.

The optimal production schedule of the described system
leads to the “chattering” regime at which Q(t) undergoes
an infinite number of jumps from Q(t) = 0 to Q(t) = C and
back to Q(t) = 0 at any (even very small) time interval, see
Steindl (2001). That is:

Q(t) = lim
	→0




C, (k − 1)	 ≤ t < (k − 1)	 + (d/C)	
,

0, (k − 1)	 + (d/C)	 ≤ t < k	

k = 1, . . . , ∞.

The chattering solution is the best one, having a zero in-
ventory and a minimum possible fixed cost, (d/C)K (in $
per time unit). If, for example, C = 10, K = 20, h = 1 and
d = 8, then in 8/10 = 80% of the time we produce at the
rate C = 10 and in the remaining 20% of the time we do

not produce. Thus, the cost is $16 per time unit. The sta-
tionary solution for this example, Q(t) = 8, results in costs
of K = 20 ($ per time unit).

To avoid chattering while properly modeling the problem,
we restrict the change of the production rate as follows:

Q̇(t) = v(t), 0 ≤ t < ∞, (9)
|v(t)| ≤ M, 0 ≤ t < ∞. (10)

Here, an additional decision variable v(t) controls the
change in the production rate Q̇(t) at time t . The parameter
M denotes the maximum allowed rate of change in Q(t).
Constraints (9) and (10) reflect the “inertia” effect that is
closely related to a setup which re-configures a production
system to produce at a different rate. For the above exam-
ple with M = 111, the optimal solution turns out to be a
cyclic one with a cycle length of 1.5 time units and a cost
of $18.33 per time unit (see details of the solution below
in this section). We refer the reader to Remark 2 for a fur-
ther discussion on the meaning of this constraint and to
guideline 2 in Section 5 for a discussion on the choice of the
parameter M. The condition d ≤ C is required to ensure
feasibility. The variable production cost p is now dropped,
since the cost associated with it is a constant under any
feasible solution.

Before we proceed to discuss the optimal solution of the
model just presented, let us make two important remarks
that are related to our modeling choices. In particular, we
address here the analogy between the new model and the
(CDLSP) of the previous section.

Remark 1. It may seem at first that since K in the continu-
ous model is a rate, incurred whenever producing and not
only at the initiation of production, it is not an analogous
situation to the setup cost in the discrete problem. Note,
however, that in the discrete case K is incurred, in fact, in a
similar way. It is incurred in every time period when there is
production, regardless of whether or not there was produc-
tion in the previous period. Therefore, also in the discrete
case K is incurred whenever producing, not whenever ini-
tiating production. (In some models, an additional cost is
considered, referred to as a startup cost, which is incurred
when a setup cost is incurred in a given period but not in
the previous period, see for example, Wolsey (1989). We do
not consider here such costs.) In other words, the analogy
exists since the fixed cost in the discrete case is proportional
to the number of periods in which production occurs, while
in the continuous case it is proportional to the length of
time in which production occurs. When the period length
in the discrete model is short, the analogy is even more ap-
parent. See also the discussion in Section 2 with respect to
the model associated with the lower right corner of Table 1.

Remark 2. The constraint on the change in the production
rate in the continuous model does not have an apparent
counterpart in the discrete model. However, when consider-
ing carefully the meaning of such a restriction in the discrete
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case, one realizes that a similar restriction, in fact does exist,
due to the fact that a period in this model has a duration. In
other words, going from no production to full production
(or vice versa) in two consecutive periods takes an amount
of time, which is equal to the length of the period (or part
of it). You can imagine that within a period, part of the
time may be used to accelerate the production, part of it
to production, and so on. Since this is a discrete model
we do not observe the activities within a period, only their
total. Therefore, the change in production is not instanta-
neous. If the period length in the discrete-time problem is
very short, this can be modeled in the continuous case by
choosing an appropriately large value of M. The constraint
in the continuous case merely helps to avoid the chattering
regime which is not realistic and which is not feasible in the
discrete case.

To conclude the above discussion we argue based on the
above arguments that the new continuous model is analo-
gous to the (CDLSP). In Section 5 we somewhat formal-
ize the notion of “analogous.” While we are not aware of
any other model that can be claimed to be analogous, it is
possible that in the future a new and different model will
be developed, that will also be claimed to be analogous to
(CDLSP). Our claim does not preclude this possibility, and
therefore we refer to our model as an analogous, not neces-
sarily the only analogous model that can be envisioned. The
reason for possible multiple models claiming to be analo-
gous to (CDLSP) is that the discrete and continuous mod-
els will never be exactly the same. See further discussion in
Section 5.

We now turn to analyzing the optimal solution of the
above new continuous model. The following lemma charac-
terizes the optimal production schedule. The proof is based
on the maximum principle and is placed in Appendix E (see
a comprehensive survey of the maximum principles in Hartl
et al. (1995)).

Lemma 4. An optimal solution to problem (5)–(10) possesses
the following three properties.

1. It consists of a sequence of four types of regimes:
full production (FP), that is: Q(t) = C;
no production (NP), that is: Q(t) = 0;
adequate production (AP), that is: Q(t) = d;
changeover regime (CO), that is: v(t) = M or v(t) = −M.

2. S(t) = 0 when t is at the AP regime.
3. A CO regime, which changes the production rate from

value Q1 to value Q2, can occur only at an interval of time
[t, t + τ ] for which:

1
τ

∫ t+τ

t
ψ(t ′)dt ′ = Cost(Q2) − Cost(Q1)

Q2 − Q1
, (11)

where the function ψ(t) satisfies the co-state equation:

dψ(t) = hdt − dµ(t),

with unspecified boundary conditions. Here, µ(t) is a non-
decreasing function, dµ(t) ≥ 0, satisfying the comple-
mentary slackness condition:

dµ(t) = 0 if S(t) > 0.

Proof. In Appendix E.

In Theorem 2 we define five types of cycles that character-
ize the solution. For cycle types 2–5 we depict the solutions
schematically in Figs. 2–5 (for cycle type 1 the figure is triv-
ial). In these figures Tper represents the cycle length and y
is the length of the first regime in each cycle. Plots of Q(t)
and S(t) are depicted in part (a) of each figure, where S(t) is
calculated by integrating Equation (6) over t . The co-state
variables ψ(t), which are depicted in part (b) of each figure,
are discussed in the proof of Lemma 4 and Theorem 2.

Theorem 2. The following cyclic solutions (cycle types) satisfy
the properties of optimality stated in Lemma 4 (see Figures
2–5):

Cycle type 1: Q(t) = d for t ∈ (0, ∞). The solution is con-
stant and therefore can be regarded as a cyclic
one with any cycle length Tper > 0. It exists for
all values of d, i.e., for 0 < d ≤ C.

Cycle type 2:

Q(t) =




0 if t ∈ [0, y],
M(t − y) if t ∈ [y, y + C/M],
C if t ∈ [y + C/M, Tper − C/M].
−M(t − Tper) if t ∈ [Tper − C/M, Tper],

where:

y = Tper

(
1 − d

C

)
− C

M
.

The solution is cyclic with:

Tper ≥ C2

Md(C − d)
max{d, C − d}.

It exists for 0 < d < C.
Cycle type 3:

Q(t) =




Mt if t ∈ [0, y]
−M(t − 2y) if t ∈ [y, 2y],
0 if t ∈ [Tper − 2y, Tper]

where:

y =
√

dTper

M
.

The solution is cyclic with:

4d
M

≤ Tper ≤ C2

Md
.

It exists for 0 < d ≤ C/2.



Continuous- and discrete-time production planning problems 619

Fig. 2. A solution of cycle type 2: (a) state variables; (b) co-state variables.

Fig. 3. A solution of cycle type 3: (a) state variables; (b) co-state variables.
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Fig. 4. A solution to cycle type 4: (a) state variables; (b) co-state variables.

Fig. 5. A solution of cycle type 5: (a) state variables; (b) co-state variables.
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Cycle type 4: Q(t) =



d + M(t − y/2) if t ∈ [0, y],

d − M
(

t − 3y
2

)
if t ∈ [y, Tper],

where:

y = Tper

2
.

The solution is cyclic with:

0 < Tper ≤ 4
M

min{d, C − d}.

It exists for 0 < d < C.
Cycle type 5:

Q(t) =



C + M(t − y) if t ∈ [0, y],
C if t ∈ [y, Tper − y],
C − M(t + y − Tper) if t ∈ [Tper − y, Tper],

where:

y =
√

(C − d)Tper

M
.

The solution is cyclic with:

4(C − d)
M

≤ Tper ≤ C2

M(C − d)
.

It exists for d ≥ C/2.

Proof. In Appendix F.

To locate the best solution among the five considered in
Theorem 2, we calculate the value of the objective function
(8) for each cycle type. Denote by j the cost of a cyclic
solution per time unit, i.e.:

j = 1
Tper

∫ Tper

0
(hS(t) + Cost(Q(t)))dt (12)

and by ji the cost of a solution of cycle type i, i = 1, . . . , 5.
Then, analytical calculation of Equation (12) results in a
closed-form expression for each of the cycle types:

j1 = K;

j2 = K
(

d
C

+ C
MTper

)
+ hd

2

(
Tper − C

M

)(
1 − d

C

)
;

j3 = 2K

√
d

MTper
+ hd

2M
(
√

MTper −
√

d
2
);

j4 = K + hMT2
per

32
;

j5 = K + h(C − d)
2M

(
√

MTper − √
C − d)2.

From these expressions, one can conclude that cycle types
4 and 5 can never be better than the others because j4 and
j5 monotonously increase as functions of Tper within the
scope of the solution existence.

The minimum of j3 as a function of Tper is achieved for
the root of the equation (A + dMTper)2 = d(MTper)3, where
A = 2KM/h. The minimum of j2 as a function of Tper is
achieved for:

Tper = C
M

√
A

d(C − d)
.

The minimum of j1 is achieved for any Tper > 0.
By comparing the values of j1, j2 and j3, we find that:

Cycle type 3 is better than the others when:

0 < d ≤
√

A

√
2

11 + 5
√

5
and A ≤ C2

(
C
d

− 1
)

.

Cycle type 2 is better than the others when:

A ≥ C2
(

C
d

− 1
)

and A + Cd ≤ 2C

√
Ad

C − d
.

Cycle type 1 is better than the others for all other combi-
nations of parameters.

The partition of the (C,d) parameter plane for an exam-
ple with K = 20 and h = 1 with respect to the optimal cycle
types is presented in Fig. 1(b). The broken line in the fig-
ure represents the C = d line which distinguishes between
the feasible area (C ≥ d) and the non-feasible area (C < d).
The bold digits 1, 2 and 3 mark the regions of the (C, d)-
plane where respective cycle types 1, 2 and 3 are optimal.

Theorem 3. No other solution satisfies the optimality proper-
ties stated in Lemma 4.

Proof. In Appendix G.

5. Discussion

The model presented in Section 4 fits into the continuous
and fixed cost section of Table 1. We would also like to
claim that it represents an analogy of the lot-sizing model
with a fixed cost. However, this raises the question of how
to determine if a particular continuous model is an appro-
priate analogy to its discrete counterpart (or vice versa).
While determining an analogy between models is a broad
and interesting topic that is beyond the scope of this paper,
we nevertheless define minimal guidelines for such a de-
termination. The guidelines we list below were motivated
by our modeling experience of the model presented in Sec-
tion 4. Note that they imply that an analogous model may
not be unique, so there may be more than one way for an
appropriate modeling. For this reason the guidelines are re-
lated mostly to the solution of the problem, rather than to
the formulation of the problem. In addition, our paper and
our guidelines do not consider the issue of solution “transla-
tion” from one type of model (e.g., continuous) to the other
(e.g., discrete). We believe that here too there are many dif-
ferent ways in which this can be done, and we do not want
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our problem definition or analogy guidelines to depend on
a particular mechanism. For this reason, our guidelines are
often somewhat vague, however, they are useful in exclud-
ing formulations that may be considered as analogous, but
do not satisfy those minimal requirements. While in defin-
ing those guidelines we had in mind the analogy for the
(CDLSP) problem, we believe that they are also appropri-
ate for other discrete-continuous problems.

Guidelines for a modeling analogy between discrete and
continuous time problems:

1. Feasibility: The solution of each problem should be fea-
sible to implement in the environment in which it is de-
fined.

2. Solution similarity: The optimal solutions of both the
discrete and the continuous problems should have simi-
lar properties.

3. Cost similarity: The optimal solutions of both the dis-
crete and the continuous problems should incur close
cost values and the maximum difference (over all possi-
ble parameter values) in the cost should either be finite
or go to infinity at a rate of a smaller order than do the
parameter values.

The feasibility requirement is easy to justify, and is moti-
vated by the need to exclude situations in which the solution
cannot be implemented, for example, a chattering solution.

Point 2 is stated in an informal way. However, we will
demonstrate the similarity of the solutions to the discrete
and continuous problems that we have considered. In gen-
eral, this point is motivated by the necessity of having a
mechanism that can “translate” the solution in one envi-
ronment (in which a solution can be found more easily)
to the other. Based on similar properties, such a mecha-
nism is expected to ensure near-optimality of the translated
solution.

In point 3, note that in most cases the cost values indeed
cannot be identical, however, we expect them to be close,
as defined above. In addition, it would be reasonable to de-
termine that when two alternative modeling analogies are
examined, the smaller the difference in the cost value be-
tween the discrete and the continuous solutions, the better
the analogy between the models, given that the first two
points of the guidelines hold.

Next we discuss the analogy between the infinite-
horizon discrete-capacitated dynamic lot-sizing model
(Section 3) and its new suggested continuous-time coun-
terpart (Section 4). We examine the analogy according to
the above guidelines and demonstrate that all three points
of the guidelines are satisfied.

5.1. Guideline 1: Feasibility

Clearly the discrete-time solution is feasible in its environ-
ment. The solution of the new continuous-time problem is
feasible to implement, since the production rate change is

controlled by the user. In particular, the chattering regime
is no longer feasible.

5.2. Guideline 2: Solution similarity

We demonstrate the similarity between the solutions of the
above two problems with respect to several characteristics.

5.2.1. Cycle types
In both problems we found that only three cycle types may
constitute the solution. Moreover, these cycle types are very
similar in both problems. In cycle type 1 the production fol-
lows the demand exactly, so that the inventory level is always
zero. In cycle type 2, the solution exploits the full produc-
tion capacity in some periods while in other periods/times
it reaches zero. The transition between full production and
zero production in both problems is done as fast as possible;
in the discrete problem this means that consecutive periods
observe a change from zero to full capacity (or vice versa),
whereas in the continuous problem the maximal change in
the production rate is used for an interval of time of length
C/M to switch from one extreme to the other. In cycle type 3
the full capacity level is not regularly used within the cycle.
Rather, zero and intermediate production levels are suffi-
cient in an optimal solution to track the demand. We note
that with cycle type 3 the full production capacity may be
reached at most once within the cycle, in the first period
in the discrete problem, and in an isolated time point in
the continuous problem. Cycle types 1 and 2 exist over the
entire (C,d)-plane, while cycle type 3 does not exist when
d > C/2, for both problems.

5.2.2. Partition of the (C,d)-plane
For specific C and d values, one of the three cycle types is
better than the others. Therefore, the (C,d)-plane is parti-
tioned into three regions in which one cycle type dominates
the others. Figure 1(a and b) presents such a partition for
both problems for the values of K = 20 and h = 1. The gen-
eral location of the three cycle types in the (C,d)-plane is
similar for both problems. For example, when d is close to
C, cycle type 1 is optimal. Another example is the line dis-
tinguishing between cycle types 1 and 2. It looks similar in
both problems, but the exact location is different.

The line distinguishing between cycle type 1 and cycle
type 3 is:

d =
√

2

11 + 5
√

5

√
2KM

h
,

in the continuous case and d = K/h in the discrete case.
This is due to the additional time-related parameter that
exists in the continuous problem, M. We can view this time-
related parameter as a measure for the “closeness” of the
discrete and continuous problems in the following way; the
location of the line in the (C,d)-plane shapes the entire par-
tition and establishes the scale of the plane [see Fig. 1(a and
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b)]. Therefore, to make the partition of the (C,d)-plane in
the two problems as close as possible, the line must coincide
for the two cases. This occurs if the parameter M is chosen
as:

M = K
h

· (11 + 5
√

5)
4

.

In our opinion, for such M the partitioning of the (C,d)-
plane according to the discrete and the continuous models
is the closest, see also guideline 3 for additional support of
this choice. Therefore, if, for example, the continuous-time
problem is formulated for the purpose of approximating the
discrete-time problem, we recommend that M be chosen in
this way. In cases where the problem describes a specific
environment, M should be chosen according to practical
considerations.

5.3. Guideline 3: Cost similarity

The objective of the discrete model is to minimize the aver-
age cost per period (see the objective function of the formu-
lation in Appendix A), while the objective of the continu-
ous model is to minimize the average cost per time unit, see
Equation (8). To correctly compare between these costs, we
set the time unit used in the formulation of the continuous
model to be equal to the period length used in the discrete
model. Then, the following lemma proves the cost similarity
of the two problems.

Lemma 5. Let jd(K, h, C, d) be the optimal cost per period
in the discrete-time problem and jc(K, h, C, d) be the opti-
mal cost per time unit in the continuous-time problem for
a given value of the parameter M. Then, | jc(K, h, C, d)−
jd(K, h, C, d)| ≤ o(K).

Proof. Consider the case when K → ∞. For a specific
point on the (C,d)-plane in the continuous-time problem
(see Fig. 1(b)), there exists a sufficiently large K such that
the point belongs to the second cycle type area. The cycle
length:

Tper =
√

K

√
2C2

d(C − d)Mh
,

goes to infinity and

jc(K, h, C, d) = j2 = d
C

K +
√

2d(C − d)

√
Kh
M

−hd(C − d)
2M

. (13)

When K → ∞ in the discrete-time problem, there again ex-
ists a sufficiently large K such that a point on the (C,d)-plane
is within the area of the second cycle type (see Fig. 1(a)).
The number of full production periods within the cycle

c(n) → (nd/C) − 1. Now, from Equation (2) it follows that
for large K:

d
C

K + 1
2

h(C − d) < jd(K, h, C, d) <
d
C

K + 1
2

h(C + d).

(14)

The lemma immediately follows from Equations (13) and
(14) for the considered case.

The case of h → 0 is very similar to that considered above.
When K → 0 and/or h → ∞, the optimal cycle type is one
in both continuous- and discrete-time problems. As a result,
| jc(K, h, C, d) − jd(K, h, C, d)| = 0. When C → ∞, either
cycle type 3 or cycle type 1 is optimal. In the former case
the value of C is not relevant, i.e., the difference in the
lemma remains constant. In the latter case, the difference
in the lemma is zero.

The case when C → 0 (therefore d → 0 as well) is equiv-
alent to the case when h → 0. This can be shown by re-
scaling the part units. Finally, in both cases when d → 0
and d → C the difference in the lemma goes to zero. �

The following corollary additionally motivates the choice
of the parameter M as discussed in guideline 2 above. The
corollary strengthens the previous lemma and claims that
under such a choice the difference between jc(K, h, C, d)
and jd(K, h, C, d) is limited throughout the entire space of
the parameters (K, h, C, d).

Corollary 3. Let, in the conditions of Lemma 5, the parameter
M be chosen as M = Kq/h, where q is an arbitrary positive
constant, then for each q, | jc(K, h, C, d) − jd(K, h, C, d)| ≤
O(1).

Proof. The proof of Corollary 3 is similar to that of
Lemma 5. �

Figure 6 shows the objective values obtained for both
problems when using the optimal policy for K = 20, h = 1,
C = 10 and

M = K
h

· (11 + 5
√

5)
4

= 110.9.

Fig. 6. The optimal cost per period (for the discrete-time prob-
lem) and the optimal cost per time unit (for the continuous-time
problem) as a function of demand for C = 10, K = 20 and h = 1.
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The graph shows the optimal per period/time unit objec-
tive value as a function of the demand per period/time unit,
which varies between zero and C. In general, the values are
similar, however, the objective value of the discrete prob-
lem is almost always higher than that of the continuous
problem. We believe that this is due to the ability of the
continuous solution to change at any point in time, as op-
posed to the discrete solution, which can change only at
the end of a period. On the other hand, the inertia of the
production rate in the continuous-time case can result in a
higher cost than in the similar discrete-time case (see, for
example, point d = 5.1 in Fig. 6).

Thus, we have shown that the three guidelines for the
analogy, hold. Therefore, the new proposed continuous-
time problem can be considered as an appropriate counter-
part for the capacitated lot-sizing model. Future research is
needed to better understand this parallelism for other ver-
sions of production planning models, but we believe that
the foundations for that have been established in this paper.
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Appendices

Appendix A: MILP formulation of ( F-CDLSP)

Let Qt = production quantity in period t ;

Yt =
{

1 if Qt > 0,

0 otherwise;

St = inventory level at the end of period t ;

Min
1
T

T∑
t=1

(pQt + hSt + KYt ),

subject to

S0 = 0,

St = St−1 + Qt − d t = 1, . . . , T,

Qt ≤ CYt t = 1, . . . , T,

Qt ≥ 0, St ≥ 0 t = 1, . . . , T,

Yt = 0, 1 t = 1, . . . , T.

Appendix B: Proof of Theorem 1

We first prove that there exists an optimal solution which
consists of subplans of bounded lengths. This is accom-
plished by showing first that there exists a finite period with
a zero ending inventory. To that end, assume by contra-
diction that in all periods the ending inventory is strictly
positive. Note that when the starting inventory in a given
period is larger than or equal to d, no production occurs
in that period, as postponing it will result in inventory cost
savings. Note also that if C and d are rational, then n̄ is
finite. We consider the following cases:

Case 1: All periods in which production occurs are full pro-
duction periods. In this case, after n̄ periods in which n̄d/C
(which is an integer, by assumption) full production periods
take place, the ending inventory is zero, a contradiction.

Case 2: There exists one fractional production period. In
this case, consider the first n̄d/C consecutive periods in
which full production occurs, after the fractional produc-
tion period. Those n̄d/C full production periods cover the
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demand of exactly n̄ periods, therefore before and after
their occurrence there exists an equal amount of positive
inventory. As a result, and since all other parameters are
stationary, the next n̄ periods will observe the same produc-
tion and inventory levels (otherwise one of these schedules
can be improved), that is, the solution becomes cyclic after
the fractional production has occurred. In that case, reduc-
ing the size of the fractional production period by ε results
in a cost saving of hε for every period, starting with the
fractional period. This can be repeated until the size of the
fractional production period reaches zero (which brings us
back to case 1), or until one of the periods observes a zero
ending inventory level.

Case 3: There exist at least two fractional production pe-
riods. Consider the first and second fractional production
periods, denoted by f1 and f2, respectively (and recall that all
periods in between have a positive ending inventory). Then,
consider an alternative schedule in which the production
quantity in period f1 is reduced by ε, and the production
quantity in period f2 is increased by ε. As a result, in all
periods between f1 and f2 a cost saving of hε occurs, thus
the new schedule is better than the previous one. This can
be repeated until either the size of f1 drops to zero, or the
size of f2 reaches its capacity, or until the ending inventory
of one of the periods in between reaches zero. In the first
two cases, there is one less fractional production period and
the process may be repeated with the next fractional pro-
duction period (if it exists). In the third case, a period with
a zero ending inventory has been reached.

Second, since a period with a zero ending inventory has
been reached, and since all parameters are stationary, we
are at exactly the same situation as at the beginning of the
horizon. Therefore, the same solution repeats itself.

To prove that the length of a subplan is bounded by n̄,
we now consider one subplan. Note that the total number
of units produced in a subplan of length n is nd, therefore
when nd/C is an integer, no fractional period exists and
the last period in the cycle has a zero ending inventory.
If n is chosen to be larger than n̄, then at the end of n − n̄
periods, the ending inventory will be zero, since the amount
produced after that (through full production periods only)
exactly covers the demand in the remaining n̄ periods. �

Appendix C: Proof of Lemma 3

According to Equation (8):⌈
c(n)C

d

⌉
+ 1 ≤ n ≤

⌊
(c(n) + 1) C

d

⌋
.

Next, note that the total production during the full produc-
tion periods covers the demand of:⌈

c(n)C
d

⌉
,

periods (one of them may be covered only partially), and
therefore given n and c(n) that satisfy Equation (8), the
number of periods between the first period (a fractional
production period) and the first full production period is:

n −
⌈

c(n)C
d

⌉
.

At this time interval the inventory level St decreases by
d units each period, starting at S = f (n) − d = (n − 1)d −
c(n)C. Therefore, the number of units held in inventory
during this time interval forms an algebraic series, and the
total inventory cost associated with this interval is the unit
holding cost h, multiplied by the sum of this series which,
after some algebra, can be shown to be equal to:

h
2

(
d
(

n +
⌈

c(n)C
d

⌉
− 1

)
− 2Cc(n)

)(
n −

⌈
c(n)C

d

⌉)

= h
2

[
d
(

n(n − 1) −
⌈

c(n)C
d

⌉(⌈
c(n)C

d

⌉
− 1

))

− 2nc(n)C + 2c(n)C
⌈

c(n)C
d

⌉]
.

Similarly, the number of periods between the first and the
second full production periods is:⌈

c(n)C
d

⌉
−

⌈
(c(n) − 1)C

d

⌉
.

Again, at this interval the inventory level decreases by d
units each period, starting at:

S = f (n) + C − d
(

n −
⌈

c(n)C
d

⌉
+ 1

)

= d
(⌈

c(n)C
d

⌉
− 1

)
− (c(n) − 1)C,

therefore the total inventory during this interval is the sum
of an algebraic series, and the inventory cost associated with
this interval is:

h
2

(
d
(⌈

c(n)C
d

⌉
+

⌈
(c(n) − 1)C

d

⌉
− 1

)
− 2C(c(n) − 1)

)

×
(⌈

c(n)C
d

⌉
−

⌈
(c(n) − 1)C

d

⌉)

= h
2

[
d
(⌈

c(n)C
d

⌉(⌈
c(n)C

d

⌉
− 1

)
−

⌈
(c(n) − 1)C

d

⌉

×
(⌈

(c(n) − 1)C
d

⌉
− 1

))]

= h
2

[
−2(c(n) − 1)C

⌈
c(n)C

d

⌉
+

⌈
(c(n) − 1)C

d

⌉]
.

Subsequent intervals follow similar calculations. Finally,
the number of periods between the last full production pe-
riod and the end of the cycle is:⌈

C
d

⌉
.
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The inventory in the first period of this interval is:

d
(⌈

C
d

⌉
− 1

)
,

and it decreases by d units each period until it reaches zero
in the last period. Therefore, the inventory cost associated
with this interval is:

hd
2

⌈
C
d

⌉(⌈
C
d

⌉
− 1

)
.

Summing up the inventory cost over the cycle, we obtain
(after some algebra):

1
2

hd(n − 1) − Chc(n) + Ch
n

c(n)∑
i=1

⌈
iC
d

⌉
,

from which the lemma immediately follows. �

Appendix D: Example for case 1 of the (C,d)-plane
partition of the discrete problem

The following examples illustrate the conjecture of case 1
by considering the points (56,22) and (56,18) of the (C,d)-
plane, which belong to regions 1 and 3 respectively (see
Fig. 1(a)). Tables A1 and A2 show that the costs j(n) of
the solutions of cycle type 2 are significantly greater and
therefore do not influence the competition between the so-
lutions of cycle types 1 and 3. The comparison is presented
for small cycles, n ≤ 10; for the larger cycle lengths, all of
which belong to cycle type 2, j(n) is even greater.

In this example, and generally in case 1, where the C
value is relatively large, solutions of type 2 cannot be op-
timal since this would require producing in large lots of
Q(t) = C in some periods t , thereby increasing the inven-
tory holding costs. With a large C and a small d a better
option is to produce in lots smaller than C (EOQ-like so-
lutions belonging to cycle type 3, finding the best trade-off
between the inventory holding and the fixed costs). With
a large C and a large d a better option is to exactly track
the demand, having zero inventory in each period (solu-
tion type 1). Thus, we conjectured that solutions of type 2
have higher costs in this area of the (C,d)-plane and there-
fore they do not influence the partition, as in the previous
examples.

Table A1. Cost as a function of the cycle type for C = 56 and
d = 22

c(n) n Cycle type j(n)

0 1 1 20.0
2 3 21.0

1 4 2 29.0
5 2 29.6

2 7 2 34.57
3 9 2 34.67

10 2 34.2

Table A2. Cost as a function of the cycle type for C = 56 and
d = 18

c(n) n Cycle type j(n)

0 1 1 20.0
2 3 18.0
3 3 24.67

1 5 2 32.8
6 2 33.0

2 8 2 35.5
9 2 35.11

Appendix E: Proof of Lemma 4

To characterize the optimal solution of problem (5)–(10),
we apply the maximum principle that declares that:

� The optimal control v(t) maximizes the Hamiltonian
function at each point of time, i.e.:

v(t) = arg max
0≤|v|≤M

H(S(t), Q(t), ψ(t), ψQ(t), v, t). (A1)

� The Hamiltonian function is:

H(t) = −hS(t) − Cost(Q(t)) + ψ(t)(Q(t) − d)
+ ψQ(t)v(t). (A2)

� The co-state variables ψ(t) and ψQ(t) are left-continuous
function satisfying the co-state equations:

dψ(t) = hdt − dµ(t), (A3)

dψQ(t) = −ψ(t)dt + Cost′Q(Q(t))dt − dµ
Q
1 (t)

+ dµ
Q
2 (t), ψQ(0) = ψQ(T + 0) = 0. (A4)

� Lagrange multipliers of the state constraints, Equa-
tions (6) and (7), dµ(t), dµ

Q
1 (t) and dµ

Q
2 (t), are measure

functions satisfying the non-negativity and complemen-
tary slackness conditions:

dµ(t) ≥ 0, dµ
Q
1 (t) ≥ 0, dµ

Q
2 (t) ≥ 0, (A5)∫ ∞

0
S(t)dµ(t) = 0,

∫ ∞

0
Q(t)dµ

Q
1 (t) = 0,∫ ∞

0
(C − Q(t)) dµ

Q
2 (t) = 0. (A6)

Maximization of the Hamiltonian as a function of v(t) re-
sults in:

v(t) =




M, if ψQ(t) > 0,

−M, if ψQ(t) < 0,

α, α∈[−M, M], if ψQ(t) = 0.

(A7)

The CO regime immediately follows from the first two lines
of Equation (A7). The other three regimes stated in the
lemma follow from the third line of Equation (A7). Indeed,
let ψQ(t) = 0 at an interval of time Y ⊆ [0, Tc]. Consider
four possible cases for the Lagrange multipliers.
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1. dµ(t) > 0, dµ
Q
1 (t) = 0, dµ

Q
2 (t) = 0 at Y . From the com-

plementary slackness conditions (A6), co-state equa-
tions (A3) and (A4) and state equations (5) and (9), it
follows that at Y :

S(t) = 0, Q(t) = d, v(t) = 0,

ψ(t) = Cost′Q(Q(t)) = p, dµ(t) = hdt.

This is the AP regime. It can potentially occur every-
where. Note that AP is the unique regime for which
dµ(t) > 0. Indeed, assuming that either dµ

Q
1 (t) > 0 or

dµ
Q
2 (t) > 0, we obtain particular cases of the AP regime.

The strict positiveness of both dµ
Q
1 (t) and dµ

Q
2 (t) is im-

possible because Q(t) cannot be simultaneously equal to
zero and to C (see Equation (A6)).

2. dµ(t) = 0, dµ
Q
1 (t) = 0, dµ

Q
2 (t) = 0 at Y . From the com-

plementary slackness conditions (A6), co-state equa-
tions (A3) and (A4) and state equations (5) and (9), it
follows that at Y :

ψ(t) = p and ψ̇(t) = h.

These contradict each other.
3. dµ(t) = 0, dµ

Q
1 (t) = 0, dµ

Q
2 (t) > 0 at Y . From the com-

plementary slackness conditions (A6), co-state equa-
tions (A3) and (A4) and state equations (5) and (9), it
follows that at Y :

Q(t) = C, v(t) = 0.

This is the FP regime. The necessary conditions for the
regime to occur, which follow from Equations (A4) and

Fig. A1. Non-periodic solution.

(A5), are:

ψ(t) ≥ p.

4. dµ(t) = 0, dµ
Q
1 (t) > 0, dµ

Q
2 (t) = 0 at Y . From the com-

plementary slackness conditions (A6), co-state equa-
tions (A3) and (A4) and state equations (5) and (9), it
follows that at Y :

Q(t) = 0, v(t) = 0.

This is the NP regime.

Since we have enumerated all possible cases of the
Lagrange multipliers, no other production regime can oc-
cur along the optimal trajectory. That has proved the first
two properties stated in the lemma. To prove the third
property, we first note that if a CO regime occurs on the
interval [t, t + τ ] ⊆ [0, ∞), then dµ

Q
1 (t ′) = dµ

Q
2 (t ′) = 0 for

t ′ ∈ [t, t + τ ]. This follows from the complementary slack-
ness Equation (A6). Next, at the beginning and at the end
of the CO interval, ψQ(t) is zero. Thus, by integrating the
co-state equation (A4) on this interval, we obtain:

1
τ

∫ t+τ

t
ψ(t ′)dt ′ = 1

τ

∫ t+τ

t
Cost′Q(Q(t ′))dt ′

= 1
τ

∫ t+τ

t

Cost′Q(Q(t ′))

Q̇(t ′)
dQ(t ′)

|Cost(Q2) − Cost(Q1)|
τM

= Cost(Q2) − Cost(Q1)
Q2 − Q1

. (A8)

�
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Appendix F: Proof of Theorem 2

First we note that the solutions presented in the theorem
contain only the four regimes defined in Lemma 4, i.e., op-
timality property 1 holds. Property 2 stated in the same
lemma is meaningful only for cycle type 1, for which it is triv-
ially satisfied. Therefore, to prove the theorem, it remains to
show that optimality property 3 holds for each cycle type,
i.e., that there exists a co-state variable ψ(t) that satisfies
Equations (A3) and (A8). For cycle type 1, such a co-state
variable is simply ψ(t) ≡ 0 for t ∈ (0, ∞). The co-state vari-
able for cycle types 2–5 is depicted in Figs. 2(b)–5(b). �

Appendix G: Proof of Theorem 3

Let Z denote the set of time points at which S(t) = 0. Con-
sider the following three cases.

1. Z = ∪{ti}, i = 1, . . . , I , I � 0, i.e., Z is a set of a finite
number of isolated points. Then, S(t) > 0 for t > tI and
ψ(t) increases with rate h always after tI. Therefore, there
exists a point t̂ > tI after which no change of regimes
occurs. If the last regime is:
- NP or CO, then the trajectory is not feasible;
- FP or AP, then the trajectory can be easily improved.
These contradict the optimality of the solution.

2. Z = ∪{ti} is a cyclic set of an infinite number of isolated
points, i.e., for all i, ti+1 − ti = ti − ti−1. These are solu-
tions of cycle types 2, 3, 4 and 5.

3. Z = ∪{ti} is a non-cyclic set of an infinite number of
isolated points, i.e., for some i, ti+1 − ti �= ti − ti−1 (see
Fig. A1). If condition (A8) holds for CO1, CO2 and CO3,
then it cannot hold for CO4.

4. Z = (0, ∞), then Q(t) ≡ d which coincides with cycle
type 1.

5. Z contains a finite interval. Then, after this interval, the
trajectory of the solution is obtained unambiguously
which is dictated by the state and co-state dynamics.
This trajectory will finally come to a contradiction with
the optimality condition, Equation (A8), unless the pa-
rameters of the problem are chosen such that j1 = j3 or
j1 = j2. �
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