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Abstract: We describe effective time partitioning heuristics for dynamic lot-sizing problems in
multiitem and multilocation production/distribution systems. In a time-partitioning heuristic, the
complete horizon of (say)N periods, is partitioned into smaller intervals. An instance of the
problem is solved, to optimality, on each of these intervals, and the resulting solution coalesced
into a solution for the complete horizon. The intervals are selected to be of a size which permits
the use of exact and effective solution methods (e.g., branch-and-bound methods). Each inter-
val’s problem is specified to include options for starting conditions which adequately comple-
ment the solutions obtained for prior intervals. The heuristics can usually be designed to be of
low polynomial complexity as well as to guaranteee-optimality for any desired precisione . 0,
and asymptotic optimality asN goes to infinity. We first give a general description of the design
of time-partitioning heuristics for dynamic lot-sizing problems. We subsequently develop such
a heuristic in detail, for the one warehouse multiretailer model representing a two-echelon
distribution network withm retailers, sellingJ distinct items. A comprehensive numerical study
exhibits that the partitioning heuristics are very efficient and close-to-optimal. Even problems
with a planning horizon of up to 150 periods can be solved within 1.5% of optimality, employing
intervals of 5–10 periods only and in a matter of CPU seconds, or up to a few minutes, using
longer intervals and when the number of items and retailers is large. These CPU times refer to
a SUN 4M (SPARC) workstation.© 1999 John Wiley & Sons, Inc. Naval Research Logistics 46:
463–486, 1999

1. INTRODUCTION

We describe effective time-partitioning heuristics for dynamic lot-sizing problems in one-
warehouse, multiitem multiretailer systems. In a time-partitioning heuristic, the complete
horizon of (say)N periods is partitioned into smaller intervals. An instance of the problem is
solved, to optimality, in each of these intervals, and the resulting solutions are coalesced into a
solution of the complete horizon. This approach is motivated by recent forecast horizon results
for single-item models (see Chand and Morton [4], Bensoussan, Proth, and Queyranne [3], and
Federgruen and Tzur [8]), which suggest that optimal or close to optimal initial decisions can
be determined on the basis of relatively short horizons. The intervals are selected to be of a size
which permits the use of exact and effective solution (e.g., branch-and-bound) methods. Each
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interval’s problem is specified to include options for starting conditions which adequately
complement the solutions obtained for prior intervals. The heuristics can usually be designed to
be of low polynomial complexity, to guaranteee-optimality for any precisione . 0, and
asymptotic optimality asN 3 `.

Time-partitioning heuristics bear similarity to thespace-partitioning heuristics, successfully
employed for various combinatorial problems in the plane or three-dimensional space. The first
such heuristic was introduced in Karp’s [16] seminal paper on the Euclidean Traveling Salesman
Problem (TSP). There, theplaneis partitioned into regions, a smaller TSP is solved on each, and
the resulting tours are adequately combined into one overall travelling salesman tour. There, too,
the heuristic can be designed to guaranteee-optimality for anye . 0 and asymptotic optimality
under mild probabilistic conditions. Many other routing problems have subsequently been
addressed via space-partitioning heuristics (e.g., Haimovich and Rinnooy Kan [13] and Feder-
gruen and Simchi-Levi [6]).

Surprisingly enough, horizon partitioning heuristics do not appear to have been attempted for
other types of complex dynamic programs (see, e.g., Morin’s [18] survey of approximation
methods). To our knowledge, the idea closest totime-partitioning is the frequently employed
approach to solve dynamic programs on arolling horizon: A large, or perhaps infinite, planning
horizon is truncated and replaced by a relatively short one. As each period passes, it is
eliminated and replaced by a new period, appended at the end of the horizon. Only the first
period decisions are retained from the solution of any given instance, and these decisions are put
together over time to generate a complete solution. Such rolling horizon procedures have not
been designed to guarantee any specific optimality gap, for finiteN or asymptotically asN3 `.
Since the basic steps of our time-partitioning heuristics described in Section 2 are generally
applicable, we anticipate that similar time-partitioning heuristics will prove to be effective in
solving other types of planning problems over time.

We first (Section 2) give a general description of the design of time-partitioning heuristics for
dynamic lot-sizing problems. We subsequently (Section 3) develop such a heuristic in detail, for
the one-warehouse multiretailer model withm retailers, sellingJ distinct items. All items are
shipped to the retailers via a common warehouse, where they may be stored. The cost structure
consists of fixed as well as variable order costs along with variable holding costs.

For the case of a single item (J 5 1) we obtain a partitioning heuristic of complexityO(mN2

log log N) which can be designed to guarantee ane-optimal solution for any desirede . 0. The
heuristic is also shown to be asymptotically optimal asN tends to infinity or asN and m
simultaneously tend to infinity, under some mild conditions regarding the model parameters. In
the case of multiple items (J $ 2) we restrict ourselves to the most prevalent case where
inventories are only held to exploit economies of scale and not out of speculative motives (i.e.,
extreme fluctuations in the variable production or purchase cost rates). Here, a similar parti-
tioning heuristic is obtained of complexityO( JmN2 log N). Once again, this heuristic can be
designed to guaranteee-optimality, as well as asymptotic optimality. The partitioning heuristics
employ effective and novel branch-and-bound methods. Section 4 reports on a comprehensive
numerical study. This study exhibits that the partitioning heuristics are very efficient and
close-to-optimal. Even problems with a planning horizon of up to 150 periods can be solved
within 1.5% of optimality, employing intervals of 5–10 periods only and in a matter of CPU
seconds, or up to a few minutes, using longer intervals and when the number of items and
retailers is large. These CPU times refer to a SUN 4M (SPARC) workstation.

We complete this introduction with a brief literature review. Until recently the literature on
multiitem or multifacility dynamic lot-sizing problems has focused on exact methods. With the
exception of only a few simple network structures, these tend to result in exponential algorithms
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(see, e.g., Erickson, Monma, and Veinott [5]). A serial system model is, to our knowledge, the
only type of general network topology for which a polynomial time algorithm exists (see
Zangwill [27] and Love [17]). Dynamic lot-sizing models for many other basic network
structures are NP-complete (see e.g., Arkin, Joneja, and Roundy [2] and the discussion in
Section 2).

More recently, the focus has shifted towards cost-effective heuristics. We refer to Salomon
[23] for an excellent review of this part of the literature. Except for limited numerical studies of
test problems, most of these heuristics lack a rigorous assessment of their computational
complexity or optimality gap. The first heuristics with known worst case bounds are due to
Joneja [14, 15], for the Joint Replenishment Problem (see Section 2) and a general assembly
system that results in a single finished product with external demands. In both cases a heuristic
is developed whose cost under stationary cost parameters is guaranteed to be within a factor 3
of the optimal value. In Federgruen and Tzur [9, 10], we have designed time-partitioning
heuristics of the above type for two specific models, the Joint Replenishment Problem and the
Multiitem Capacitated model; see Section 2 for details.

2. THE GENERAL FRAMEWORK

In this section we describe the elements required in the design of a time partitioning heuristic,
as well as those needed to ensure polynomial complexity, asymptotic optimality ande-optimal-
ity for any arbitrarily small optimality gape. Different choices can be made regarding most or
all of these elements, with different impacts on the heuristics’ feasibility and performance.

We demonstrate the design and analytical evaluation of time-partitioning heuristics with the
help of three basic and related multiitem dynamic lot-sizing models: the Joint Replenishment
Problem (JRP), the Multiitem Capacitated Problem (MCP), and the One-Warehouse Multire-
tailer problem (OWMR). The first two models were analyzed in detail in Federgruen and Tzur
[9, 10]. A full analysis of the OWMR model follows in Section 3. Each of these multiitem
models assumes that arbitrary demands are specified form distinct items in each ofN periods
and that all cost and capacity parameters may be time-dependent. Stockouts are not permitted.
In all three models there are variable order and holding costs which are proportional with the
order and end-of-period inventory sizes at item-dependent cost rates. The models differ in the
specification of the setup cost structure, in the existence of capacity limits for the orders in each
period, and as to whether the items are directly procured from an outside source with ample
supply or via an intermediate facility with limited inventory. The objective, in all three models,
is to minimize total (discounted) costs over the planning horizon:

The Joint Replenishment Problem (JRP):In this model, a joint setup cost is incurred
whenever an order is placed (regardless of its composition) in addition to any item-specific setup
costs charged for each specific item included in the order. Order quantities are unconstrained,
and all items are procured directly from an outside source with ample supply.

The Multiitem Capacitated Problem (MCP):The MCP applies to settings where the different
items are produced in a common facility or distributed via a common transportation mode of
limited capacity. Thus, the aggregate order size in each period is constrained by a capacity limit,
and a joint (but no item-specific) setup cost is incurred in each order period.

The One-Warehouse Multiretailer Problem (OWMR):In the OWMR model, items are
procured from an outside source via a warehouse, where they may be stocked. Thus, in addition
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to the holding and variable order costs of the items at their point-of-sale, similar item-specific
costs arise at the warehouse. In each period, a warehouse setup cost is incurred when the
warehouse places an order, in addition to item-specific (variable and fixed) costs for each item
which is shipped from the warehouse. The quantities ordered into and out of the warehouse are
all unconstrained. Them items may represent the same physical product, differentiated only by
their point-of-sale or “retailer” location, as in the classical OWMR model (see, e.g., Roundy
[22]); in this case the holding cost and variable order cost rates at the warehouse are identical
for all items. More generally, them items may represent different finished goods held at a
variety of geographical locations as, e.g., in Muckstadt and Roundy [19].

All these models are NP-complete: For the JRP and OWMR models this is shown in Arkin,
Joneja, and Roundy [2]; Florian, Lenstra, and Rinnooy Kan [12] proved this for the MCP model,
even for thesingle-itemcase. A model generalizing all three of them is the General Two-
Echelon (GTE) model. It allows for a general joint cost structure for the setups associated with
the orders to and from the warehouse as well as individual and aggregate capacity constraints
for these orders.

The design of a time partitioning heuristic consists of the following four steps:

STEP 1: Identify the collection of intervals into which the full horizon is to be
partitioned.

STEP 2: Define initial conditions for the intervals.
STEP 3: Apply or develop an exact procedure to solve the subproblem associated

with each interval and solve the subproblems sequentially.
STEP 4: (Optional): Construct a solution which minimizes variable costs, while

maintaining the decisions regarding fixed costs (e.g., the order periods for
all items and facilities) according to the solution obtained in Step 3.

Step 1: Identify the Intervals

The intervals are chosen to be consecutive collections of periods. Initially we assume that they
are nonoverlapping; see, however, the discussion below. In later steps, a subproblem is
associated with each interval obtained from the restriction of the complete problem to its
periods, i.e., treating the first and last period of the interval as the first and last period of the
subproblem and leaving all other parameters unchanged. In Step 2 we add for each interval
options to choose alternative starting conditions that appropriately complement the solutions
obtained in prior intervals. The subproblems are thus solved sequentially, with the solution of
the firsth (say) subproblems possibly used in the specification of the initial conditions for the
next subproblem; see Step 2. Several issues need to be considered.

First, assuming that the complete problem is feasible, intervals need to be chosen to ensure
that each of the associated subproblems is feasible as well. This can most easily be done by
ensuring that each subproblem has a feasible solution without any of the options for alternative
starting conditions, as created in Step 2. In some models, every interval is feasible, i.e., it results
in a feasible subproblem, e.g., the JRP and OWMR models. This fails to apply to the MCP
problem, but a simple (linear time) test can be applied to verify whether an interval is feasible
or not. In other models, a more complex procedure is required, e.g., the GTE problem where
feasibility can be verified with the help of a max-flow algorithm.

In settings where some intervals may be associated with infeasible subproblems, we obtain a
complete partition of feasible intervals by identifying a shortest path in an acyclic network
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which has a node for each of theN periods, an extra nodeN 1 1 and an arc between every pair
of nodes (i , j ) with i , j . The arc costs {fij : 1 # i , j # N 1 1} are to be chosen such that
fij 5 ` whenever the interval [i ,i 1 1, . . . , j ) is infeasible. Note that a path of finite length,
e.g., with the single arc [1,N 1 1], exists whenever the complete problem is feasible. For
feasible intervals,fij can be chosen arbitrarily, perhaps to induce other desired properties of the
partition, such as interval lengths that are as close as possible to a desired target length.

The number of intervals and their lengths have a major impact on the complexity of the
overall procedure, as well as the quality of the resulting solution. Computational requirements
are in general reduced by selecting more intervals of smaller length, in particular since each
subproblem needs to be solved by an (exact) procedure whose complexity is at least exponential
in its horizon length. On the other hand, selecting more intervals of smaller length, in general,
results in inferior solutions since an additional set of restrictions is imposed by each interval.

To ensure that the overall complexity of the procedure is polynomial requires that the length
of each interval be asymptotically bounded by an appropriate function ofN which can be
derived from the complexity bound of the exact procedure used to solve the subproblem. For
example, in all three of the above discussed models, an exact branch-and-bound procedure
exists, capable of solving problems for intervals of lengthn in O(2nP(n,m)) time with P(n,m)
polynomial inn andm. Thus choosing all interval lengthsn ; log2 N (asN 3 `), results in
an overall complexity ofO(N2P(log2 N,m)/log2 N) since the number of intervalsI ; N/log2

N under this choice. [We writef(N) ; g(N) if lim N3` f(N)/g(N) 5 1.] For the JRP and
OWMR models we haveP(n,m) 5 O(mn log n), hence resulting in an overall complexity of
O(mN2 log2 log2 N); for the MCP model,P(n,m) 5 O((log2 cap*)m2n2) with cap* the largest
capacity value, which results in an overall complexity ofO((log2 cap*)m2N2 log2 N).

For the GTE model, problems with an interval of lengthn can be solved inO(2nmP(n,m))
time (again by a branch-and-bound procedure). Thus, in order to ensure that the overall
procedure be polynomial, it is now necessary to choosen ; log2(N/m), which remains practical
as long asm is not too large compared withN. (In the alternative case, an effective procedure
may call for the partitioning of the product line into families, along with the partitioning of time
into intervals.)

Often we may desire to design the heuristic so as to guarantee ane-optimal solution for a
prespecified optimality gape. As will be discussed later, such designs are often possible forany
e . 0, i.e., the heuristic can be designed as a fully polynomial approximation scheme;
e-optimality can often be guaranteed by choosing the interval lengths to be bounded from below
by a constantY1(e), which can easily be computed upfront, as a function of the model
parameters.

To simultaneously ensure that feasible intervals are chosen and that their length is; log2 N
or any other function ofN ensuring polynomial complexity, one may, e.g., specify that the
interval lengths be bounded from below bynI 5(log2 N) and from above byn# 5 nI 1 Y2, with
Y2 an arbitrary integer. In this case, the above shortest path problem is solved withfij 5 ` when
the interval [i , j ) is infeasible, or its length outside these bounds. (In a highly constrained
problem, it is advisable to choose a large value forY2. If even with this choice ofY2, no path
with finite length is found, remove the upper boundn# , thus ensuring that a feasible partition is
generated, albeit that asymptotic polynomial complexity is no longer guaranteed. Note, how-
ever, that such highly constrained problems have relatively few feasible solutions and are thus
more easily solvable by methods based on implicit enumeration such as branch-and-bound or
column generation.) To further ensure that ane-optimal solution is obtained, it suffices to
replacenI as described above, bynI 5 max{Y1(e), log2 N}.
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Step 2: Define Initial Conditions for the Intervals

A subproblem is associated with each interval, obtained from the restriction of the complete
problem to its periods. As such, since in each subproblem it is assumed that the system starts
out empty, the partition forces each of the interval’s demands to be satisfied from orders placed
within the interval. In other words, order cycles are not allowed to cross interval boundaries,
even though these boundaries are created in Step 1 without any consideration as to where they
would most economically be located. Recall that the subproblems are solved sequentially. To
create significantly superior solutions, it may therefore be desirable to allow some of the
demands in a given interval to be satisfied from orders placed in a few selected periods
preceding the interval. Especially beneficial in this respect are periods which, in the solution of
the preceding interval problems, have been used as attractive order (production/distribution)
periods, in particular when economies of scale can be exploited (e.g., due to fixed costs, quantity
discounts, etc.) by enlarging those order volumes, if possible.

For example, in a time partitioning heuristic for the JRP model, it makes sense to specify
initial conditions of thehth interval problem so as to allow demands for a given item to be
satisfied either (i) by enlargingits last order in the firsth 2 1 intervals, without incurring an
additional joint or an additional item-specific setup cost, or (ii) by including an order for this
item to the last overall order placed in the firsth 2 1 intervals, without incurring an additional
joint setup cost, i.e., incurring only an additionalitem-specific setup cost. With appropriate
choices of the cost parameters, these options can be made available by adding only two dummy
periods, with zero demands, at the beginning of thehth interval. In the OWMR model, since no
joint setup costs prevail, only one dummy period is needed. In the MCP model, on the other
hand, the required dummy periods are the last order periods in the firsth 2 1 intervals, for the
different items, since different residual capacity limits may prevail for these last order periods.
Thus, up tom dummy periods are added to each interval; however, the addition of these dummy
periods does not affect the size of the branch-and-bound tree by which each subproblem is
solved, since no (additional) setup costs are incurred in the dummy periods. Thus, the addition
of the dummy periods has minimal impact on the worst case complexity bound of the entire
procedure and even less on its practical performance.

Step 3: Apply or Develop an Exact Procedure To Solve the Subproblem Associated
with Each Interval and Solve the Subproblems Sequentially

Any exact solution method may be employed. For example, for the JRP problem, several
efficient methods have been developed recently, capable of solving subproblems with up to 40
periods and 100 products (see Raghavan and Rao [21], Federgruen and Tzur [9], and Stowers
and Palekar [24]). The former consists of a tailored cutting plane method, and the latter two
propose branch-and-bound methods. In designing a branch and bound method for dynamic
lot-sizing problems, it is noteworthy that only some of the binary variables need to be fixed to
result in a significantly simplified problem. For example, for the JRP it is only necessary to
branch on then variables describing in which periods the major setup cost is incurred, thanks
to the availability of very efficient solution methods for uncapacitatedsingle-itemproblems. On
the other hand, in the GTE problem, to obtain a branch and bound tree in which the leaves are
easily solvable, it is necessary to branch on allnm binary variables describing for which of the
m products or facilities an order is placed in each of then periods involved. [It is this distinction
which explains the difference in the complexity bounds,O(2nP(n,m)) andO(2nmP(n,m)) for
the two problems, respectively; see the discussion in Step 1.] For the GTE model or network

468 Naval Research Logistics,Vol. 46 (1999)



models of even larger complexity, it may no longer be possible to solve the interval problems
exactly for reasonable choices of interval lengths. We refer to Tzur [25, Chap. 8] for a discussion
of two approaches (network restriction and decomposition) to solve the interval problems
approximately but efficiently, instead.

Step 4 (Optional): Construct a Solution Which Minimizes Variable Costs, While
Maintaining the Decisions Regarding Fixed Costs (i.e., the Order Periods for

All Items and Facilities) According to the Solution Obtained in Step 3

The need to partition the overall planning horizon into smaller intervals, arises almost
invariably because of the complexity of determining some of thebinary variables (see also our
discussion in Step 3). With these binary variables being fixed separately for each of the
subintervals (by the solution method chosen in Step 3), all other variables are easily determined
so as to optimize the remaining costs over theentire planning horizon. (When a branch and
bound method is used in Step 3, the latter problem is usually of the type required to evaluate its
leaves.) Note that Step 4 results in a solution at least as good as the one obtained after solving
the subproblems sequentially.

As a simple example, consider again the JRP. Once the set of order periods with orders is
determined by the sequential solution of all subproblems, the optimal composition of these
orders (i.e., the items included and their specific order quantities) are easily determined to
minimize the remaining costs over theentireplanning horizon; the latter problem reduces to the
solution ofm independent single-item dynamic lot-sizing problems.

Step 1 specifies that the planning horizon be partitioned into nonoverlapping intervals. Instead
we may wish to allow for considerable overlap between consecutive intervals, e.g., by including
some of the last periods (perhaps the second half) of a given interval in the next one. This variant
would continue to append dummy periods at the beginning of each interval to allow for starting
conditions that appropriately complement the solutions obtained in prior intervals.

The advantage of this variant is thatall order decisions are determined by looking ahead at
future cost and demand parameters pertaining to a desired number of future periods (at least).
Note that the order of the complexity of this variant remains unchanged. For example, the
complexity increases by a factor of two (approximately) if each interval includes the second half
of the prior interval (and the total interval length is determined as described above).

Finally, to characterize the optimality gap incurred by the partitioning heuristic, it is conve-
nient to bound the additional cost required to transform an optimal solution into one achievable
by the heuristic. These transformations “truncate” procurement decisions which cut across
interval boundaries in ways not considered by the partitioning heuristic. This bound for the
absoluteoptimality gap is therefore related to (and often linear in) the number of intervalsI .
Together with a comparablelower boundfor the optimal value and a desiredrelativeoptimality
gape, this allows for the determination of the required number of intervalsI (e); see Step 1.

3. THE ONE-WAREHOUSE MULTIRETAILER PROBLEM

In the general OWMR model, there arem retailers sellingJ distinct items. All items are
shipped to the retailers via a common warehouse. We denote the warehouse as facility O and
retaileri as facility i , i 5 1, . . . ,m. Whenever one of the retailers or the warehouse places an
order, a fixed setup cost is incurred which is specific to the facility involved but independent of
its specific composition.
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This cost structure applies to many settings. The fixed costs incurred when a retailer places
an order often consist of the cost of processing a purchase order or that of a shipment by a
common carrier or company owned truck. On the other hand, sometimes more complex joint
setup cost structures prevail, e.g., when, in addition to the basic setup cost for a retailer order,
additional setup costs need to be added for each specific item included in the order (as assumed,
for example, in the Muckstadt and Roundy model [19]). Even more general, nonseparable setup
cost structures are needed in other settings, e.g., where the total setup cost associated with the
retailer orders in a given period is given by a general set function of the set of retailers and items
involved (see Federgruen and Zheng [11] and Federgruen and Tzur [9]). Any such more
complex setup cost structures, possibly combined with individual and aggregate capacity
constraints for the orders, result in special cases of the more complex GTE model (see Sec-
tion 2).

To simplify the exposition, we initially consider the case of asingleitem, i.e., whereJ 5 1;
see, however, subsection 3.6 for a treatment of the general case.

3.1. The Model

For J 5 1, the (OWMR) problem is specified by the following parameters:

N 5 number of periods,
m 5 number of retailers.

For i 5 0, . . . , m and t 5 1, . . . , N:

dit 5 demand at retaileri in periodt (we assume, without loss of generality, thatdit

$ 0),
d0t 5 total system-wide demand in periodt (5 ¥i51

m dit),
Kit 5 fixed cost for an order placed by facilityi in period t,
cit 5 variable per unit order cost for facilityi in period t,
hit 5 cost of carrying a unit of inventory at facilityi at the end of periodt.

We first describe a mathematical programming formulation for this problem. For allt 5
1, . . . , N and i 5 0, . . . , m, let

Xit 5 the number of units ordered by facilityi in period t,
I it 5 the inventory at retaileri at the end of periodt,
I0t 5 the echelon inventory (i.e., the total inventory in thesystem) at the end of periodt,

Yit 5 H 1, if facility i places an order in periodt,
0, otherwise.

~P! z* 5 min O
t51

N

$O
i50

m

KitYit 1 O
i50

m

citXit 1 h0tI 0t 1 O
i51

m

~hit 2 h0t!I it% (1)

s.t. I i,t21 1 Xit 5 dit 1 I it ~i 5 0, . . . , m, t 5 1, . . . , N!, (2)
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O
s51

t

X0s $ O
s51

t O
i51

m

Xis ~t 5 1, . . . , N!, (3)

Xit # ~O
s5t

N

dis! Yit ~i 5 0, . . . , m, t 5 1, . . . , N!. (4)

Constraints (2) are the usual inventory balance equations, specified for each retailer as well as
for the system as a whole. The second set of constraints ensures that the cumulative amount
ordered by the warehouse up to any periodt is at least as large as the cumulative amount ordered
by the retailers. The last set of constraints specifies the standard relationship between theX- and
Y-variables. The four terms in the objective function denote the total setup costs, the variable
order costs, the basic holding costs charged against systemwide inventory, and the incremental
holding costs incurred for inventories stored at the retailers, respectively. It is easily verified that
an optimal solution exists with zero inventory ordering, i.e.,XitI it21 5 0 for all i , t.

3.2. Models with Prespecified Warehouse Order Periods

In this subsection we address the special case of the model which arises whenS1, the set of
warehouse order periods, is prespecified. This special case is of interest by itself: It includes
settings where no warehouse setup costs prevail, i.e.,K0t 5 0 for all t 5 1, . . . , N so thatS1

5 {1, . . . , N}. It is also used in the lower bounds described in subsections 3.3 and 3.4.
With a prespecified set of warehouse order periods, the system decomposes intom indepen-

dent single item dynamic lot sizing models (one for each retailer), maintaining the retailers’
fixed and holding cost parameters as well as demands, and substituting their variable order cost
rates {cit: i 5 1, . . . , m, t 5 1, . . . , N} by

c9it 5 cit 1 min$c0s 1 O
r5s

t21

h0r: 1 # s # t ands [ S1% i 5 1, . . . , m, t 5 1, . . . , N. (5)

The expression within curled brackets in (5) represents the variable warehouse order and holding
costs per unit, if this unit reaches the warehouse in periods # t, and is kept there until the end
of periodt 2 1. Thereforec9it represents the total variable order and warehouse holding cost rate
for any unit received by retaileri in periodt, considering all possible periods in which the unit
may be ordered by the warehouse. The optimum value of the model is obtained by adding¥t[S1

K0t to the sum of the optimum values of the individual single-item dynamic lot sizing problems.
We conclude that while the OWMR model is NP-complete, an optimal schedule may be

computed inO(mN log N) time when the set of warehouse order periods is prespecified (see
Aggarwal and Park [1], Federgruen and Tzur [7], and Wagelmans, Van Hoesel, and Kolen [26]).

3.3. Lower Bounds

We first develop a lower bound for the minimum cost valuez*, to be used in the branch-
and-bound procedure, or to evaluate the heuristic described below.
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The lower boundZLB is obtained by complete or Lagrangean relaxation of the coupling
constraints (3) in (P). Note that the relaxed problem decomposes intom 1 1 independent
single-item dynamic lot sizing models. The relaxed problem can thus be solved inO(mN log N)
time (for given values of the Lagrange multipliers). Letlt

(k) represent the Lagrange multiplier
for the tth constraint in thekth iteration. These values may be recursively updated via

lt
~k! 5 lt

~k21! 1 k21@O
s51

t O
i51

m

X*is~k21! 2 O
s51

t

X*0s
~k21!#,

whereX*it
(k) denotes the optimal value ofXit after thekth iteration.

An alternative type of lower bound may be developed as follows: Since demands are
deterministically known, it is possible, without loss of optimality, to allocate every incoming
order of the warehouse to the individual retailers. The warehouse may thus be viewed as
consisting ofm separate depots, each designed to serve a specific retailer. Assume now that the
warehouse setup costs are allocated in some arbitrary way to these depots (so that the sum of
the allocated costs equals the true warehouse costs). This allocation scheme results in a lower
bound, since the cost charged under any given strategy is lower than or equal to the costs
incurred under the true cost structure. Moreover, under the allocated costs scheme the system
decomposes intom independent tandem systems for which an optimal procurement strategy can
be computed in polynomial time (see Zangwill [27] and Love [17]). The best lower bound of
this type may be obtained by maximizing over all feasible setup cost allocations (see Tzur [25]
for details). Indeed, a lower bound of this specific type was successfully used in the branch and
bound procedure and partitioning heuristic for the JRP (see Federgruen and Tzur [9] for details).

3.4. An Exact Branch-and-Bound Method

We now describe an exact branch-and-bound procedure. This procedure can be used by itself
for problems of moderate size; more importantly, it is used to solve the subproblems which arise
in the partitioning heuristic described below.

Given a choice forS1, the set of periods in which the warehouse places an order, the
remaining problem reduces to the special case discussed in subsection 3.2. This implies that the
problem may be solved by enumerating all 2N21 possible sets of warehouse order periods,
evaluating for each the associatedm single item lot sizing problems. The complexity of afull
enumeration scheme is thereforeO(m2NN log N), which is prohibitive for all but small values
of N. In its stead, we show that a branch-and-bound procedure can be used as an attractive
implicit enumeration method.

Each node of the branch-and-bound tree is characterized by a partition of the set {1, . . . ,N}
into three setsS1, S2, and S0, whereS1 is the set of periods in which the warehouse is
committed to placing an order,S2 is the set of periods in which no warehouse order is allowed,
andS0 5 {1, . . . , N} \(S1 ø S2). Note that 1[ S1 in any feasible partition.

To evaluate a node in the tree, we compute the lower bound, appropriately modified to
incorporate the restrictions implied by the setsS1 andS2 as follows: Replace the parameters
{ K0t} by K90t 5 0 if t[S1; K90t 5 ` if t[S2; K90t 5 K0t otherwise, and add¥t[S1 K0t to
the Lagrangean dual value. The Lagrangean dual is itself anupperbound forz* if its associated
solution {X*it: i 5 0, . . . , m, t 5 1, . . . , N} is feasible in (P). If this solution fails to be
feasible, an upper bound forz* is obtained by resolving the single item dynamic lot sizing model
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associated with the warehouse, replacing the demand values {d0t} by { ¥ i51
m X*it}. At any stage

of the branch-and-bound procedure, the best available upper bound may be used to eliminate
parts of the tree. Nodes at the bottom of the tree haveS0 5 A so thatS1 represents the set of
periods in which the warehouse places an order. The optimum value for this choice ofS1 is
determined as described in subsection 3.2.

Every node in the tree has two successor nodes; the first (second) successor node has an
additional period inS0 shifted toS2 (S1). The branch-and-bound procedure is thus completely
specified by the choice of the branching rule, i.e., a rule to select a period from the setS0. Here
we confine ourselves to the description of one branching rule, which employs a fixed ranking
of the periods {2, . . . ,N} and chooses the highest ranked period inS0: For any set of periods
S # {2, . . . , N} let F(S) denote the minimum cost when a warehouse order is placed in each
of the periods inSø {1} (and no order is placed in any other period). Evaluation of the function
F( z ) reduces to solving a one warehouse multiretailer problem withzerowarehouse setup costs,
which can be solved inO(mN log N) time as described in subsection 3.2. Our branching rule
starts withS0 5 {2, . . . , N} and S1 5 {1} and branches any given node (specified by the
triple { S1, S2, S0}) into successor nodes by shifting a periodj from S0 into S1 with F(S1 ø
{ j }) 5 mini[S0 F(S1 ø { i }). Alternatively, one may shift a periodj from S0 into S2 with
F(S1 ø S0\{ j }) 5 mini[S0 F(S1 ø S0\{ i }).

3.5. The Partitioning Heuristic

We now develop and analyze our proposed time-partitioning heuristic, following the steps
described in Section 2. We partition the complete horizon {1, . . . ,N} into I intervals of lengths
n1, n2, . . . , nI (i.e.,¥h51

I nh 5 N). OWMRh denotes the one-warehouse multiretailer problem
associated with thehth interval. LetNh 5 ¥k51

h nk, h 5 1, . . . , I . To specify OWMRh for
someh 5 2, . . . , I , let ,i(Nh21) denote the last order period for facilityi in the partial solution
constructed thus far, i.e., the solution constructed from OWMR1 up to OWMRh21, i 5 0, . . . ,
m. OWMRh consists of (nh 1 1) periods: the periodsNh21 1 1, . . . , Nh preceded by a
dummy period21 with zero demands, which is appended to allow for starting conditions that
appropriately complement the solutions obtained in prior intervals.

An order in period21 for a facility i (i 5 0, . . . , m) represents an addition to the order
placed in period,i(Nh21) so as to cover demands of some of the initial (or possibly all) periods
in the hth interval. We therefore specify the setup costs of period21 to be zero.

A unit ordered by retaileri in period, i(Nh21) and kept there until thehth interval, incurs
until the end of the (h 2 1)st interval a total systemwide variable cost which is denoted by
ci ,21. It follows from the optimality of a zero inventory ordering policy (see subsection 3.1) that
such a unit reaches the warehouse in period, i

0(Nh21), the last warehouse order period
preceding period, i(Nh21) (possibly,i(Nh21) itself). Thusci ,21 5 ci ,, i(Nh21)

1 ¥t5, i(Nh21)
Nh21 (hit

2 h0t) is the variable order cost for retaileri in period21, so that the holding cost ratehi ,21

5 0 for all i 5 1, . . . , m.
A unit ordered by the warehouse in period,0(Nh21) and kept there until thehth interval,

incurs until the end of the (h 2 1)st interval a total variable cost ofc0,21 5 c0,,0(Nh21)
1

¥t5,0(Nh21)
Nh21 h0t. We usec0,21 as the variable order cost rate for the warehouse in period21, and

set h0,21 5 0.
After solving OWMRh exactly(e.g., via the branch-and-bound method described in subsec-

tion 3.4), we update the partial solution for the entire horizon. This can be done as follows: For
all i 5 0, . . . , m and t 5 1, . . . , N let
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Xit 5 the order quantity for facilityi in periodt in the partial solution

obtained at the end of the~h 2 1!st iteration.

For the optimal solution of OWMRh, let

Xit
~h! 5 order quantity for facilityi in periodt ~t 5 21, Nh21 1 1, Nh21 1 2, . . . , Nh!.

Set

, i~Nh! 5 H , i~Nh21! if Xi,21
~h! . 0 5 Xit

~h! for t Þ 21,
max$t: Xit

~h! . 0% otherwise,

Xit: 5 Xit
~h! t 5 Nh21 1 1, . . . , Nh,

Xi,,i~Nh21!: 5 Xi,,i~Nh21! 1 Xi,21
~h!

Finally, let z(OWMRh) denote the optimal cost for problem OWMRh. We conclude:

LEMMA 1: The solution obtained by the partitioning heuristic is feasible and has a cost value
zH [ ¥h51

I z(OWMRh).

We now derive a worst case bound for the optimality gap which arises whenI intervals are
used in the partitioning heuristic. We do so under mild conditions with respect to the cost and
demand parameters. We first need to derive a lower bound forz*.

THEOREM 1 (The lower bound theorem): Assume there exist for alli 5 0, . . . ,m constants
Ki* , di* . 0, hi* andci* such that for allt $ 1 and alli 5 0, . . . ,m, dit $ di* , Kit $ Ki* ,
hit $ hi* , cit $ ci* .

Then,z* $ g1N, whereg1 is Roundy’s [22] lower bound for the long run average cost in the
one-warehouse multiretailer system withstationary demand ratedi* , holding cost ratehi* ,
variable order cost rateci* , and fixed order costKi* for retaileri (i 5 1, . . . ,m) andstationary
holding cost rateh0* , variable cost ratec0* and fixed order costK0* for the warehouse.

PROOF: LetzI(N) denote the minimum cost over the planning horizon ofN periods when all
cost and demand parameters are replaced by their stationary lower bounds. Clearlyz* $ zI(N)
$ g1N as follows from the proof of the lower bound theorem in Roundy [22].h

REMARK 1: The value ofg1 can be computed inO(m log m) time, or even inO(m) time
when implemented as in Queyranne [20]. This lower bound is guaranteed to come within 6%
of the minimum cost value of the stationary version of the one-warehouse multiretailer system.

REMARK 2: For items with a highly seasonal demand, the assumption of a positive uniform
lower bound for all periods’ demands may be too restrictive. It may be relaxed to assuming that
integersMi $ 1 exist for all i 5 1, . . . , m such that
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~dit 1 · · ·1 di,t1Mi
! $ Midi* and O

t51

N

dit $ Ndi* ~i 5 1, . . . , m, t 5 1, . . . , N!.

Under the relaxed assumption, Theorem 1 continues to hold (see Tzur [25]), i.e.,z* $ g2N,
where

g2 5 maxH O
i$0:Mi51

Î2Ki* hi* di* 1 O
i$0:Mi$2

c i~Ki* !J 1 O
i51

m

ci* di* ,

c i~Ki* ! 5 H Ki* /2Mi if 0 # Ki* # Mi
2hi* di* ,

Î2~Ki* 1 hi* Mi
2di* !hi* di* 2 1.5hi* Midi* if Ki* . Mi

2hi* di*
.

We are now ready to derive a worst case bound for the heuristic’s optimality gap.

THEOREM 2: LetI denote the number of intervals employed by the partitioning heuristic.
Assume there exist for alli 5 1, . . . , m an integerMi $ 1 and constantsK*0, K0* , K*i, Ki* ,
d*i, di* , c*i, ci* , c*0, c0* , andh0* such that, for allt $ 1 and all i 5 1, . . . , m,

~dit 1 · · ·1 di,t1Mi
! $ Midi* , dit # d*i, O

t51

N

dit $ Ndi* ,

K0* # K0t # K*0, Ki* # Kit # K*i, ci* # cit # c*i, c0* # c0t # c*0, h0* # h0t.

Let h 5 maxi$1 { c*i 1 c*0 2 ci* 2 c0* 2 h0* }. Then

zH 2 z*

z*
#

~I 2 1!

N

r

g
,

where

r 5 O
i50

m

K*i 1 h FL O
i51

m

d*i 1 ~O
i50

m

K*i!Yh0* G
L 5 @~c*0 2 c0* ! 1 max

i

$c*i 2 ci* %#/h0*  and g 5 H g1 if all Mi 5 1,
g2 otherwise.

PROOF: We show that (zH 2 z*) # (I 2 1)r. The theorem then follows from Theorem 1.
Consider an optimal solution of the one-warehouse multiretailer problem on the entireN-period
horizon. We show that this solution can be transformed into one which is achievable by the
partitioning heuristic, adding at most (I 2 1)r to the total cost.
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If the optimal solution to the complete OWMR problem fails to be achievable by the
partitioning heuristic, there must be an interval (say intervalh) in which, in some periods, units
are demanded at some retailers which enter the warehousebeforethe start of thehth interval.
We refer to those units as the carry-over units of thehth interval. We transform the solution by
postponing the ordering ofall such units by the warehouse till periodNh21 1 1 (the first period
of thehth interval); likewise, we postpone till periodNh21 1 1 the transfer from the warehouse
to the relevant retailer of those carryover units which in the (original) optimal solution are
transferredbeforethe beginning of thehth interval, and maintain the transfer period for all other
carryover units. We show that the additional cost incurred due to the transformations for the
carryover units of this interval is bounded byr. Since there are carryover units in at most (I 2
1) intervals, the total incremental cost due toall transformations is then bounded by (I 2 1)r.

Let S 5 { i1, . . . , i usu} denote the set of retailers with carry-over units in thehth interval and
let t, denote the last period in thehth interval for which some of the units demanded at retailer
i, are carried over. Assume the retailers inS are numbered such thatt1 # t2 # . . . # t usu. Let
Di (i [ S) denote the total number of carryover units for retaileri [ S. Renumber the periods
in the hth interval from 1, . . . ,nh and letS, 5 { i,, . . . , i uSu}. The transformations for the
carryover units of intervalh add at most

O
i50

m

K*i 1 O
i[S

~c*i 1 c*0 2 ci* 2 c0* 2 h0* ! Di (6)

in setup and variable cost, since for each of theDi carryover units of retaileri at most (c*i 1
c*0 2 ci* 2 c0* ) in additional order cost is incurred and at least one period’s echelon holding
cost is saved. It thus suffices to obtain bounds for the quantitiesDi i [ S. We derive in Lemma
2 in the Appendix bounds of the type

O
i[S,

Di # b,, , 5 1, . . . , uSu (7)

and show thatr is an upper bound for the maximum of (6) over the bounded polyhedron
described by (7). h

In many practical settings, no speculative motives prevail for carrying inventories at any of
the retailers or at the warehouse, i.e.,

cit # cis 1 his 1 · · ·1 hit21 for all s , t and all i 5 0, . . . , m. (8)

The expression forr simplifies considerably in this case and fewer conditions need to be
imposed on the demand and cost parameters. This follows immediately from the proof of
Theorem 2.

COROLLARY 1: LetI denote the number of intervals employed by the partitioning heuristic.
Assume no speculative motives prevail for carrying inventories at any of the retailers or the
warehouse. Assume there exist for alli 5 1, . . . ,m an integerMi $ 1 and constantsK*0, K0* ,
K*i, Ki* , di* . 0, andci* such that for allt $ 1 and all i 5 1, . . . , m:
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~dit 1 · · ·1 di,t1Mi
! $ Midi* , O

t51

N

dit $ Ndi* ,

K0* # K0t # K*0, Ki* # Kit # K*i, 0 , ci* # cit.

Then, (zH 2 z*)/ z* # (I 2 1) r9/(Ng), wherer9 5 ¥ i50
m K*i.

Possible Choices of Interval Lengths for the Partitioning Heuristic

Theorem 2 and Corollary 1 along with our discussion regarding Step 1 in Section 2 suggest
the following choice for the interval lengthsnh (h 5 1, . . . , I ) to be employed in the
partitioning heuristic:

nh 5 max$Y, log N%, h 5 1, . . . , I 2 1, (9)

nI 5 N 2 O
h51

I21

nh (10)

with Y an arbitrary integer.
Theorem 2 shows that ane-optimal solution may be guaranteed by choosingY 5

min{r/eg, N}.

COROLLARY 2: Assume the parameter conditions of Theorem 2 are satisfied. The parti-
tioning heuristic results in ane-optimal solution for any givene . 0 if the intervalsnh (h 5
1, . . . , I ) are specified as in (9) and (10) andY 5 min{ r/eg, N}.

PROOF: IfY 5 N, thenI 5 1 and an optimal solution is achieved. Otherwise, it follows from
(9) that (I 2 1) # N/Y # Neg/r; e-optimality then follows from Theorem 2. h

Theorem 2 also allows us to conclude that the partitioning heuristic is asymptotically optimal
asN increases to infinity.

COROLLARY 3: Consider the partitioning heuristic with interval lengths specified by (9) and
(10).

(a) The heuristic has complexityO(mN2 log log N).
(b) Assume the parameter conditions of Theorem 2 are satisfied. For fixedm, the heuristic

is asymptotically optimal asN increases to infinity.
(c) Assume the parameter conditions of Theorem 2 are satisfied with valuesK*i, d*i, c*i

uniformly bounded ini , and Ki* , di* , ci* uniformly bounded away from zero. The
heuristic is asymptotically optimal asm3 ` andN 3 `.

PROOF:

(a) The partitioning heuristic requires, to compute its solution for thehth interval, at most 2nh

solutions ofm single-item dynamic lot-sizing models, each of which can be solved in

477Federgruen and Tzur: Time-Partitioning Heuristics



O(nh log nh) time. The above complexity bound then follows becausenh 5 O(log N)
and I 5 O(N/log N).

(b) Asymptotic optimality for fixedm is immediate from Theorem 2.
(c) Note thatr is O(m) while g 5 V(m), i.e., there exists a constanta . 0 such thatg $

am. Thus,r/g 5 O(1) asm3 `, and part (c) follows from part (b). h

3.6. The General (OWMR) Problem

We now discuss what modifications are required in the OWMR model, the branch and bound
method, the partitioning heuristic, and its analysis when dealing with an arbitrary number of
items,J, carried in the system, i.e.,J $ 2. With multiple items we confine ourselves to the most
prevalent case where no speculative motives for carrying inventories prevail [see (8)].

In terms of the model itself, it is necessary to use three indices when specifying the demands
d and variable cost parametersc andh. (On the other hand, the fixed costsK remain as specified,
since they are incurred for any warehouse or retailer order, regardless of its specific composi-
tion.) Similarly, in the mathematical programming formulation (1)–(4), it is now necessary to
disaggregate the continuous order- and inventory-variables (X and I ) by item type, i.e., to use
three indices for both types of variables. (Once again, theY variables remain unaltered.) All
three of the constraint sets (2)–(4) now need to be specified on an item-by-item basis.

With prespecified warehouse order periods (see subsection 3.2), the problem again decom-
poses intom separate lot-sizing problems, one for each retailer. Each of these retailer problems
deals with joint replenishments forJ different items; however, since no item-specific setup costs
are incurred and since no speculative motives for carrying inventories exist, it is optimal to place
orders only whenall items’ inventories equal zero. As in the single item case, the dynamic
lot-sizing problem can thus be embedded on order periods only, and hence be solved by a
standard shortest path method. Each retailer’s lot-sizing decisions can thus be determined in
O( JN2) time; with prespecified warehouse order periods, the remaining problem is thus
solvable withO(mJN2) effort. [As in subsection 3.2, it is necessary to adjust the variable order
cost rates of them retailers and theJ items, to include the variable costs optimally incurred at
the warehouse level, see (5).]

A lower boundZLB is again obtained by complete or Lagrangean relaxation of the coupling
constraints (3) in (P). Given our discussion above, the relaxed problem can be solved in
O(mJN2) time, for given values of the Lagrange multipliers. Note, however, that there are now
JN coupling constraints, and hence as many Lagrange multipliers, an essential complication in
solving the Lagrangean dual to optimality. The branch and bound method of subsection 3.3 can
be employed with this modification of the lower bound to evaluate its nodes.

A time-partitioning heuristic can be designed in close analogy to the one specified in
subsection 3.5 for the single-item case. In particular, when specifying OWMRh, the problem for

Table 1. Problem set 1:m 5 2, J 5 5.

N 10
(n 5 5)

15
(n 5 5)

20

n 5 5 n 5 10

zH/z* 1.0056 1.0048 1.0054 1.0004
% opt 20 10 10 50
CPU zH 0.03 s 0.038 s 0.051 s 0.47 s
CPU z* 0.2 s 7.6 s 2.25 min
z*/ zLB 1.0004 1.00055 1.0013
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thehth interval,h 5 2, . . . , I , it continues to suffice to append a single dummy period21 at
the beginning of the interval, so as to allow for starting conditions that appropriately comple-
ment the solutions obtained in prior intervals. This dummy period has again zero demands, setup
cost parameters, and holding cost rates. Its variable order cost rates should again be specified as
above, straightforwardly disaggregated on an item-by-item basis. The same applies to the
updates of the partial solutions to the full planning horizon at the completion of each interval’s
problem.

The lower bound theorem (Theorem 1) continues to apply with the uniform positive lower
bounds for thed, h, andc parameters now assumed to apply on an item-by-item basis. The
constantg is now selected as the long run average cost rate in the stationary one-warehouse,
multiitem multiretailer system obtained when all parameters are replaced by their stationary
lower bounds. The proof of this generalization of Theorem 1 is identical, replacing the lower
bound theorem of Roundy [22] by that of Roundy (1986). The value ofg can be computed in
O(mJ log mJ) with the method of Muckstadt and Roundy [19].

Finally, the upper bound for the heuristic’s optimality gap in Corollary 1 continues to apply,
without any modifications, provided that the lower bounds for thed- andc-parameters are again
specified on an item-by-item basis. This permits us once again to design ane-optimal heuristic
for any e . 0 and to show that the partitioning heuristic with interval lengths specified by (9)
and (10) (i) has complexityO( JmN2 log2 N) and (ii) is asymptotically optimal asN 3 ` for
fixed m and J, or asN, m, and J jointly increase to` under straightforward item-by-item
specifications of the parameter conditions in parts (b) and (c) of Corollary 3.

4. NUMERICAL STUDY

In this section we report on a numerical study with 300 problem instances, conducted to gauge
the performance potential of the partitioning heuristic. The investigated instances vary in terms
of the horizon length (N), the number of items (J), the number of retailers (m), and the type

Table 2. Problem set 2:m 5 5, J 5 2.

N 10
(n 5 5)

15
(n 5 5)

20

n 5 5 n 5 10

zH/z* 1.013 1.013 1.01 1.001
% opt 20 10 0 20
CPU zH 0.027 s 0.04 s 0.069 0.75
CPU z* 0.33 s 7.6 s 2.51 min
z*/ zLB 1.005 1.0047 1.0051

Table 3. Problem set 3:m 5 5, J 5 5.

N 10
(n 5 5)

15
(n 5 5)

20

n 5 5 n 5 10

zH/z* 1.0046 1.0042 1.0036 1.0
% opt 0 0 0 100
CPU zH 0.06 s 0.1 s 0.16 s 3.32 s
CPU z* 1.57 s 51.5 s 17.85 min
z*/ zLB 1.00384 1.0036 1.0043
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of demand pattern. As assumed in many forecasting systems, the demand values follow an
autoregressive pattern of the first order, i.e., for some 0# a # 1:

dij1 5 eij1
d ~i 5 1, . . . , m; j 5 1, . . . , J!,

dijt 5 a dijt21 1 ~1 2 a! eijt
d ~i 5 1, . . . , m; j 5 1, . . . , J; t 5 2, . . . , N!,

where for alli , j the sequence {eijt
d : t 5 1, . . . , N} consists of independent random variables

that are uniformly distributed on a prespecified interval. The parametera guides the degree of
variability of the demands. [In the extreme case wherea 5 0, demands are independent and
identically distributed (i.i.d.) while demands are constant over time, ifa 5 1.] The setup cost
parameters follow a similar pattern:

K01 5 e01
K , K0t 5 bK0t21 1 ~1 2 b!e0t

K, (11)

Kij1 5 eijt
K , Kijt 5 bKijt21 1 ~1 2 b!eijt

K , (12)

where the series {e0t
K } and {eijt

K } are i.i.d. and uniform on the intervals [8, 12] and [5, 15]
respectively. We chooseb 5 0.5 in all instances. The remaining parameters are specified as
follows: c0jt 5 1 (all j , t), h0jt 5 0.2 (all j , t), cijt 5 0.5 (all i , j , t), andhijt 5 0.25 (all
i , j , t).

In problem sets 1–5, we evaluate instances with a planning horizon of up toN 5 20 periods,
via an exact branch and bound method as well as the partitioning heuristic. For instances with
horizonN 5 20 (18), weapply the partitioning heuristic both with intervals of lengthn 5 5
(6), andlengthn 5 10 (9). Insets 1–4, we fixa 5 0.5. These sets differ from each other, in
terms of the number of items (J) and retailers (m). Problem sets 5–8 consider 18-period
instances, all with 5 items and 5 retailers. In set 5 we vary the demand variability parametera,

Table 4. Problem set 4:m 5 10, J 5 10.

N 10
(n 5 5)

15
(n 5 5)

20

n 5 5 n 5 10

zH/z* 1.0 1.0 1.0 1.0
% opt 100 100 100 100
CPU zH 1.13 s 1.9 s 2.74 s 45.1 s
CPU z* 13.83 s 4.95 min 101.7 min
z*/ zLB 1.0153 1.0144 1.0147

Table 5. Problem set 5:N 5 18, m 5 5, J 5 5.

a 0.0 0.25 0.5 0.75 1.0

n 5 6 n 5 9 n 5 6 n 5 9 n 5 6 n 5 9 n 5 6 n 5 9 n 5 6 n 5 9

zH/z* 1.00001 1.0027 1.0006 1.0012 1.0002 1.0019 1.0003 1.0004 1.0 1.0038
% opt 90 10 70 20 80 20 60 30 100 0
CPU zH 0.37 s 1.83 s 0.35 s 1.69 s 0.35 s 1.66 s 0.35 s 1.68 s 0.27 s 1.935 s
CPU z* 5.2 min 5.1 min 5.74 min 4.75 min 4.59 min
z*/ zLB 1.00376 1.0043 1.0042 1.0052 1.0034
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from 0 to 1 in increments of 0.25. Note that in (2),EKijt 5 10. Problem sets 6–8 are designed
to investigate the impact of larger setup costs for the retailers, resulting in larger reorder
intervals. In these sets, we replace the first order autoregressive time series for the setup cost
parameters by one in which the setup costs are constant over time (set 6), increase from 50%
below their time-average value to 50% above this value, in constant increments (set 7), and
decrease from 50% above the time average under to 50% below this value, again in constant
decrements (set 8). In each of the sets 6–8, we consider three values for the average retailer
setup costk i 5 10, 30, 90. To provide some insight into the implications of these parameter
choices, note that if the demands across different items could be aggregated and if all parameter
values were constant over time at their time-average value, the model would reduce to a periodic
review version of Roundy [22] in which case all reorder intervals are optimally set, before
rounding to power-of-two values, between 1.26 and2.83 (K 5 10), 2.19 and 4.9 (K 5 30),
and 3.78 and8.49 (K 5 90).

Tables 1–8 correspond to sets 1–8. In each column we report for a sample of 10 instances,
generated with the corresponding parameters: (i) the average optimality gap, (ii) the % of
instances for which the partitioning heuristic identifies an optimal solution, (iii) the average CPU
time required by the heuristic, (iv) the average CPU time required by the branch-and-bound
method, and (v) the average ratio of the heuristic value and the lower boundLB.

Problem sets 9 and 10 consider instances withN 5 50 andN 5 150, respectively. Since the
exact branch-and-bound method is intractable whenN .. 20, we evaluate the optimality gap
of the partitioning heuristic only via the ratio of the cost value of the heuristic solution and the
lower boundLB. As before, each column reports on the average performance of the heuristic
across a sample of 10 instances, generated with the specified parameters and solved with the
specified interval lengths.

Our overall conclusion is that the partitioning heuristics are very efficient and highly accurate
even beyond our experience with a similar heuristic for Joint Replenishment Problems (see
Federgruen and Tzur [9]. Even problems with a planning horizon of up to 150 periods can be

Table 7. Problem set 7:Ki increasing from 50% below to 50% above specified levels;
N 5 18, J 5 m 5 5.

Ki 10 30 90

n 5 6 n 5 9 n 5 6 n 5 9 n 5 6 n 5 9

zH/z* 1.0002 1.0009 1.009 1.0003 1.0002 1.005
% opt 70 20 10 60 70 0
CPU zH 0.31 s 1.23 s 0.22 s 1.07 s 0.18 s 0.53 s
CPU z* 3.57 min 1.11 min 9.5 s
z*/ zLB 1.0065 1.034 1.13

Table 6. Problem set 6:Ki constant;N 5 18, J 5 m 5 5.

Ki 10 30 90

n 5 6 n 5 9 n 5 6 n 5 9 n 5 6 n 5 9

zH/z* 1.0001 1.0013 1.012 1.005 1.019 1.0061
% opt 80 20 10 20 0 10
CPU zH 0.33 s 1.43 s 0.2 s 1.08 s 0.11 s 0.46 s
CPU z* 4.51 min 1.24 min 13.4 s
z*/ zLB 1.006 1.03 1.107
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solved within 1.5% of optimality, employing intervals of 5–10 periods only and in a matter of
CPU seconds, or up to a few minutes, using longer intervals and when the number of items and
retailers is large. These CPU times refer to a SUN 4M (SPARC) workstation. The perfect
performance of the heuristic in set 4 appears to arise because, with 10 items sold at 10 retailers,
it becomes optimal for the warehouse to place an order in almost all, if not every period, so that
time partitioning can be implemented without loss of optimality. As can be expected, the
computational effort increases significantly with the choice of the interval length, reaching over
100 CPU minutes when intervals of lengthn 5 15 are chosen (andN 5 150). Wealso notice
that, in accordance with our asymptotic optimality results, the performance of the heuristic
continues to improve asN, the length of the planning horizon, increases. In general, the
optimality gaps decrease as the interval length is increased, i.e., as fewer intervals are employed.
This is in particular true when an interval lengthn is replaced by a multiple thereof. The
monotonicity is less clear when comparing two interval lengthsn1 , n2, wheren2 fails to be
a multiple ofn1 (see, e.g., Table 5).

5. CONCLUDING REMARKS

We have described a general methodology for the design of time-partitioning heuristics for
dynamic lot-sizing problems. We have shown how different elements can be chosen to ensure
polynomial complexity, asymptotic optimality asN, the length of the horizon, tends to infinity,
as well ase-optimality for fixedN and any arbitrarily small optimality gape. We have shown
how different choices can be made regarding most or all of these elements, with different
impacts on the heuristics’ feasibility and performance. Finally, we have used the general
approach to develop an efficient heuristic for a one-warehouse, multiretailer and multiitem
model, which can be tailored to satisfy each of the above optimality criteria. A comprehensive
numerical study shows that the method is highly efficient and generates solutions that are very
close to optimal. The methodology can, in principle, be applied to more general production/
distribution networks. On the other hand, for such more elaborate systems, additional heuristic
adaptations are needed to ensure practical efficiency, due to the complexity involved in solving

Table 8. Problem set 8:Ki decreasing from 50% above to 50% below specified levels;
N 5 18, J 5 m 5 5.

Ki 10 30 90

n 5 6 n 5 9 n 5 6 n 5 9 n 5 6 n 5 9

zH/z* 1.0003 1.001 1.009 1.004 1.008 1.006
% opt 60 30 0 0 0 10
CPU zH 0.29 s 1.59 s 0.17 s 0.63 s 0.13 s 0.5 s
CPU z* 5.46 min 1.77 min 10.2 s
z*/ zLB 1.0042 1.031 1.16

Table 9. Problem set 9:m 5 5, J 5 5.

N 50 150

n 5 5 n 5 10 n 5 5 n 5 10 n 5 15

zH/zLB 1.0088 1.0048 1.0087 1.0052 1.0054
CPU zH 0.45 s 14.88 s 1.55 s 49.0 s 14.5 min
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each of the intervals’ subproblems. Tzur [25] describes two possible approaches to achieve this
objective, but additional future research needs to be carried out to evaluate how well these
approaches perform in various settings.

APPENDIX

LEMMA 2: The quantitiesDi (i 5 1, . . . , m), defined in the proof of Theorem 2, satisfy bounds of the type:

O
i[S,

Di # b,, , 5 1, . . . , uSu (13)

Moreover,

r 5 maxH O
i50

m

K*i 1 O
i[S

~c*i 1 c*0 2 ci* 2 c0* 2 h0* !DiJ
s.t. O

i[S,

Di # b,, , 5 1, . . . , uSu.

PROOF: Note that for all 1# r # t,,

rh0* O
i[S,

~Di 2 Xr
i ! # O

i[S,

K*i 1 K*0 1 O
i[S,

~c*i 1 c*0 2 ci* 2 c0* !~Di 2 Xr
i !

# O
i[S,

K*i 1 K*0 1 Lh0* O
i[S,

~Di 2 Xr
i !, (14)

whereXr
i denotes the cumulative demand for retaileri in the first (r 2 1) periods of thehth interval.

The second inequality in (14) is immediate from the definition ofL. To verify the first inequality in (14), we assume
without loss of generality that, at each retailer, units are demanded on a FIFO basis, i.e., in the sequence in which they
enter the warehouse. This implies that the number of carryover units for retaileri , left in the system at the beginning
of periodr , equals (Di 2 Xr

i ). Thus, if the first inequality in (14) is violated then a strict cost improvement could be
achieved by postponing till periodr the ordering by the warehouse ofall the carryover units in stock (somewhere in the
system) at the beginning of that period and by postponing their transfer to the appropriate retailer till periodr , if this
transfer was originally scheduled to take place prior to periodr . Note that the additional setup costs due to these
postponements is bounded by¥i[S,

K*i 1 K*0. The additional variable order costs are bounded by¥ i[S,
(c*i 1 c*0 2

ci* 2 c0* )(Di 2 Xr
i ) since the warehouse orders ofexactly(Di 2 Xr

i ) units for retaileri (i [ S,) are postponed as
well as the retailer orders ofat mostas many units. (Note that the per unit increase in warehouse order costs is bounded
by (c*0 2 c0* ) and the per unit increase in retailer order costs is bounded by (c*i 2 ci* ). On the other hand, the
postponements reduce the echelon stock for (Di 2 Xr

i ) units at retaileri in at least one period prior to thehth interval
andall periods 1, . . . ,r 2 1, i.e., in at leastr periods resulting in inventory cost savings of at leastrh0* ¥ i[S,

(Di

2 Xr
i ).

Let X# r
i 5 Di 2 Xr

i It follows from (14) that

~r 2 L!h0* O
i[S,

X# r
i # O

i[S,

K*i 1 K*0. (15)

Thus, for r . L,

Table 10. Problem set 10:m 5 10, J 5 10.

N 50 150

n 5 5 n 5 10 n 5 5 n 5 10 n 5 15

zH/zLB 1.015 1.0148 1.0149 1.0149 1.0149
CPU zH 8.15 s 2.3 min 22.7 s 7.1 min 113.9 min
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O
i[S,

X# r
i #

O
i[S,

K*i 1 K*0

~r 2 L!h0*
, (16)

O
i[S,

Xr
i # ~r 2 1! O

i[S,

d*i (17)

Adding (16) and (17) and taking the minimum overr on the interval [L 1 1, t,], we get

O
i[S,

Di # min
L11#r#t,

5 ~r 2 1!S O
i[S,

d*iD 1

O
i[S,

K*i 1 K*0

~r 2 L!h0*
6 (18)

The expression within curled brackets is clearly a convex function ofr which decreases for

L 1 1 # r # r* ; L 1 Î2~O
i[S,

K*i 1 K*0!

~h0* O
i[S,

d*i !  or r* ; L 1 Î2~O
i[S,

K*i 1 K*0!

~h0* O
i[S,

d*i! .

Assume first thatt, $ L 1 1. It follows that the minimum in (18) is achieved forr 5 min(t,, r*), i.e.,

O
i[S,

Di # @min~t,, r* ! 2 1#S O
i[S,

d*iD 1

O
i[S,

K*i 1 K*0

~min~t,, r* ! 2 L!h0*
, t, $ L 1 1. (19)

If t, # L, we clearly have the bound

O
i[S,

Di # t, O
i[S,

d*i (20)

Let b,(t,) denote the right-hand side of (19) whent, $ L 1 1 and of (20) whent, # L. For each demand unit of retailer
i [ S whose procurement costs are increased due to the transformation, the increase is clearly bounded by (c*i 1 c*0
2 ci* 2 c0* 2 h0* ).

A bound for the increase in variable costs due to the transformation is thus given by the value of the following linear
program:

f~t1, . . . , t uSu! 5 maxO
i[S

~c*i 1 c*0 2 ci* 2 c0* 2 h0* ! Di

s.t. O
i[S,

Di # b,~t,!, l 5 1, . . . , uSu, Di $ 0. (21)

Note that the functionb,( z ) achieves its maximum fort, 5 L 1 1, since it is increasing fort, # L, [see (20)],
decreasing fort, $ L 1 1, and

b,~L 1 1! 5 L O
i[S,

d*i 1 S O
i[S,

K*i 1 K*0D /h0* . L O
i[S,

d*i 5 b,~L!.

The optimum value of the linear program is clearly nondecreasing in the values {b,: , 5 1, . . . , uSu}. It follows that
f(L 1 1, L 1 1, . . . , L 1 1) 5 max{f(t1, . . . , t uSu): t1 # t2 # . . . # t uSu} since the functionf achieves its
unconstrainedmaximum in the point (L 1 1, . . . , L 1 1). Thus, substitutingt, 5 L 1 1 in (21), we obtain the
following bound for the total increase in variable costs due to the transformation:

maxO
i[S

~c*i 1 c*0 2 ci* 2 c0* 2 h0* ! (22)
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s.t. O
i[S,

Di # L O
i[S,

d*i 1 S O
i[S,

K*i 1 K*0D /h0* , , 5 1, . . . , uSu, Di $ 0.

The objective function of (22) can clearly be bounded from above byh ¥ i[S Di. The latter objective is clearly
maximized when

O
i[S

Di 5 L O
i[S

d*i 1 S O
i[S

K*i 1 K*0D /h0* .

Thus, the resulting bound is maximized whenS 5 {1, . . . , m} in which case it equals to

hH L O
i[S

d*i 1 S O
i[S

K*i 1 K*0D /h0* J . h
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