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Abstract Bike-sharing systems allow people to rent a bicycle at one of many

automatic rental stations scattered around the city, use them for a short journey and

return them at any station in the city. A crucial factor for the success of a bike-

sharing system is its ability to meet the fluctuating demand for bicycles and for

vacant lockers at each station. This is achieved by means of a repositioning oper-

ation, which consists of removing bicycles from some stations and transferring them

to other stations, using a dedicated fleet of trucks. Operating such a fleet in a large

bike-sharing system is an intricate problem consisting of decisions regarding the

routes that the vehicles should follow and the number of bicycles that should be

removed or placed at each station on each visit of the vehicles. In this paper, we

present our modeling approach to the problem that generalizes existing routing

models in the literature. This is done by introducing a unique convex objective

function as well as time-related considerations. We present two mixed integer linear

program formulations, discuss the assumptions associated with each, strengthen

them by several valid inequalities and dominance rules, and compare their perfor-

mances through an extensive numerical study. The results indicate that one of the

formulations is very effective in obtaining high quality solutions to real life

instances of the problem consisting of up to 104 stations and two vehicles. Finally,

we draw insights on the characteristics of good solutions.
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Introduction and problem definition

Bike-sharing systems allow people to rent a bicycle at one of the many automatic

rental stations scattered around the city, use them for a short journey and return

them at any station in the city. Recently many cities around the world established

such systems in order to encourage their citizens to use bicycles as an

environmentally sustainable and socially equitable mode of transportation, and as

a good complement to other modes of mass transit systems (mode-sharing).

A rental station typically includes one terminal and several bicycle stands. The

terminal is a device capable of communicating with the electronic lockers, which

are attached to the bicycle stands. When a user rents a bicycle, a signal is sent to the

terminal that the locker has been vacated. A user can return a bicycle to a station

only when there is a vacant locker. All rental and return transactions are recorded

and reported in real time to a central control facility. Thus, the state of the system, in

terms of the number of bicycles and number of vacant lockers available at each

station, is known to the operator in real time. Moreover, operators of bike-sharing

systems make this information available to the users online.

A crucial factor in the success of a bike-sharing system is its ability to meet the

fluctuating demand for bicycles at each station. In addition, the system should be

able to provide enough vacant lockers to allow the users to return the bicycles at

their destinations. Indeed, one of the main complaints heard from users of bike-

sharing systems relates to unavailability of bicycles and (even worse) unavailability

of lockers at their destination, see, e.g., Shaheen and Guzman (2011) and media

reports Brussel Nieuws (2010) and Tusia-Cohen (2012). Persistent unavailability of

bicycles and/or lockers engenders distrust among the system’s users and could

eventually lead them to abandon it.

We measure user dissatisfaction with the system through the expected number of

shortage events. Such an event occurs when a user who wishes to rent a bicycle

arrives at an empty station or a user who wishes to return a bicycle arrives at a full

station, with no vacant lockers. In order to reduce shortages, operators of bike-

sharing systems are responsible to regularly remove bicycles from some stations and

transfer them to other stations, using a dedicated fleet of light trucks. We refer to

this activity as repositioning of bicycles. The goals of the operators are to minimize

the number of shortages incurred in the system and the fleet’s operational costs.

Consequently, repositioning of bicycles in the system involves routing decisions

concerning the vehicles, starting from and returning to the depot, and inventory

decisions concerning bicycles in the rental stations. The latter involves determining

the number of bicycles to be removed or placed in each station on each visit of the

vehicles. Ideally, the outcome of this operation would be to meet all demand for

bicycles and vacant lockers, but this may not be possible due to demand uncertainty,

capacity constraints of the vehicles and the stations, and the inherent imbalances in

the renting and return rates at the various stations. The imbalance is sometimes
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temporary, e.g., high return rate in a suburban train station during the morning and a

high renting rate during the afternoon, or persistent, e.g., relatively low return rates

in stations located on top of hills. Therefore, a new modeling approach is required;

one that will correctly represent a practical objective of the repositioning operation,

related to the users’ satisfaction with the system. Toward that we define a penalty

function, which represents the expected number of shortages at any inventory level

at each station. The use of such an objective, combined with new model

characteristics, is the essence of this paper.

The repositioning operation can be carried out in two different modes: one is

during the night when the usage rate of the system is negligible; the other is during

the day when the status of the system is rapidly changing. We refer to the former as

the static bicycle repositioning problem (SBRP) and to the latter as the dynamic

bicycle repositioning problem (DBRP). Some operators use static repositioning,

some dynamic, and some use a combination of the two, Callé (2009).

In this paper, we focus on the static mode of operation which benefits from a

practical advantage because it allows the repositioning fleet to travel swiftly in the

city without contributing to traffic congestion and parking problems. Static

repositioning is useful for arranging the inventory of bicycles in the system toward

the next day. When combined with dynamic repositioning, it reduces the amount of

work required in the latter mode. The static problem needs to be solved once at the

beginning of every night, based on the status of the system at that time and the

demand forecast for the next day. While the problem lies in the general domain of

vehicle routing problems, it involves some unique characteristics that require

appropriate modeling. The model we present in this paper generalizes existing

routing models from the literature, as shown in the next section.

We formally define the SBRP as follows. The input of the problem is a set of stations,

with one designated as the depot; initial inventory, capacity, and a convex penalty

function for each station; a travel-time matrix between stations; and a set of non-

identical capacitated repositioning vehicles. A solution is defined by a route for each

vehicle and the quantity of bicycles to load or unload at each station along this route. The

planned routes must satisfy a time constraint. The length of each route is calculated as

the sum of the travel times between all pairs of consecutive stations along the route plus

the time needed for loading and unloading at the stations, which depends on the

quantities of bicycles handled. The goal is to minimize a weighted objective that consists

of the sum of the stations’ penalty costs and the total operating costs of the vehicles. This

problem definition generalizes our preliminary work, see Forma et al. (2010).

The penalty function at each station may represent any objective of the operator,

as long as it is convex in the ending inventory of the station. We advocate the usage

of penalty functions that represent the expected number of shortages in a station

during the next day given its initial inventory, its capacity, and the stochastic

characteristics of the demand process. Raviv and Kolka (2012) present an efficient

procedure to calculate these functions and prove their convexity. For the sake of

completeness, we summarized the relevant results from their paper in Appendix A.

For more details, the reader is referred to that paper.

The contribution of this paper is in presenting a new and practical approach to

modeling the SBRP. It involves defining a non-traditional objective function, which
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is related to the satisfaction of users in the system. It also includes other new

characteristics such as loading and unloading times within a time constrained

setting. Based on this approach we present two mixed integer linear program

(MILP) formulations, which differ from each other in their modeling choices and

underlying assumptions. On the methodological side, the above formulations are

strengthened by some valid inequalities and dominance rules that are likely to be

useful in other routing problems, especially those that are generalized by this work.

Finally, we applied our methods on a variety of large instances based on real data

and achieved small optimality gaps within a reasonable time.

The rest of this paper is organized as follows: in ‘‘Literature review’’, we review

the literature, describe related work from several application areas and identify the

gaps that should be addressed. In ‘‘Model formulation’’, we present our modeling

approach by specifying the underlying assumptions, elaborating on the chosen

objective function, and presenting our mathematical formulations. In ‘‘Algorithmic

enhancements’’, we discuss algorithmic enhancements that are useful in solving the

mathematical models effectively. In ‘‘Numerical experiments’’, we describe our

numerical experiments, the results, and their analysis. Finally, in ‘‘Conclusions and

discussion’’, we discuss possible extensions and directions for further research.

Literature review

In this section, we first review recent studies on bike-sharing systems and in

particular on the repositioning operation in those systems. Then we discuss the

relation of the repositioning problem to classical routing and inventory/routing

problems from the literature.

Modern bike-sharing systems have become prevalent only in the last few years;

therefore, the existing literature analyzing these systems is relatively new. There are

various interesting research questions concerning the establishment, operation and

analysis of bike-sharing systems. Indeed, some works study strategic problems, such

as Shu et al. (2010) and Lin and Yang (2011) who address the question of bike

rental stations’ capacity and locations. Others present empirical analysis, e.g.,

DeMaio (2009) and Hampshire and Marla (2011). Fricker and Gast (2012) study the

system’s behavior and the effect of various load-balancing strategies on their

performances. They conclude that in asymmetric systems, repositioning of bicycles

by trucks is necessary even when an incentive mechanism to self-balance it is put in

place. Vogel and Mattfeld (2010) present a stylized model to assess the effect of

dynamic repositioning efforts on service levels. Their model is useful for strategic

planning but is not detailed enough to support repositioning operations.

Several approaches to modeling and optimizing the repositioning problem have

recently been developed. There are essential differences between them in the

underlying assumptions concerning the perceived system’s behavior and the

problem’s objective, as we discuss next. Benchimol et al. (2011) and Chemla et al.

(2011) address the static repositioning problem, assuming that a given target

inventory level exists for each station in the system so that the objective of the

repositioning operation is to achieve this target at minimum travel cost. The method
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by which the target levels are obtained is not specified. Since no deviation from the

target level is allowed, no time constraint is imposed on the repositioning operation

(otherwise, it may not be feasible). A result of these assumptions is that the problem

resembles the deterministic C-delivery TSP (Chalasani and Motwani 1999) or a

single vehicle, single commodity pickup and delivery problem (PDP), discussed

below. Erdoğan et al. (2012) extend the above studies by allowing the final

inventory at each station to be within a pre-specified interval instead of at a given

target value.

The models presented in this paper generalize the above-mentioned studies since

we do not specify a target inventory level or interval, but rather allow reaching any

inventory level and use a convex penalty function to express its cost. Indeed, the

SBRP can be cast as the problem presented in Erdoğan et al. (2012) (resp., Chemla

et al. (2011)) by selecting penalty functions that assign a value of zero for each final

inventory level inside the desired interval (resp., at the target level) and a very large

number for each inventory level outside it (resp., different from it).

Contardo et al. (2012) present a mathematical programming formulation for the

dynamic repositioning problem (DBRP) and use decomposition schemes to obtain

lower bounds and feasible solutions. Although their formulation bears some

similarity to our time-indexed formulation, see ‘‘Time-indexed formulation’’, there

are two important differences: first, their setting is deterministic and does not take

into consideration the stochastic nature of the demands for bicycles and for lockers

while in our model this stochasticity can be expressed by the convex penalty

function. Second, our model includes loading and unloading times, which are

proportional to the number of bicycles loaded/unloaded, whereas Contardo et al.

(2012) do not refer to these times and it is unclear whether and how they can be

incorporated in their formulation or in their solution method. In practice, loading

and unloading times comprise a major portion of the repositioning time; hence, their

inclusion is crucial for a correct representation of the problem and for obtaining

good repositioning plans.

Nair and Miller-Hooks (2011) use a stochastic programming approach to perform

repositioning in shared mobility systems. Their model assumes that the cost of

moving objects (bicycles or cars) between two given stations is known and

represented by a fixed plus-linear function, so that no routing constraints and costs

are considered. This assumption may be realistic for the one-way car-sharing

systems that motivated their work, but too simplistic for the bicycle repositioning

problem addressed here. Moreover, their model calculates vehicle shortages based

on the net demand during some planning period, which does not take into

consideration the dynamics of the demand during that period. Such calculations may

be valid only when a relatively short planning period is considered.

Raviv and Kolka (2012) show how to calculate the expected number of shortages

as a function of the inventory level at the beginning of the day, which can be used in

our model to represent the dynamics of the demand. Their method requires as input

the rates of two independent non-homogenous Poisson demand streams for users

seeking to rent bicycles and users seeking to return bicycles at a single station,

during some planning period, e.g., during the next day. Although their model

considers only a single station system, they demonstrate through simulation that
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their results are robust to the inherent interactions between stations in a large real

system.

There are some similarities between bike-sharing systems and car-sharing

systems. The latter may belong to the round-trip, or to the one-way type of systems,

based on whether the users have to return the cars to the same parking space or can

return them to any station. For the former see, e.g., Mukai and Watanabe (2005) and

for the latter see Uesugi et al. (2007). However, there are major differences between

bike- and car-sharing systems, since typically a car is moved from one location to

another by assigning a driver to it, while bicycles are moved in batches by

repositioning vehicles.

Repositioning problems bear similarities to other routing problems from the

literature. The basic operation performed during repositioning is that of pickup and

delivery of identical items (bicycles). Berbeglia et al. (2007) survey the literature on

static PDPs and classify them according to various parameters. By this classifica-

tion, the repositioning problem presented in this study is most similar to a many-to-

many single commodity PDP with a non-linear objective function, for which no

studies are available. Moreover, in PDPs, the quantities picked-up or delivered to a

node are given, as opposed to our SBRP where they are decision variables.

The studied problem which is most similar to the SBRP is the one-commodity

pickup and delivery traveling salesman problem (1-PDTSP), introduced by

Hernández-Pérez and Salazar-González (2004a). The 1-PDTSP is a generalization

of the well-known TSP where each customer has supply or demand of a given

amount of a single product. They present an ILP model, and describe a branch-and-

cut procedure for solving it. Hernández-Pérez and Salazar-González (2004b) present

heuristic methods for the problem and demonstrate their applicability for instances

with up to 500 nodes. Louveaux and Salazar-González (2009) consider the 1-PDTSP

with stochastic demand or supply. They study the problem of finding the smallest

vehicle capacity that assures feasibility, i.e., being able to satisfy all demands; for a

given vehicle’s capacity, they search for a tour that minimizes the objective function,

which includes a penalty that is proportional to the unsatisfied demand.

Our model for the SBRP extends the 1-PDTSP in the following four ways: (a) the

number of vehicles that perform the task may be greater than one; (b) the number of

items picked-up or delivered to each customer is a decision variable with an

associated convex term in the objective function, rather than a parameter; (c) the

total travel time allotted to the task is restricted; (d) a time is associated with the

loading and unloading of items (bicycles). Note that the SBRP also differs from

the 1-PDTSP by the fact that the stations may be visited by the same vehicle more

than once. However, in order to simplify the problem, one of our formulations

excludes such solutions.

Bicycle repositioning problems also bear similarities to the Inventory Routing

Problem (IRP), where one needs to determine the routes of the vehicles, as well as

the quantities of items to load or unload at each visited node. However, in the IRP,

as in most inventory models, demand only depletes the available inventory. Returns,

which increase the available inventory at a facility, either do not occur at all, or

represent a significantly lower volume in the system. For a recent survey on IRP, see

Bertazzi et al. (2008).
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Finally, another closely related routing problem is the Swapping Problem (SP),

first introduced by Anily and Hassin (1992). The goal in the SP is to compute a

shortest route such that a vehicle of a single unit capacity can rearrange objects of

known types from nodes where they are initially located to nodes where they are

requested. Anily and Hassin (1992) show that the problem is NP-Hard and present a

2.5 approximation algorithm. The SP is more general than our problem in that

objects may belong to more than one type; however, in the SP the demand at the

nodes is limited to one unit, and there is only one vehicle with a capacity limited to

one. Further studies on the SP focus mainly on special cases of the problem for

which a polynomial time optimization or approximation algorithms are possible,

e.g., see Anily et al. (1999). A recent study by Bordenave et al. (2010) presents a

constructive approach and several improvement heuristics that provide near optimal

solutions (optimality gap of less than 1 % on average) of instances with up to

10,000 nodes.

To summarize, this paper closes a significant gap in the routing literature, by

introducing and solving a model whose goal is to minimize a convex function over

the final inventory at the nodes, rather than merely minimize linear traveling/

shortage/holding costs (or any combination of these cost components). The

convexity of the objective function allows dealing directly with the stochastic nature

of the demand at the nodes even though the model is deterministic. While the model

presented here is customized for the SBRP, we hope that it will open a new line of

research on problems where routing and inventory decisions should be made

simultaneously in a stochastic setting.

Model formulation

As mentioned in the ‘‘Introduction’’, our objective function includes a term, which

represents the users’ satisfaction with the system (the sum of the penalty functions

of all the stations), and a term that represents the operating costs that are

proportional to the total distance travelled by the repositioning vehicles. The

weighted sum of the two components is the total cost of the problem. An important

special case of the above bi-objective function is when the weight of the operating

costs is zero, expressing a situation in which the marginal operating costs are

negligible relative to the importance of the service quality provided to the users.

The SBRP is to determine the route of each vehicle and the number of bicycles to

load or unload at each station visited by the vehicles, such that the total penalty and

operational costs are minimized. We assume the existence of a depot as the starting

and ending point of each vehicle’s route. However, we note that the depot may be

viewed as a regular station, except that it typically has a relatively large capacity,

large initial inventory and no demand. The above decisions are subject to capacity

constraints of the vehicles, the stations and the depot, as well as time constraints

concerning the total traveling, loading and unloading times. The latter two

components are assumed to be linear in the number of bicycles loaded/unloaded.

Additional modeling choices are associated with the permissible actions of the

fleet of vehicles performing the repositioning operation, in particular, limitations on
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the allowed set of routes and/or limitations on the quantity of bicycles loaded/

unloaded at each station. Such limitations may result from operational consider-

ations or from computational limitations. We describe and discuss these limitations

in detail later in this section, when presenting our mathematical formulations.

Table 1 at the end of this section summarizes the capabilities and assumptions of the

formulations presented.

In the static version of the problem studied here, repositioning is performed while

the demand for bicycles and vacant lockers is assumed to be zero. Indeed, in reality

the demand during the night is negligible. A given length of time (say, 5 h, from 1

am to 6 am every night) is allotted to the repositioning operation, and its purpose is

to improve the starting conditions (bicycle initial inventory levels at the stations) of

the next day.

Next, we present notation that is common to all our formulations.

Notation

The static repositioning problem is described by the following sets and parameters:

N Set of stations, indexed by i ¼ 1; . . .; Nj j
N0 Set of nodes, including the stations and the depot (denoted by i ¼ 0),

i ¼ 0; . . .; Nj j
V Set of vehicles, v ¼ 1; . . .; Vj j
s0

i
Number of bicycles at node i before the repositioning operation starts

ci Number of lockers installed at station i 2 N0, referred to as the station’s

capacity

kv Capacity (number of bicycles) of vehicle v 2 V

fi sið Þ A convex penalty function for station i 2 N, the function is defined over the

integers si ¼ 0; . . .; ci

tij Traveling time from station i to station j

a Weight/scaling factor (in the objective function) of the operating costs

relative to the penalty costs

T Repositioning time, i.e., time allotted to the repositioning operation

L Time required to remove a bicycle from a station and load it onto the vehicle

U Time required to unload a bicycle from the vehicle and hook it to a locker in

a station

To further clarify the above notation recall that static repositioning occurs during

the night, and it starts when the quantity of bicycles at node i is s0
i . Due to the

repositioning operation, a different inventory level, si, is reached at the end of it,

which determines the penalty cost. The penalty functions, fi sið Þ, are calculated in a

pre-processing step for every possible inventory level, i.e., from zero to the

maximum capacity of each station i.

We suggest penalty functions fi sið Þ that represent the expected number of

shortages during the next working day. Note that while the model is a deterministic

mixed integer program, the stochastic nature of the demand is already incorporated

via the above definition of the fi �ð Þ functions. The shortages may be weighted
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according to whether they are incurred due to a lack of bicycles or a lack of vacant

lockers, since each type of shortage represents a different level of users’

dissatisfaction. This is a consideration, which can be incorporated in the pre-

processing step, when employing the procedure of Raviv and Kolka (2012) and is

part of our model’s input.

Finally, note that the parameters a; L and U may be vehicle dependent (i.e., av; Lv

and Uv) with no change in the formulations below. Such generalization may

represent a non-homogenous fleet of vehicles, where larger vehicles, e.g., incur

higher operating costs and/or different loading and unloading times. For simplicity,

we omit this generalized notation.

Arc-indexed formulation

Our first mathematical formulation of the problem is referred to as the arc-indexed

(AI) formulation. Initially, the first term of the objective function is represented by a

sum of (discrete) convex functions, while later these functions are linearized in an

exact manner through a set of constraints. In this formulation, we assume that each

station may be visited at most once by each vehicle, although a certain station may

be visited by several vehicles. This assumption reduces the feasible solution set and

may result in inferior solutions. However, it simplifies the problem significantly so

that relatively large instances can be solved by a commercial solver. We discuss the

implications of this assumption in the numerical study section. Let us define the

following decision variables:

xijv Binary variable which equals one if vehicle v travels directly from node i to

node j, and zero otherwise

yijv Number of bicycles carried on vehicle v when it travels directly from node i to

node j. yijv is zero if the vehicle v does not travel directly from i to j

yL
iv

Number of bicycles loaded onto vehicle v at node i

yU
iv

Number of bicycles unloaded from vehicle v at node i

qiv Auxiliary variables used for sub-tour elimination constraints

si Inventory level at node i at the end of the repositioning operation

The following parameter needs to be defined and used specifically in this

formulation:

M An upper bound on the number of arcs in a vehicle’s tour whose length is at

most T time units, where the vehicle visits each station at most once (M ¼ N0j j
is a trivial such upper bound; it may be strengthened when T is small, by

solving a simple integer program).

We are ready to present the AI formulation,

(P1)—Arc-indexed (AI) formulation.

Min
X

i2N

fiðsiÞ þ a
X

i2N0

X

j2N0

X

v2V

tijxijv ð1Þ

s.t.
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si ¼ s0
i �

X

v2V

ðyL
iv � yU

ivÞ 8i 2 N0 ð2Þ

yL
iv � yU

iv ¼
X

j2N0;j6¼i

yijv �
X

j2N0;j 6¼i

yjiv 8i 2 N0; 8v 2 V ð3Þ

yijv� kvxijv 8i; j 2 N0; i 6¼ j; 8v 2 V ð4Þ
X

j2N0;j 6¼i

xijv ¼
X

j2N0;j 6¼i

xjiv 8i 2 N0; 8v 2 V ð5Þ

X

j2N0;j6¼i

xijv� 1 8i 2 N; 8v 2 V ð6Þ

X

v2V

yL
iv� s0

i 8i 2 N0 ð7Þ

X

v2V

yU
iv � ci � s0

i 8i 2 N0 ð8Þ

X

i2N0

yL
iv � yU

iv

� �
¼ 0 8v 2 V ð9Þ

X

i2N

LyL
iv þ UyU

iv

� �
þ
X

i2N

Ly0iv þ Uyi0vð Þ þ
X

i;j2N0:i 6¼j

tijxijv� T 8v 2 V ð10Þ

qjv� qiv þ 1�M 1� xijv

� �
8i 2 N0; j 2 N; i 6¼ j; 8v 2 V ð11Þ

xijv 2 f0; 1g 8i; j 2 N0 : i 6¼ j; 8v 2 V ð12Þ

yL
iv� 0; yU

iv � 0; integer 8i 2 N0; 8v 2 V ð13Þ
yijv� 0 8i; j 2 N0 : i 6¼ j; 8v 2 V ð14Þ

si� 0 8i 2 N0 ð15Þ
qiv� 0 8i 2 N0; 8v 2 V ð16Þ

The objective function (1) minimizes the total cost of the system, consisting of

the sum of the penalties incurred at all stations and the total operating costs,

appropriately weighted by a factor of a. Constraints (2) are inventory-balance

constraints at the nodes (the stations and the depot). Constraints (3) represent the

conservation of inventory on the vehicles, and constraints (4) limit the quantity

carried on each vehicle to its capacity. These constraints also set the quantity carried

on a vehicle to zero when it travels directly from i to j if the vehicle does not use that

arc. Constraints (5) are vehicle flow-conservation equations. Constraints (6) insure

that each station is visited at most once by each vehicle and constraints (7) (resp.,

(8)) limit the quantity picked-up by all vehicles from a station (resp., delivered to a

station) to the quantity available there initially (resp., the residual capacity of the

station), see the ‘‘Discussion’’ below. Note that constraints (7) also imply non-

negativity of the inventory variables, while constraints (8) also insure that the

inventory at each station and at the depot is bounded by its capacity; therefore, these

two restrictions are not written explicitly. Constraints (9) stipulate that all the
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bicycles that are loaded onto the vehicles are also unloaded. Constraints (10) limit

the total loading and unloading times plus the travel times to the total time available

for the repositioning operation. Constraints (11) are sub-tour elimination constraints

that are similar to those of Miller et al. (1960). Finally, (12) and (13) are binary and

general integrality constraints, respectively, and (14)–(16) are non-negativity

constraints. Note that the integrality of yijv and si is implied by the integrality of

yL
iv; y

U
iv and s0

i .

Our next step is to replace the functions fiðsiÞ by a linear term and linear

constraints. Then the entire objective function would be linear (since the second

term, a
P

i2N0

P
j2N0

P
v2V tijxijv, is also linear) and the above formulation would

become a MILP. This is possible, since each fiðsiÞ is defined over integer inventory

values and supported by a piecewise linear and convex function.

Recall that the values of fiðsiÞ are known for all i and all si ¼ 0; . . .; ci from the

pre-processing step. Using these values, we define and calculate for all i ¼ 1; . . .;N
and u ¼ 0; . . .; ci � 1 the following parameters (u is the index over which si is

defined):

biu � fi uþ 1ð Þ � fi uð Þ
aiu � fi uð Þ � biu � u:

From the above calculations, we can observe that biu is the marginal penalty

(which may be negative) of the uþ 1ð Þth bicycle at station i. Together, aiu and biu

represent the intercept and slope, respectively, of the linear function that supports

the convex cost function fi :ð Þ at the level of u, see Fig. 1. These linear functions are

added as constraints to the MILP and insure that the correct fiðsiÞ value will be

incurred in the objective function, given the chosen decision variable, si.

Specifically, linearity of the formulation is achieved by defining the following

decision variables:

gi Penalty incurred at station i;

(gi is equal to fiðsiÞ, for the value of si determined by the MILP solution.)

We can now replace the previous convex terms in the objective function by linear

terms:

Min
X

i2N

gi þ a
X

i2N0

X

j2N0

X

v2V

tijxijv ð17Þ

Fig. 1 Linear functions
supporting fi uð Þ
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and add the following constraints to the formulation:

gi� aiu þ biusi 8i 2 N; u ¼ 0; . . .; ci � 1 ð18Þ
The resulting MILP formulation consists of the objective function (17) subject to

constraints (2)–(16) and (18). Note that since the convex term in (1) is defined over

integer values only (number of bicycles), the linearization scheme, described by

(17) and (18), is exact and not approximated. The following assumptions are

embedded in the above formulation. First, as noted above, each station may be

visited at most once by each vehicle, see constraints (6). However, a certain station

may be visited by several vehicles. Thus, the total quantity picked-up from a station

or delivered to it by all vehicles is limited as stated in constraints (7)–(8). Together

these constraints verify that bicycles are not transshipped from a station before they

are brought to it (or delivered to a station before space is available) during another

visit of a different vehicle. In other words, these constraints exclude situations in

which the inventory level at a station is negative or exceeds its capacity, in the

interim of the repositioning period. In fact, these restrictions are more severe than

required in practice, because they exclude the possibility of a vehicle picking-up

bicycles that were previously brought by another vehicle, or delivering bicycles to a

station that has available capacity due to another vehicle removing bicycles from it

in an earlier visit. The time-indexed formulation presented in ‘‘Time-indexed

formulation’’ relaxes this restriction, but is harder to solve.

Second, it is assumed that all bicycles brought to the depot by the vehicles are

unloaded there, even if the vehicle is about to continue its trip and needs to load new

bicycles in order to deliver them to other stations. This is due to the inability of the

AI model to keep track of the total number of bicycles loaded and unloaded at the

depot, and consequently the time that these operations consume. While this

assumption is somewhat conservative, its effect on the solution is marginal.

Finally, vehicles may redistribute bicycles in the system in any way that

improves the objective function. This means, e.g., that a vehicle may deliver

bicycles to a station even if the station already has more than its ‘‘ideal’’ quantity,

that is, the quantity that minimizes the first term of the cost function. Such an action

may be justified if the bicycles are brought from a station where their presence is

more costly. Since the objective is to minimize the overall cost in the system, this

capability is desirable.

Solving the problem using the above formulation may become quite time

consuming for problems of a realistic size. To reduce the running time, we propose

two directions: one is adding valid inequalities that are specific to this formulation.

Another is solving the problem through a two-stage heuristic, a method which is

used also to reduce the running times of the other formulations, and is described in

‘‘A two-phase solution method’’.

The following valid inequalities may be added to the formulation:
X

j2N

x0jv� 1 8v 2 V ð19Þ

Constraints (19) verify that each vehicle departs from the depot at least once. We

observed numerically that this valid inequality proved to be particularly useful,
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since without it, the number of vehicles that ‘‘leave’’ the depot in the LP relaxation,

is fractional, according to the required capacity. Forcing a whole vehicle to leave the

depot propagates by the vehicle flow-conservation Eq. (5) to all other visited nodes.

yL
iv�minðs0

i ; kvÞ
X

j2N0

xijv 8i 2 N; 8v 2 V ð20Þ

yU
iv �minðci � s0

i ; kvÞ
X

j2N0

xijv 8i 2 N; 8v 2 V ð21Þ

Constraints (20)–(21) are somewhat similar to constraints (7)–(8), but refer to the

loading and unloading quantity limitations of a single vehicle (rather than all

vehicles). This enables tightening the right-hand side of the constraint by including

the vehicle’s capacity, and conditioning it only for cases in which the vehicle visits

the station.

yL
iv þ yU

iv �
X

j2N0

xijv 8i 2 N; 8v 2 V ð22Þ

Constraints (22) eliminate some solutions where a vehicle enters a station without

loading or unloading any bicycle there. It is valid when the distance matrix satisfies

the triangle inequality because then it is always possible to skip a station with no

loading and unloading activities.

In addition, if vehicles are identical it is possible to break symmetry by adding

the following constraints:
X

j2N

j � x0jv�
X

j2N

j � x0;j;vþ1 8v 2 V ð23Þ

In ‘‘Numerical experiments’’, we demonstrate the capabilities of this formulation

in solving problems of moderate size.

Time-indexed formulation

Our second formulation is based on discretizing the time available for repositioning

into slots of short periods, say 5 min each. The length of each such period is denoted

by s. We define decision variables with an additional index representing the time

period. We refer to this formulation as a time-indexed (TI) formulation. The

advantage of this formulation is that the state of the system is represented by the

decision variables at all points in (the discretized) time, which enables formulating

complex situations properly. Indeed, the TI formulation extends the feasible region

compared to the AI formulation as far as the visits and quantities loaded/unloaded at

each station are concerned. Namely, it is no longer necessary to limit the number of

bicycles transshipped via other stations as described in the AI formulation [see

constraints (7) and (8)], and it is no longer necessary to limit each vehicle to visit

each station at most once. In addition, the solution can prescribe the dwelling of the

repositioning vehicle at some stations to allow possible synchronization with other

vehicles. The ability to redistribute bicycles in the system in any way that reduces

costs exists in the TI formulation in the same way as it does in the AI formulation,

see the ‘‘Discussion’’ there.
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In the formulation below, the discretized times are referred to as periods. We

define a discretized travel-time matrix, denoted by t
0

ij. These travel times are

calculated by dividing the actual travel time by the period length s, and rounding it

up to the next integer, to insure feasibility. In addition, we set t
0

ii ¼ 1, where

traveling from node i to itself represents remaining at the node for one period. Let

T
0 ¼ T=s represent the number of periods in the planning horizon. T 0 is assumed to

be integer.

The above discretization procedure is applied to the traveling times, and the

smaller s is chosen to be, the closer the resulting model is to the continuous time

case. However, loading and unloading times are typically much shorter than

traveling times, and discretizing them in the same manner would result in a model

with too many decision variables or an unreasonable deviation from the continuous

case. Therefore, later on we will show how loading/unloading times can be kept

continuous and still incorporated in the discrete periodic model. To simplify the

presentation, we first introduce the TI formulation assuming that loading/unloading

times are zero and afterward explain how to generalize the formulation to

reincorporate them. In this first, more simplistic model, it is assumed that the

loading and unloading operations are carried out at the beginning of a discretized

period before the vehicle leaves the node.

In this formulation, we present the linearized objective function and supporting

constraints directly, both of which are identical to those of the AI formulation.

The decision variables used in the time-indexed formulation are as follows:

xijtv Binary variable that equals one if vehicle v starts to travel from node i to node

j in period t, and zero otherwise

yL
itv

Number of bicycles loaded onto vehicle v at node i during period t

yU
itv

Number of bicycles unloaded from vehicle v at node i during period t

yijtv Number of bicycles carried from node i to node j by vehicle v during period t

sit Inventory level at node i at the end of period t

gi Cost incurred at station i (as in the AI formulation)

(P2)—Time-indexed (TI) formulation.

Min
X

i2N

gi þ a
X

i2N0

X

j2N0

XT 0

t¼1

X

v2V

tijxijtv ð24Þ

s.t.

gi� aiu þ biusiT
0 8i 2 N; u ¼ 0; . . .; ci � 1 ð25Þ

si0 ¼ s0
i 8i 2 N0 ð26Þ

sit ¼ si;t�1 þ
X

v2V

yU
itv � yL

itv

� �
8i 2 N0; t ¼ 1; . . .; T 0 ð27Þ

sit � ci 8i 2 N0; t ¼ 1; . . .; T 0 ð28Þ
X

j2N0

x0j0v ¼ 1 8v 2 V ð29Þ
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X

j2N0

xj;0;T
0 �t
0
j0
;v ¼ 1 8v 2 V ð30Þ

X

j2N0

xj;i;t�t
0
ji
;v ¼

X

k2N0

xiktv 8i 2 N0; t ¼ 1; . . .; T 0 � 1; 8v 2 V ð31Þ

X

j2N0

yj;i;t�t
0
ji
;v ¼

X

k2N0

yiktvþyU
itv � yL

itv

8i 2 N0; t ¼ 1; . . .; T 0 � 1; 8v 2 V

ð32Þ

yijtv� kvxijtv 8i 2 N0; t ¼ 1; . . .; T 0; 8v 2 V ð33Þ

yL
itv�minðci; kvÞ

X

j2N0

xijtv 8i 2 N0; t ¼ 1; . . .;T’; 8v 2 V ð34Þ

yU
itv�minðci; kvÞ

X

j2N0

xijtv 8i 2 N0; t ¼ 1; . . .;T’; 8v 2 V ð35Þ

yL
itv� 0; yU

itv� 0; integers 8i 2 N0; t ¼ 1; . . .; T 0; 8v 2 V ð36Þ

xijtv 2 0; 1f g 8i; j 2 N0; t ¼ 1; . . .; T 0; 8v 2 V ð37Þ

yijtv� 0 8i; j 2 N0; t ¼ 1; . . .; T 0;8v 2 V ð38Þ

sit � 0 8i 2 N; t ¼ 0; . . .; T 0: ð39Þ
The first term of the objective function (24) is identical to the linearized first

term of the objective function of the AI formulation, while the second expresses

the total traveling time of the vehicles in terms of the actual (non-discretized)

times. Constraints (25) are the linear constraints that support the convex cost

function, defined here with respect to the inventory at each station at the end of

the last period, T 0. It is equivalent to (18) in the arc-index formulation.

Constraints (26) and (27) define the initial inventory and the inventory balance at

the nodes while constraints (28) specify that the inventory at each node during

each period be bounded by its capacity. Constraints (29) and (30) specify that

each vehicle departs from the depot and returns to it at the beginning and at the

end of the repositioning operation, respectively. Constraints (31) are vehicle flow-

conservation equations; they stipulate that when a vehicle enters a node at some

period (after traveling to it a certain number of periods according to its origin), it

will leave the node at that period, possibly going to the same node itself. Thus,

these constraints schedule the movement of vehicles consistently with the

(discretized) distance matrix. Constraints (32) represent the conservation of

inventory (bicycles) on the vehicles in each period, and constraints (33) limit the

quantity carried by each vehicle in each period to the vehicle’s capacity and

stipulate that bicycles be carried only on the chosen arcs. Constraints (34) [resp.,

(35)] insure that no bicycles are loaded (resp., unloaded) at a node in each given

period if the node is not visited during that period. Finally, constraints (36)–(39)

are integrality and non-negativity constraints. In this formulation, any reference

to an index of a vector or matrix that is out of bounds should be replaced

by zero.
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The above-mentioned important advantages of the TI formulation are made

possible due to monitoring the inventory at each station in every period. These

advantages enable additional flexibility in forming solutions, which is likely to

improve the repositioning operation and consequently the optimal objective

function’s value. On the other hand, the additional flexibility needs to be weighed

against the possible increased difficulty in solving this formulation to optimality, see

‘‘Numerical experiments’’.

We define t0ii ¼ 1 to allow remaining at the stations. Note that remaining at a

station may be desirable exactly for the reasons indicated above, namely, to

synchronize the visits of different vehicles at the station. As the AI formulation does

not keep track of time, this capability cannot be observed and utilized by its

solution.

On the other hand, the TI formulation suffers from a limitation which results

from discretizing the travel times. To insure feasibility, the traveling times are

rounded up, which causes unnecessary slacks in the schedule. To overcome this

problem, as well as to allow loading/unloading times back into the formulation, we

extend the above formulation by modifying and adding some constraints. The

modifications are non-trivial, since the revised model combines a discrete and

continuous representation of time. This enables us to gain the advantages of

discreteness, discussed above, together with increased accuracy of the real time

constraints of the system.

First, we add the following two sets of constraints:
X

i;j2N0

X

t�w

tijxijt�t
0
ij
;v þ

X

i2N0

X

t�w

ðLyL
itv þ UyU

itvÞ �w � s

8w ¼ 1; . . .; T
0
; 8v 2 V ð40Þ

X

i;j2N0

X

t�w

tijxijt�t
0
ij
;v þ

X

i2N0

X

t�w

ðLyL
itv þ UyU

itvÞ� ðw� 2Þ � s

8w ¼ 1; . . .; T
0
; 8v 2 V ð41Þ

In constraints (40), the time restriction is enforced every period (i.e., every s
continuous time units). It allows monitoring closely the total time spent on all

activities (traveling and loading/unloading). While the first term on the left-hand

side of the constraint represents the total completed travel time of vehicle v on all

arcs up to a certain discretized period w, the second term on the left-hand side of the

constraint represents the total loading/unloading time spent by that vehicle up to the

same period. Note that both terms on the left-hand side of this constraint represent

continuous times, and so does the right-hand side. Since the actual travel times may

be lower than the time of an integer number of periods, a slack may be created by

the first term on the LHS of the constraint. This slack may be used by the second

term of the LHS of the constraint, by loading/unloading a larger number of bicycles

than is actually possible in a certain number of periods, see also constraints (42) and

(43) below. In particular if a vehicle remains at some station i during a period,

which is represented by traveling from node i to node i; the whole s units of time

can be spent loading and unloading bicycles since tii ¼ 0 while t0ii ¼ 1.
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Table 1 Comparing the assumptions and capabilities of the two formulations

Assumption Arc-indexed Time-indexed Example of a scenario that

is compatible with TI but

not with AI

Vehicles are allowed to

visit each station an

arbitrary number of

times

No. Each vehicle can visit

each station at most

once. Each station can be

visited by several

vehicles

Yes A vehicle travels from the

depot to station 1,

unloads some bicycles,

travels to station 2, loads

some bicycles and then

returns to station 1 to

unload them

Transshipments are

allowed, that is, vehicles

can unload bicycles at

nodes, to be loaded later

on

Yes, but the maximum

number of bicycles that

can be unloaded (resp.,

loaded) cannot exceed

the initial residual

capacity (resp., initial

inventory level) at the

node

Yes, in an

unlimited

manner

A station is initially empty.

At some point, a vehicle

unloads 15 bicycles at

the station and later on

another vehicle loads

five bicycles at this

station (that initially

were not there)

Vehicles can remain at

stations in order to

synchronize

transshipments

No. Synchronization is

guaranteed via restriction

on loading and unloading

quantities. See previous

assumption

Yes A vehicle arrives at a

station, waits there for

5 min for a rendezvous

with another vehicle and

loads some bicycles that

are unloaded from the

other vehicle

Bicycles can be

redistributed in the

system in any way that

reduces total costs, even

if it is not locally optimal

to do so.

Yes Yes

All bicycles are assumed

to be unloaded at each

visit of each vehicle to

the depot

Yes No A vehicle arrives at the

depot with ten bicycles

on board, loads

additional five bicycles

and continues on its

route. In the AI

formulation, the ten

bicycles must be

unloaded first, and then

the 15 bicycles are

loaded. The time for the

unloading and loading

operations is spent

Other considerations and

comments

This model delivered the

best results for most of

the instances in our

numerical experiment, in

spite of its restrictive

assumptions

Accuracy is

lost due to the

time

discretization.

The model can

be adapted to

the dynamic

problem
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In constraints (41), a lower bound is enforced on the time restriction, with the

purpose of keeping the time of the planned schedule close to its execution. This is

important for the accuracy of the inventory levels at the nodes, which is necessary

for the synchronization among vehicles, i.e., making sure that no vehicle plans to

pick-up bicycles which have not been brought there yet (by another vehicle). While

lack of synchronization may still apply in the interval consisting of two periods

defined between the upper and lower bounds of constraints (40) and (41), we believe

that it is quite negligible.

Next, consider constraints (34) and (35) and replace them by the following

constraints:

yL
itv� minð2�L; ci; kvÞ

X

j2N0

xijvt 8i 2 N0; t ¼ 1; . . .; T 0; 8v 2 V ð42Þ

yU
itv� minð2 �U; ci; kvÞ

X

j2N0

xijvt 8i 2 N0; t ¼ 1; . . .; T 0; 8v 2 V ð43Þ

where the following two parameters are defined and assumed to be integers:

�L Maximum number of bicycles that can be loaded during one period (¼ s=LÞ
�U Maximum number of bicycles that can be unloaded during one period (¼ s=UÞ

These constraints limit the loading/unloading quantities during one period

(beyond the original limitations), which are related to the time it takes to perform

these operations. The limit is expressed as twice the actual number, to allow

utilizing the slack that may have been created by the actual (rather than rounded up)

travel times in constraints (40).

We conclude our discussion on the AI and the TI formulations with a summary of

the capabilities and assumptions embedded in them, see Table 1.

Additional formulations

As the repositioning problem is relatively new and it is yet unclear which

formulation approach performs best, we developed two additional formulations,

which were tested numerically as well. The first is based on the idea of defining

the journey of each vehicle according to the sequence of nodes that the vehicle

visits. In this way, only one node index is required in the routing decision

variables (the index of the node where the vehicle is located), instead of the two

required in the previous two formulations (denoting the arc on which the vehicle

traverses). Another index, in addition to the vehicle index, is the position (the stop

number) of the node in the sequence. The sequence-indexed (SI) formulation

handles time in an exact manner as in the AI formulation, but it allows several

stops at a station as in the TI formulation. However, if the number of vehicles is

greater than one, it constrains the number of bicycles transported to and from a

certain station, as in constraints (7) and (8) of the AI formulation. Although it

appears that this formulation would enjoy the benefits of both previous

formulations, its numerical performance was found to be inferior to the arc-

indexed formulation. Nevertheless, we found this formulation to be interesting and
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potentially useful for variations of the problem discussed here, therefore it is

presented in Appendix B.

Finally, we considered a formulation that is motivated by the similarity of

our problem to the SP. As mentioned in the literature review, the SP is similar

to ours in that objects need to be moved from nodes where they are initially

available, to nodes where they are demanded. Consequently, using this

formulation required us to define supply and demand nodes, and duplicate

stations when (typically) a supply or a demand of more than one unit (bicycle)

is required. This resulted in a problem with a lot more nodes than the number

of stations, and thus was numerically inefficient. The formulation can be found

in Raviv et al. (2012).

Algorithmic enhancements

Solving the formulations presented in the previous section using a commercial

mixed integer solver may be impractical, even for instances of moderate size. In

this section, we discuss ways to speed-up the computation times of the various

formulations. They include solving the problems in two stages (‘‘A two-phase

solution method’’) and reducing the number of binary variables based on

geographical considerations (‘‘Arc deletion’’). Some of these techniques are

heuristic, while others are optimal, as explained below. In ‘‘Numerical

experiments’’, we demonstrate that even when heuristic techniques are used,

they have a marginal impact on the solution, and they typically contribute to

improving the overall solution when a reasonable budget of time is allowed to

solve the problem.

A two-phase solution method

The two-phase solution method is motivated by the variables representing the

number of bicycles loaded or unloaded at the various nodes. While these variables

are required to be non-negative integers, adding a tremendous difficulty in solving

the problem, their precise values tend to have only a minor effect on the optimal

routing decisions. Thus, in the two-phase solution method the problem is first solved

while ignoring the integrality constraints of the loading/unloading variables, so that

a solution to the routing decisions is obtained. In the second phase, the obtained

routing variables are fixed to their solution from the first phase, and the rest of the

problem is then solved, this time with the integrality constraints of the loading and

unloading variables included. We demonstrate in more detail the motivation and

implementation of this approach in the AI formulation, where the adaptation to the

TI formulation is done in a similar manner.

In the two-phase solution approach, the first phase includes solving problem (P10)
which is identical to problem (P1), except that the integrality constraints in (13) are

removed. It is still a mixed integer program, but one which is simpler to solve. Then,

the second phase involves solving another mixed integer program, denoted by (P100),
obtained by fixing the values of the x-variables to the optimal values they obtained
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in (P10) and where the integrality of yL
iv and yU

iv is added back. Obtaining an optimal

solution to problem (P100) is achieved very quickly.

Specifically, consider the AI formulation before it is strengthened by the valid

inequalities, given by the objective function (17) subject to constraints (2)–(16) and

(18). In (P100), the objective function (17) remains unchanged, and so do constraints

(2), (3), (7)–(9) and (13)–(16), which do not include the x-variables. Then,

constraints (5), (6), (11) and (12) which include x-variables only (and the related q-

variables) are removed. Finally, the remaining constraints [(4) and (10)], which

include both x and y variables, are modified as follows, using x�ijv to denote the

solution of the x-variables obtained in the first phase:

yijv� kvx�ijv 8i; j; v ð44Þ
X

i2N0

ðLyL
iv þ UyU

ivÞ� T �
X

i;j2N0:i 6¼j

tijx
�
ijv 8v 2 V ð45Þ

In these modified constraints, note that (44) in fact set to zero all yijv variables

whose equivalent x�ijv variables equal zero. This is equivalent to removing all those

variables, as indeed performed by the pre-solver. This modifies, indirectly,

constraints (3) and (14), so that they are defined only for yijv variables whose

equivalent x�ijv variables are equal to one. The modified constraints (45) are a tighter

version of the time constraint (10), where the total travel time of a vehicle is

subtracted from both sides of the inequality. The modifications with respect to the

valid inequalities (19)–(23) are similar to those described above.

The solution to (P100) delivers a feasible solution to (P1), with integer values of

yL
iv and yU

iv and with an objective value that is numerically shown (in ‘‘Numerical

experiments’’) to be very close to the lower bound obtained by solving (P1) without

integrality constraints on these variables. We explain the attractiveness of this

method by noting that the integrality constraint in (13) may be omitted if there are

no loading and unloading times, i.e., L ¼ 0 and U ¼ 0. In such a case there always

exists an integer optimal solution to (P1), because once the values of the x’s are

determined, the problem can be cast as a minimum cost flow problem with integer

capacity and demand parameters. Positive values of loading or unloading times add

a knapsack component to the problem through constraints (10) and hence further

complicate it. However, we observed empirically, that even if the integrality

constraints are removed, the number of non-integer values obtained in the optimal

solution is small (in most cases, no more than two non-integers along the route of

each vehicle).

Arc deletion

While the previous section described a way to (heuristically) overcome the

integrality requirement concerning the loading and unloading variables, in this

section we focus on the routing variables (the x-variables) in the TI model with the

goal of significantly reducing their number. In this case, the reduction is exact rather

than heuristic, and results from the following geographical considerations. In an
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urban environment, the movement of vehicles is limited to the road network and is

subject to various regulations such as ‘‘one-way streets’’, ‘‘no left turns’’, etc.

Consequently, the shortest valid journey between a pair of stations is likely to pass

via other stations. Thus, we can represent the stations network as a sparse graph

where stations ði; jÞ are connected by an arc if and only if there is no other station,

say k, such that tik þ tkj ¼ tij. Otherwise, the journey from ito j can be represented by

a path of two arcs, ði; kÞ and ðk; jÞ, which takes the same amount of time as the direct

path from i to j. Using this observation, a significant number of variables that

correspond to arcs may be reduced. This idea is implemented by defining the set

di ¼ fj 2 N0 : tij\tik þ tkj8k 2 N0g for all i 2 N0. In order to accommodate the arc

deletion, we revise the definition of the indices of the routing variables, and possibly

other related variables. For example, the x and y variables in (37) and (38) are

defined as follows:

xijtv 2 0; 1f g; yijtv� 0 8i 2 N0; j 2 di; 8v 2 V ; t ¼ 1; . . .; T 0; v 2 V

In addition, reference to undefined variables should be removed by revising all

constraints in which these variables appear.

Note that the above arc deletion procedure is different from the heuristic

concentration method, see e.g., Rosing and ReVelle (1997). The latter is a known

approach to reducing the number of arcs by using information from previous runs,

but it cannot insure that the removed arcs are not part of the optimal solution. Our

procedure, on the other hand, removes only arcs that, without a doubt, can be

replaced by alternative paths with the same cost. To the best of our knowledge, this

idea has not been introduced in the literature and we believe it may be beneficial for

other vehicle and IRPs. By using the arc deletion procedure, we drastically reduce

the size of our mixed integer program and increase the size of instances that can be

solved in a reasonable amount of time. In the largest instances that we tested, about

80 % of arcs could be removed.

We remark that the above method may not be applied to the AI formulation

because in this formulation each vehicle is allowed to visit each station only once. If

visits are ‘‘wasted’’ on constructing routes to other nodes when the inventory or the

residual capacity on the vehicle is not sufficient to serve the station, then this

limitation becomes too restrictive.

Numerical experiments

In this section, we present results that were obtained when solving instances of

practical size with the MILP formulations introduced in ‘‘Model formulation’’,

together with the algorithmic enhancements presented in ‘‘Algorithmic enhance-

ments’’. We first describe and analyze instances that are based on data of the Vélib

system (in Paris). Then we apply the formulation that performed best to an entire

real system consisting of 104 stations of Capital Bikeshare in Washington DC.

Based on the Paris dataset, we created a set of 48 benchmark problems using actual

locations of some 60 Vélib stations located in Paris’s 1st quarter. We conducted an

experiment with all the combinations of the following parameter values:
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• Number of stations—30 and 60 stations, where the smaller instances are subsets

of the larger ones.

• Penalty function—representing the expected number of shortages. Two penalty

functions were considered, based on two different demand patterns. The first is

based on a fictitious (but likely a representative) demand pattern while the

second is based on an estimated demand pattern from data that we collected

from the Vélib website during some 10 working days. See Appendix A for

details on the procedure used to calculate these functions.

• Number of repositioning vehicles—one and two vehicles.

• Length of the repositioning time—2.5 and 5 h (9,000 and 18,000 s).

• a, the weight of the operating/travel costs per second relative to an expected

shortage of one unit—three values were considered: 0, 1/900 (low) and 1/300

(high). The meaning of, say, a ¼ 1=900, is that traveling 900 s (= 15 min) is

equivalent (in cost) to an additional expected shortage. When a ¼ 0, it means

that we are willing to travel any distance in order to save on the expected

number of shortages. In this case, the objective function reduces to its first term

only.

The initial inventory levels at the stations were selected randomly. The travel-

time matrix was calculated based on the L1 (Manhattan) metric, assuming average

travel speed of 1 m/s. The loading and unloading times were set to be 1 min/bicycle.

The vehicle’s capacity was set to 20 bicycles, which is the capacity of the light

trucks used by Vélib. The location of the depot was selected arbitrarily in the first

quarter. The capacity and the initial inventory of the depot were set to be large

enough so that they were not binding. The dataset for our benchmark problems is

available from the authors upon request.

We implemented the AI, the AI with the two-phase procedure (AI2), and the TI

formulation with the two-phase procedure (TI2) using IBM-Ilog OPL, and solved

the above instances using IBM-Ilog CPLEX 12.3 on an Intel i7 2600 @ 3.4 GHz

with 16 GB of RAM. In all our experiments, we used CPLEX’s default settings and

set the solver time limit to 2 h. Under such a time limit, the main memory was never

exploited. For the two-phase procedure, the time limit was imposed only on the first

phase, since the time needed to perform the second phase was negligible (less than

1 s). The optimality tolerance of the solver was left as CPLEX’s default of 0.01 %.

We also experimented with the single-phase TI formulation as well as with the

two-phase SI and Swapping Based formulations (see Appendix B), but found that

the performance of these formulations was generally inferior to that of the

formulations reported below. These results are omitted for the sake of brevity.

In Table 2, we report on the results of our experiments with the AI formulation

for the 48 problem instances created as explained above. The five left columns of

the table describe each instance in terms of the number of stations, the penalty

function, the number of vehicles used for repositioning, the repositioning time in

seconds and the a parameter. In the sixth column, we specify the ideal/initial

expected number of shortages that would be obtained if all stations could reach their

ideal inventory levels/left with their initial inventory level. Note that these numbers

are crude lower and upper bounds on the optimal value of the objective function.
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The gap between them indicates the savings opportunity that could be gained from

repositioning. In the seventh column, we present the total number of bicycles that

should be added/removed to/from all stations in the system (excluding the depot) in

order to bring it from its initial state to the ideal one.

The rest of the columns summarize the results for each instance. The first column

reports on the value of the best integer obtained. We then present the provable

relative optimality gap, calculated according to the CPLEX convention, that is,

Relative Gap AIð Þ ¼ Best Integer Solution� Lower Bound

Best Integer Solution
:

The next column presents, for the instances that could be solved within the 2-h

time limit, the CPU time (in seconds) required to obtain the optimal solution (within

the optimality tolerance of 0.01 %).

The column entitled ‘‘shortage’’ represents the expected number of shortages

associated with the inventory level obtained after repositioning according to the best

integer solution, i.e., the value of the first term of the objective function. For the

case of zero traveling cost ða ¼ 0Þ, this value is identical to the objective function,

and it is an important measure even when a [ 0. Hence, the value (or values, when

more than one exists) which achieves the minimum expected shortages among the

three values of a that were considered for a certain instance is marked in bold.

The next column presents the number of bicycles that were actually added and

removed from the various stations (excluding the depot). In the right-most column,

the total traveling time of the vehicle(s) is presented, in seconds. This time is net of

the time spent on loading and unloading bicycles and it is proportional to the

traveling cost component of the objective function.

We obtained feasible solutions for all 48 instances with an average optimality

gap of about 4 %. It appears that the optimality gap is not very sensitive to the

traveling cost, and the penalty function being used. Interestingly, the average

optimality gap was only slightly affected by the length of the repositioning time.

This may imply that while geographical decomposition of the problem may be

beneficial, a temporal decomposition is not likely to be beneficial when using this

formulation. However, since the dimensions of the MILP are proportional to the

number of vehicles and to the square of the number of stations, the performance is

significantly affected by these parameters. For example, instances with 30 stations

and a single vehicle were solved to optimality (within the 0.01 % tolerance) in 531 s

on average, while none of the instances with 60 stations and two vehicles was

solved to optimality within the 7,200 s time limit. The average optimality gap of

these instances was 5.97 %.

It is apparent from Table 2 that when a = 1/900, the total traveling time is very

similar to the total traveling time when a = 0, i.e., when the travel costs are ignored

altogether. However, when a rises to 1/300, the model chooses to save on traveling

at the expense of some additional shortages. An interesting observation is that the

expected shortages obtained for instances with low travel costs (a ¼ 1=900) are on

average 0.41 % lower than the ones obtained for the corresponding instances with

zero travel costs, and they are strictly lower in half of the cases. This clearly could

not be the case if these instances were solved to optimality. However, it appears that
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the travel costs serve as a guide for the branch and bound search for an efficient

route. Hence, it may be beneficial to introduce small travel costs to the model even

if all the costs that are related to the vehicles are sunk.

An interesting observation is that in some instances, the actual number of

bicycles removed from all stations is larger than the number of bicycles that need to

be removed in order to reach their ideal inventory levels. This implies that bicycles

were removed even from stations that ended up below their ideal inventory level.

While this situation may seem counter-intuitive at first, it represents one of the

attractive features of our formulations. Indeed, shortages can be saved by moving

bicycles from stations that are near their ideal inventory level, to stations that are far

off this level.

Typically, in the solutions for zero and low travel cost (a) instances, the vehicles

spent about a third of the time in traveling, while most of the remaining time was

spent in loading and unloading bicycles at stations. In the solutions of the higher

travel cost instances, only about a quarter of the time was spent in traveling, and in

some cases, the vehicle was even idle for some time.

Next, in Table 3 we present the results of an experiment with the same instances,

using the two-phase procedure applied to the arc-indexed formulation (AI2). The

information reported in this table is in the same structure as Table 2, expect that we

added the column headed ‘‘Ph. 2 Gap’’ which reports on the relative difference

between the results obtained at Phase 1 (when the loading and unloading variables

are not forced to be integers) and the integer feasible results of Phase 2. That is,

Phase 2 Gap ¼ Best Integer solution of Phase 2� Best Integer solution of Phase 1

Best Integer solution of Phase 2
:

Note that the Phase 2 gap values are minor, with an average and maximum gap of

0.17 and 0.35 %, respectively, which demonstrates the effectiveness of the two-

phase method. The ‘‘Opt Gap’’ column has a slightly different meaning. It compares

the best integer (feasible) solution of Phase 2 with the lower bound of Phase 1. Note

that the latter is a valid lower bound for the original AI formulation, and thus the

‘‘Opt Gap’’ value is a valid optimality gap for the performance of the AI2 method.

In the CPU time column, we report only on the Phase 1 solution time, since the

second phase was solved to optimality in a fraction of a second in all the instances.

In the best integer and optimality gap columns we set in bold faces (resp., denote

with an *) the values that correspond to instances for which the two-phase

procedure, AI2, produced better (resp., same) results relative to the AI formulation.

It is apparent that although AI2 did not dominate AI completely, it delivered better

solutions for some of the harder instances that could not be solved to optimality by

AI within 2 h. It also converged to optimality faster than AI in most of the easier

instances and exhibited an overall better performance. The average (resp.,

maximum) optimality gap obtained by AI2 was 2.27 % (resp., 7.5 %) compared

to 3.97 % (resp., 15.86 %) obtained by AI.

As with the AI formulation, the performance of AI2 was adversely affected by

both the number of stations and the number of vehicles, while the effect of the

length of the repositioning time is minor. It is worth mentioning that although most
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of the larger instances could not be solved to optimality within 2 h, most of the

progress toward the obtained solution was achieved by the solver during the very

first minutes. Thus, the AI2 (and AI) formulations are applicable even under much

tighter time constraints.

Next, we present the results of our experiment with the TI2 procedure and while

applying the arc deletion enhancement described in ‘‘Algorithmic enhancements’’.

We applied this formulation to all our 48 instances with two different time

discretization levels, namely s ¼ 300 s and s ¼ 450 s per period, resulting in 96

runs in total. None of the problems converged to optimality within the 2-h time

limit, but high quality solutions could be obtained for many instances. For each

instance we set in bold faces (resp., denote with an *) the value that corresponds to

the discretization level that produced a better (resp., same) result.

The results are presented in Table 4, where the columns’ headings are similar to

those of the previous tables and thus we omit their description. As with the AI2

formulation, the Phase 2 objective function values were very close (within 0.59 %)

to those of Phase 1 and thus the latter are not reported in the table. Cells related to

instances that could not be solved within the time limit were marked with dashes

(‘‘–’’).

It is apparent from Table 4 that the performance of the TI2 formulation, similar

to the AI and AI2 formulations, is adversely affected by the number of stations and

the number of vehicles. However, in contrast to AI and AI2, TI2 is also adversely

affected by the repositioning time, because it directly affects the number of

variables in the model. This suggests that when using the TI2 formulation, temporal

decomposition of the problem may be beneficial.

We observe that the crude time discretization ðs ¼ 450 sÞ typically delivers

better solutions and smaller optimality gaps for the harder problem instances, while

the finer time discretization ðs ¼ 300 sÞ, which results in a much larger mathemat-

ical model, yields better solutions only for a few single vehicle instances, mostly

with 30 stations. For five (resp., eight) out of the 48 instances the solver could not

even obtain an integer feasible solution within the time limit when using the crude

(resp., fine) time discretization.

In Fig. 2, we compare the values of the solutions obtained for each instance using

AI, AI2, and TI2 with s ¼ 300 and s ¼ 450 s. For each method, we counted the

number of instances for which it achieved the best-known solution, i.e., had the

minimal objective value among all methods. Note that in some cases, this minimal

value was obtained by more than one method. In the figure, the one and two vehicle

instances were distinguished by the shade used in the chart. It is apparent from the

figure that while the optimal solution value of the time-indexed formulation may be

lower, due to the additional flexibility of this formulation, the arc-indexed

formulations ‘‘win’’ in most of the instances and in particular in all of the harder two

vehicle instances, since they are easier to solve. The AI formulation works best in

most of the single vehicle instances and AI2 works best in most of the, harder, two

vehicles instances. The time-indexed formulations achieved the best-known solution

in only a few of the single vehicle instances. The rougher time discretization

procedure seems to perform somewhat better than the finer one, probably because it

is easier to solve.
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In Fig. 3, we compare the average relative deviation of the solutions obtained

from each method with the best-known solutions for these instances. These averages

were calculated based on the 40 problem instances that admitted a feasible solution

by all four methods and therefore it is somewhat biased in favor of the TI2

procedure. Nevertheless, the figure demonstrates the significant superiority of the

solutions obtained by the AI methods (on average).

We believe that the TI2 formulation may be superior to the arc-indexed

formulations in systems where the size of each station is large compared to the

capacity of the repositioning vehicle. In such cases, multiple visits of vehicles to the

stations are desired. The Time-Indexed formulation also has the advantage that it

can be modified quite easily to take into consideration demand that is expected to

occur within the repositioning time, as is the case in the dynamic repositioning

problem.

In our second experiment, we applied our models and solution methods on real

problem instances obtained from the operator of Capital Bikeshare in Washington

DC. The distance matrix represents real driving times between each pair of stations.

The arrival rates of renters and returners for each hour of the day on regular

Fig. 2 Number of instances for which each solution method achieved the best-known solution

Fig. 3 Average relative deviation from best known solution obtained from each of the methods
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weekdays were estimated based on a complete transaction log collected during a 3-

month period. With an expectation of a demand increase at Capital Bikeshare, we

created another set of instances with the same network but with demand rates

multiplied by two and stations’ size multiplied by 1.5. This set is referred to as the

‘‘inflated’’ set. A penalty function for each of the systems’ 104 stations was created

based on the above demand data and station capacity.

We solved the static repositioning problem of these systems using one and two

vehicles with repositioning times of 9,000 and 18,000 s (2.5 and 5 h, respectively).

The capacity of the vehicles in the instances below is set to 25, the same as the light

trucks used by the operator of Capital Bikeshare. Since we could not obtain a firm

estimate of the vehicle’s variable travel costs, we solved the problem with the same

three a values as before, namely: 0, 1/900 and 1/300. In fact, we believe that the

zero or the low travel costs are closely representative of reality, since most of the

vehicle’s operational cost for a predefined shift length are sunk.

We applied the AI, AI2 and TI2 (with crude time discretization) formulations

with a solution time limit of 2 h and discovered that for these instances the AI2

formulation dominated. Hence, we report in Table 5 only on the results obtained

from this procedure. The structure of the table is similar to that of Table 3 and

hence we omit its full description. A column headed ‘‘% Job done’’ was added,

which reports on the relative reduction in the expected shortages, calculated as

follows:

% Job done ¼ initial expected shortages � expected shortage after repositioning

initial expected shortages � ideal expected shortages
� 100:

The values in boldface in the ‘‘shortage’’ column are again those that achieved

the minimum shortages among the three traveling cost values.

It is apparent from the table that high quality feasible solutions with optimality

gaps of a few percent can be obtained using the AI2 procedure. There is no

significant difference between the optimality gaps of the original instances and the

inflated ones. This implies that the method is robust to the traffic volume of the

system. As expected, the value of the objective function decreases as the number of

vehicles and time allotted to the repositioning increases. Accordingly, the % of the

job done also increases.

We observe that even when the objective function value of the best solution

found is close to the ideal value and far apart from the initial one, only a small

fraction of the bicycles that should have been ideally added and removed at the

stations are actually moved. See e.g., the tenth and eleventh instances in the table.

This is due to the fact that the first (and major) term of the objective function is

convex and typically almost flat around its minimum. Indeed, it seems that in some

stations the operator is almost indifferent between the exact optimal inventory and

many other possibilities close to it. We believe that this very phenomenon justifies

the use of a shortage function rather than setting target values for the inventory at

each station and solving a ‘‘many to many’’ single commodity PDP with a standard

objective function of total distance. Indeed, the operator should allocate its limited
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repositioning capacity to the stations that are expected to face the largest number of

shortage events during the next day.

We observe that in Capital Bikeshare, even if the inventory levels could be set at

their ideal value, about two-thirds of the lost sales are still expected to occur. This is

because in some stations the difference between the demand for bicycles and lockers

at certain hours of the day is too large to be buffered by the station inventory. For

these stations, dynamic repositioning during the day is required. Alternatively,

additional lockers at some stations (or even relocating the existing ones) could

reduce the expected number of shortages. In that sense, our mathematical models

provide a what-if analysis tool that may allow to rationally consider the potential

benefit of adding lockers at the stations and/or relocating existing ones.

Overall, the AI2 formulation yielded good solutions to instances with 104 nodes

and two vehicles and thus may be a good tool to provide to operators of bike-sharing

systems. For larger systems, we believe that a practical approach is to decompose

the entire area into several geographical areas, such that each area is served by one

or two vehicles. In such a setting, we recommend using a common centrally located

depot to allow transfers of bicycles between different areas. Such an approach is

practical and easier to manage since it allows appointing an area manager,

responsible for a small number of drivers who become familiar with their area. It is,

in fact, a common practice in many distribution systems consisting of a large

number of nodes. When such a decomposition approach is used, our methods are

likely to solve the resulting separate sub problems to optimality or near optimality.

A related question is how to decompose the system into such separate areas, but this

is beyond the scope of this paper.

Conclusions and discussion

This paper defines and formulates a new rich inventory routing model that is

motivated by the need to regulate the newly emerging bike-sharing systems. Proper

regulation of these systems by repositioning bicycles among the stations is an

important factor in their success. This paper considers many aspects of the static

repositioning problem, in particular the stochastic and dynamic nature of the

demand. We formulate the problem as a MILP, address various technical obstacles

that arise in solving large instances, and analyze the results obtained. We offer two,

essentially different formulations, based on different modeling assumptions. In both

models, the major term in the objective function is the expected cost of events in

which the service can not be provided, and a second component is added, which

refers to the operating costs, both to be minimized. This objective function is non-

linear, thus we rely on previous convexity results that enable us to linearize it in an

exact manner.

The AI formulation typically yields better solutions than the TI formulation

under the CPU time limitations of 2 h. However, we note that the feasible set of

solutions of the AI model is smaller. The hardest constraint imposed by the AI

model is that the stations are allowed to be visited only once by each vehicle. This

limitation may exclude the best solutions in some cases, e.g., when the difference
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between the initial inventory level and the desired one at some stations is large

relative to the capacity of the vehicle. A simple modification of the AI formulation

to mitigate the above shortfall may be to carry an additional index for most decision

variables, which keeps track of the visit number of the vehicle to the station. This

would clearly make it harder to solve the AI formulation.

Some extensions of the repositioning problem are easy to implement with our

mathematical models. For example, one may argue that a fixed amount of time

should be added every time the vehicle stops at a station, in addition to the linear

loading and unloading times that are already included in our model. This can be

handled by adding the fixed time to the travel times between stations. Note,

however, that then it will not be possible to use the arc deletion method as is. Hence,

this extension of our TI (and TI2) model requires introducing a new set of binary

variables denoting actual stops at stations (rather than passing through them). One

binary variable is required for each period and for each vehicle.

Proceeding to a higher level of the system design, an important extension of our

models may be the inclusion of several depots in the system. We believe that the

operator may benefit from using several stations, located where space is not costly,

as secondary depots. These stations may be used to reduce the total distance

travelled by the repositioning vehicles and serve as a local buffer to meet fluctuating

demand during peak times. In fact, the inclusion of such an extension in the TI

model only requires a change in the parameters (station capacities and penalty

functions). The AI and AI2 models can accommodate multi-depots with minor

changes. A similar related extension allows each vehicle to set its base node at a

different location.

We demonstrate that our various MILP formulations are capable of solving

problem instances of a moderate size of up to 60 stations with acceptable optimality

gaps. The AI2 formulation can be used to solve realistic instances with two vehicles

and 104 stations. However, larger systems such as Vélib, Bixi (in Montreal) or

Bicing (in Barcelona) consist of many hundreds of stations. Our method is

applicable to such systems when used in conjunction with a geographical

decomposition approach. Another possible approach is to use heuristic methods

such as Tabu search or genetic algorithm that exhibited good performances in other

large-scale rich routing problems, see, e.g., Bräysy and Gendreau (2005).

An important factor in the successful implementation of static repositioning is the

accuracy of the demand forecast. The demand faced by a bike-sharing system is

highly sensitive to partially predictable effects such as weather conditions, public

events in the city, etc. A reliable approximation of the penalty function is based on a

good estimation of the demand pattern. In this study, we based our demand forecast

on past demand data on similar days. However, more sophisticated data mining

models may be devised in order to identify such ‘‘similar days’’ with respect to each

forthcoming one.

As with any large-scale logistic plan, the static repositioning plan itself is subject

to unpredictable events such as traffic slowdown, vehicle breakdown, etc. Future

studies on the SBRP should devise methods to create a repositioning plan that is

robust with respect to such unfortunate events. As for now, we recommend using the
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models proposed in this paper by applying some safety margins, e.g., in terms of the

time allotted to the repositioning task.

Finally, we focused in this paper on the static repositioning problem, where

bicycles are moved during slack hours when the system is nearly inactive. As

mentioned in the introduction, static repositioning helps reduce the amount of work

required for dynamic repositioning. In cases where the capacity of the stations and

the number of bicycles in the system are both large enough, static repositioning may

replace the need for dynamic repositioning altogether, except maybe in unusual

events (e.g., a concert in the park).

The dynamic version of the problem requires a different solution approach. In

that case, the rentals (resp., returns) in each station decrease (resp., increases) its

inventory level due to the users’ activity at the same time the repositioning is carried

out. Since the TI model already uses decision variables which keep track of the

inventory level at each station in each time period ðsitÞ, the corresponding

inventory-balance constraints (constraints (27)) may be adjusted to reflect the

dynamic situation. This can be achieved by subtracting from the right-hand side of

(27), the forecasted net demand, and adding variables that represent unsatisfied

demand for bicycles and lockers or waiting time of users at the stations. The

objective function should be modified to represent the cost incurred by these ‘‘lost

sales’’ or waiting times of users. While other solution approaches may be more

appropriate for the dynamic version of the problem, the solution of a linear integer

programming formulation may be useful as a benchmark.
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Appendix A—Computing the expected number of shortages

For the completeness of our paper, we summarize here some of the results of Raviv

and Kolka (2012). In particular, we formally define the expected number of

shortages function and show how to approximate it. We present this function in its

general form, i.e., when the expected number of shortages for bicycles and for

lockers may have different weights.

We consider a single bike-sharing station over a finite horizon ð0; TÞ with the

following setting: the inventory level (number of bicycles) in the station at time 0 is

given. At time t 2 ð0; TÞ, users who wish to rent (resp., return) a bicycle arrive at

the station according to some non-homogenous Poisson process with rate lt (resp.,

kt). If the requested service can be provided right away, the bicycle is rented or

returned and the inventory level is updated accordingly. If the service cannot be

provided (i.e., due to an empty station for a renter or a full one for a returner) then

the user abandons the station. In reality, the abandoning user may decide to seek the

service in other stations of the system but this is out of the scope of this model.

Thus, there are two undesirable types of events that may occur in a station. We

assume that the system is penalized for each one of them.
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p Penalty charged for each renter that abandons due to a shortage of bicycles

h Penalty charged for each returner that abandons due to a shortage of vacant

lockers

The state of the station is a bounded birth and death process with birth rate lt and

death rate kt. The process is depicted as a Markov Chain in Fig. 4.

Let pijðtÞ denote the probability of the station being at state j at time t provided

that its initial state at time 0 was i. It is possible to express the expected shortage

function FðxÞ, where x denotes the initial inventory level (of bicycles) as follow:

F xð Þ �
ZT

0

px0 tð Þpþ pxC tð Þhð Þdt:

The first summation term in the integral represents the expected shortages

accumulated due to abandonments of renters and the second due to abandonments of

returners. For the penalty function used in the numerical section of this paper it was

assumed that p ¼ h ¼ 1. Thus, the value of the expected shortage function

represents the expected number of unsatisfied users during the period ð0; TÞ.
Next, we note that while the arrival rates of renters and returners are non-

homogenous over time, it is reasonable to assume that these rates vary in a finite

number of steps over the planning horizon, say every 15–30 min. Now, the strategy

to estimate F xð Þ is as follows: the planning horizon is discretized into short periods,

each of length d, say d ¼ 1 min. These periods are indexed by h. For each period h
we evaluate the transition probability matrix from the beginning of the period to its

end. We denote this transition probability by Ph. The transition probability matrix

from time 0 to time t ¼ s � d is given by.

p tð Þ ¼
Ys

h¼1

Ph:

Ph can be calculated numerically, for more details see Ross (2010) Sect. 6.8.

Based on the value of pðtÞ we can obtain a reliable approximation of the expected

shortage function using the following discretization procedure:

F xð Þ 	 d
XTd�1

h¼0

px0 t þ 0:5dð Þpldh þ pxC t þ 0:5dð Þhkdhð Þ: ð46Þ

Raviv and Kolka (2012) also established bounds for the estimation error and

showed that for a discretization level of 1 min the expected shortage function can be

estimated very accurately in a fraction of a second for each of the stations in

C-11 0 Empty Station C Full Station 

Fig. 4 Continuous time Markov chain that represents the dynamics of the bicycles inventory level
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Washington’s bike-sharing system. They also proved that the expected shortage

function is convex.

The objective function in this paper is the sum of penalty functions, one for each

station. The function for each station i is evaluated through constraints (46) for each

possible inventory level 0� x� ci.

For the instances that are based on real demand data from Velib and Capital

Bikeshare, we estimated the demand for each half hour time slot at each station

based on several working days with similar characteristics. We used the following

parameters for the penalty function created for our experiment:

• d ¼ 1=60 h. The experimentation in Raviv and Kolka (2012) shows that such a

time granularity provides a very accurate approximation of the true function.

• T ¼ 18 h. This represents roughly the time in which the systems in Paris and

Washington are significantly active. The static repositioning is carried out

during the remaining 6 h of the day, when the system is assumed idle.

Empirically, we see that this is indeed the case for most of the stations in the

system.

• p ¼ h ¼ 1. We assumed in our experiments that the penalties for bicycle

shortage and locker shortage are identical. We are not sure that this is the case in

the view of the operators. Some of them may assign a higher cost for a locker

shortage since it puts the user in a very inconvenient situation. However,

methodologically this should not make a difference.

Appendix B—Sequence index (SI) formulation

As motivated and described in ‘‘Additional formulations’’, we present here the

sequence-Index (SI) formulation.

The following parameters need to be defined and used in this formulation:

A Upper bound on the number of stops on each vehicle’s route. A can be

safely set to be T= min
i6¼j2N0

tij, but can be chosen to be slightly lower

with some careful consideration
�Tj � max

i2N0

tij The longest traveling time to node j from all nodes

The decision variables are defined as follows:

xiav Binary variable which equals one if the ath stop of vehicle v is at node i, and

zero otherwise

yL
iav

Number of bicycles loaded at node i onto vehicle v on its ath stop

yU
iav

Number of bicycles unloaded at node i out of vehicle v on its We first present

theath stop

rav Time of completing loading/unloading at the ath stop of vehicle v

yav Number of bicycles carried by vehicle v after loading/unloading at its ath stop

si Inventory level at station i at the end of the repositioning operation
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We first present the SI formulation when a ¼ 0. The case of a[ 0 requires a

slight adaptation which is described just below this formulation.

(P3)—Sequence indexed (SI) formulation ða ¼ 0Þ.

Min
X

i2N

gi ð47Þ

s.t.

gi� aiu þ biusi 8i 2 N; u ¼ 0; . . .; ci � 1 ð48Þ

si ¼ s0
i �

X

v2V

X

a

ðyL
iav � yU

iavÞ 8i 2 N ð49Þ

X

i2N

xiav ¼ 1 8a ¼ 1; . . .;A; 8v 2 V ð50Þ

x01v ¼ 1 8v 2 V ð51Þ
x0Av ¼ 1 8v 2 V ð52Þ

rav� ra�1v � �Tj 1� xjav

� �
þ
X

i2N0

tijxi;a�1;v þ
X

i2N0

LyL
iav þ UyU

iav

� �

8j 2 N0; 8a� 2; 8v 2 V

ð53Þ

r1v ¼ LyL
01v 8v 2 V ð54Þ

rAv� T 8v 2 V ð55Þ
X

a;v

yL
iav� s0

i 8i 2 N0 ð56Þ

X

a;v

yU
iav� ci � s0

i 8i 2 N0 ð57Þ

yL
iav�minðkv; s

0
i Þxiav 8i 2 N0; 8a ¼ 1; . . .;A; 8v 2 V ð58Þ

yU
iav�minðkv; ci � s0

i Þxiav 8i 2 N0; 8a ¼ 1; . . .;A; 8v 2 V ð59Þ

yav ¼ ya�1v þ
X

i2N0

ðyL
iav � yU

iavÞ 8a ¼ 1; . . .;A; 8v 2 V ð60Þ

yav� kv 8a ¼ 1; . . .;A; 8v 2 V ð61Þ
y0v ¼ 0 8v 2 V ð62Þ
yAv ¼ 0 8v 2 V ð63Þ

yL
iav� 0; yU

iav� 0; integers 8i 2 N; 8a ¼ 1; . . .;A; 8v 2 V ð64Þ
xiav 2 f0; 1g 8i 2 N; 8a ¼ 1; . . .;A; 8v 2 V ð65Þ

y�av � 0 8a ¼ 1; . . .;A; 8v 2 V ð66Þ
si� 0 8i 2 N ð67Þ

The objective function (47) is identical to the one in the previous formulations.

Constraints (48) are the linear constraints that support the convex penalty function,
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defined with respect to the final inventory at each station, which is the inventory

after loading/unloading during all visits. Constraints (49) define the inventory at the

stations at the end of the repositioning operation. Constraints (50) make sure that

each vehicle stops at one station at a time and constraints (51) [resp., (52)] verify

that all vehicles depart from (resp., return to) the depot at the beginning (resp., end)

of the repositioning operation. Constraints (53) define the minimal time required to

reach node j which is the ath stop, when the ða� 1Þth stop is at node i. The minimal

time includes, beyond the time to reach node i, the loading/unloading times at node i

and the travel time between i and j. Constraints (54) define the time in which vehicle

v leaves its first stop (the depot) to be the completion time of loading there (note that

the vehicle cannot unload at the first stop which is the depot). Constraints (55)

restrict the last visit of each vehicle to occur no later than time T . Constraints (56)–

(57) limit the quantity picked-up from a node (resp., delivered to a node) in all stops

of all vehicles to the quantity available there initially (resp., the remaining capacity

of the station), as limited in the AI formulation. These constraints make sure that the

capacity of a node is not exceeded and the inventory at the node is non-negative.

Constraints (58)–(59) allow loading and unloading of bicycles at a certain node only

when a vehicle stops at that node. Constraints (60) are inventory-balance constraints

on each vehicle after each stop while constraints (61) are vehicle capacity

constraints. Constraints (62) [resp., (63)] make sure that each vehicle is empty

before it reaches the first stop (resp., after visiting the last stop, which is the depot).

This stipulates that the total loading and unloading quantities are equal to each

other. Finally, (64)–(65) are integrality constraints and (66)–(67) are non-negativity

constraints.

We note that if there is only one vehicle, there is no need for synchronization

among vehicles and hence constraints (56)–(57) can be replaced by: 0� s0
i �P

a�A0 ðyL
ia1 � yU

ia1Þ� ci8A
0 ¼ 1; . . .;A and the right-hand side of constraints (58)–

(59) should be replaced by min kv; cið Þxiav in order to allow unlimited transshipment.

Several valid inequalities were developed and found to be helpful in speeding-up

the running time of the above formulation, see Raviv et al. (2012). Nevertheless, as

mentioned above, this formulation was found to be somewhat inferior to the two

formulations mentioned in ‘‘Model formulation’’, so we shall omit the details of the

valid inequalities.

When a[ 0, additional decision variables are needed, to keep track of the arcs

traversed by the vehicles, so that the travel cost of the time spent by the vehicles is

accounted for. To that end, we define:

Zav= time spent by vehicle v in its ath segment.

The objective function becomes:

Min
X

i2N

gi þ a
XA

a¼1

X

v2V

Zav

and the following set of constraints is added:

Zav� tijðxiav þ xjaþ1v � 1Þ8a ¼ 1; . . .;A; 8v 2 V ; 8i 2 N0; 8j 2 N0:
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