
int. j. prod. res., 1998, vol. 36, no. 12, 3407± 3420

The online tool switching problem with non-uniform tool size

B. MATZLIACH³ and M. TZUR² *

The tool switching problem with non-uniform tool sizes is considered in this
paper for the ® rst time in a dynamic (online) environment. We develop three
heuristics, designed for various assumptions with respect to the randomness of
the process; the heuristics are based on the insight and experience that we
obtained from the static problem with non- uniform tool sizes. Our computa-
tional experiments which examined various test problems with di� erent under-
lying assumptions indicate that our heuristics are performing well, that is, they are
reasonably close to the static solution and perform much better than a random
solution.

1. Introduction and literature review
Flexible and automated manufacturing systems are assisted by tool management

procedures; tool switching is a basic issue of tool management, addressed at the
individual machine level. An automated machine which processes various types of
parts requires certain tools which are located on the machine’ s tool magazine. The
total number of tools required to process a set of parts is typically larger than the
available magazine storage capacity. Therefore, when a certain tool is required, if it
is not loaded on the tool magazine, switching of tools occurs between the tool
magazine and a centralized tool storage area. The latter can hold (practically) any
number of tools.

A tool switching strategy states which (if any) tools to change on the machine’ s
tool magazine prior to processing each part. Tool switching is a time consuming
operation which is costly to the process due to machine down-time; also, there may
be costs associated with moving tools to and from the machine. The objective is to
minimize the total cost of tool switches.

The tool switching problem has received considerable attention from researchers,
see for example Bard (1988), Tang and Denardo (1988), Crama et al. (1994) and
Privault and Finke (1995). It is assumed in these papers that processing each part
may require several tools, but all tools are of uniform size, occupying one slot of the
tool magazine. The latter assumption simpli® es the problem considerably, and it was
shown by Tang and Denardo (1988) that the policy KTNS (Keep Tools Needed
Soonest) is optimal for this case. Some of the extensions considered include non-
uniform switching times (Crama et al. 1994, Privault and Finke, 1995) as well as
addressing the related problem of determining the optimal sequence of parts to be
processed on the machine.

Matzliach and Tzur (1997) analysed the tool switching problem in which the tool
sizes are non-uniform. As explained there, non-uniform tool sizes are of interest in

0020± 7543/98 $12.00 Ñ 1998 Taylor & Francis Ltd.

Revision received June 1998.
² Industrial Engineering Department, Tel Aviv University, Tel Aviv 69978, Israel.
³ Shimoni 17, Ramat Aviv, Tel Aviv, Israel.
*To whom correspondence should be addressed.

the case where a big tool, although held in one slot, covers one or more of the
neighbouring slots, see Stecke (1983), Shanker and Tzen (1985) and Jain et al.
(1996). In another case, several tools may always be required together, and are
therefore kept as a kit, requiring at least as many slots as the number of tools in
the kit. Then, the kit may be considered as one tool, whose size is the sum of sizes of
all tools that are included in the kit. Matzliach and Tzur (1997) considered the
problem in the static environment, where the sequence of parts to be processed on
the machine is given and known in advance, in which case the switching policy can
also be determined in advance for the entire process. They proved that the problem is
NP-complete, and developed two heuristic procedures. All of the previous work on
the tool switching problem assumed a static environment as well.

In this paper we analyse, for the ® rst time, the dynamic (online) tool switching
problem in which parts that need to be processed on the machine arrive randomly,
and tool sizes are non-uniform. In an FMS environment, static planning (at least for
the next shift or so, as discussed in the literature), is the ideal situation whenever
possible. However, random events such as breakdowns may require planning to
become dynamic. For example, when a machine breakdown occurs in a system
which consists of several ¯ exible machines, jobs that cannot proceed on that machine
as planned, are sent to alternative machines unexpectedly. Alternatively, dynamic
planning results from a (® rst-in ® rst-out) FIFO scheduling rule which is frequently
used in a make-to-order environment. FIFOensures equal service to all customers as
well as short lead times in a ¯ exible environment. The resulting identity and order of
jobs is again unknown in advance.

The online arrival of parts and therefore tool requests calls for the design of an
online algorithm to control the tool switching strategy. Here we suggest such algor-
ithms and examine their performance. Our computational experiments indicate that
a signi® cant improvement is achieved by the suggested procedures, compared with
reasonable and simple rules. We see the main contribution of this paper as being
both in presenting and modelling a situation which was not addressed before, as well
as in providing solutions that are shown to perform well.

A special case of our online tool switching problem is the paging problem, a
fundamental online problem in computer science. It involves a fast memory,
which can hold K pages of a standard size, and a slow memory, representing the
virtual memory, which can hold a large (practically unlimited) number of pages. A
sequence of requests for pages is presented during the execution of a task; if the
requested page is in the fast memory, no cost is incurred and the task proceeds with
no interruptions. Otherwise, the algorithm has to bring the requested page from the
slow to the fast memory, and a unit cost is incurred. The decision then is which of
the Kpages in the fast memory to move to the slow memory, to make room for the
requested page. In the case of paging, the oƒ ine problem is very simple. The algor-
ithm MIN which always removes from the fast memory the page whose next request
is furthest in the future, is optimal, see Belady (1966).

However, the paging problem is practically important only when no knowledge
on future requests for pages is available, which calls for online algorithms for the
problem. One commonly used online paging algorithm is called Least Recently Used
(L RU), see for example Co� man and Denning (1973). According to the LRU algor-
ithm, when the requested page is not in the fast memory, the page removed from the
fast memory to make room for it is the one whose most recent access was earliest. A

3408 B. Matzliach and M. Tzur

major advantage mentioned with respect to this algorithm is its simplicity, as well as
its modest memory requirements.

In Irani and Karlin (1997) it was shown that for the paging problem with a
maximum of K pages in the fast memory, any deterministic online algorithm, as
well as any memoryless randomized algorithm, is likely to produce a cost which is at
least K times the cost of an optimal oƒ ine algorithm. McGeoch and Sleator (1991)
proved that the expected cost of the randomized online algorithm which they devel-
oped, called the partitioning online algorithm, is within a factor of HK of optimum
(where HK is the Kth harmonic number, which is approximately ln (K)), and that no
online algorithm can perform better than this measure. This last negative result is
also applicable for our problem since we consider the more general case of non-
uniform individual capacities; this indicates that the di� erence between the online
and the oƒ ine versions of our problem may be very large.

We investigate the di� erence between the online and oƒ ine versions from the
average point of view with respect to our test problems, and not from the worst case
point of view. Our results indicate that a large gap indeed exists between the two
versions, but the order of magnitude is much smaller. The theoretical results men-
tioned above imply that the gap we observe may be an unavoidable consequence of
the online nature of the problem.

The paper is organized as follows: in section 2 we introduce the notation and
discuss the problem assumptions; in section 3 we present two heuristic algorithms for
stationary demand distributions of tools and test them numerically; in section 4 we
develop a heuristic algorithm for non-stationary demand distribution of tools and
present its performance; ® nally, in section 5 we draw our conclusions and discuss
future research.

2. Notation
The problem is described by the following notation:

T number of requests for tools that occur in the process; (t = 1,. . . ,T) ,
t index of time periods where each time period represents one request and in

each time period, there is a requirement for one tool,
N number of tools involved; (i = 1,. . . ,N) ,
vi size of tool i (the number of slots it occupies in the tool magazine),
K capacity of the tool magazine (the number of slots it contains),

d (t) identity of the tth tool required during the process; alternatively, when
using the time periods terminology, d (t) is interpreted as the identity of the
tool which is required in time period t, or the demand in period t.

Here, we assume that d (t) becomes known only in period t.
Whenever a tool is removed from or loaded on the tool magazine, a cost is

incurred, which is proportional to the tool size, i.e. vi for tool i. This is motivated
by the fact that the cost is proportional to the time of removing/loading the tool
which, by itself, is proportional to its size. Such a cost structure is appropriate in
particular for tool kits, and serves as an approximation for large tools (see, however,
our next assumption). We assume that the location of each tool in the tool magazine
is not relevant, that is, every arrangement of a set of tools, which satisfy the capacity
constraint, is feasible. This is applicable for the case of tool kits, where for big tools
some time-consuming rearrangements may be needed.

Online tool switching problem 3409

The objective is to minimize the cost of removing and loading the tools subject to
the capacity constraint of the tool magazine. Since the basic assumption of our
model is that future demands are revealed only as they occur, the policy may use
historical data only. Therefore, all decisions that are made prior to period t, are
made without the knowledge of d (t) or any later demand information. (Possible
extensions may consider cases where there exists limited information on the
future, that is, when there exists a time window of information, and no information
is available beyond that.)

Indeed, the heuristics we employ base their decisions on past demands only. This
approach has to be supported by additional assumptions with respect to the distri-
bution of the requirements over time. We will demonstrate that an appropriate
reaction to a speci® c assumption indeed improves the operation of the system,
and suggest several possible procedures to control the system e� ectively.

3. Heuristics for stationary demand distributions
It can be shown that there exists an optimal solution in which at every time

period a tool is inserted to the tool magazine only if it is required at that period,
and tools are removed only if there is not enough capacity for the required tool. That
is, tool switches are made only if it is necessary. This property is optimal for the
static problem (when the requirements are known in advance), as well as for the
dynamic problem discussed here. Therefore, all heuristics that we present in this
paper adopt this rule of no initiated removals.

We use the following de® nitions:
St = the set of tools that are present on the tool magazine at time t, after the

switches that may have been performed at time t, but before the switches that may be
performed at time t + 1. We refer to St as the state of the system.

B(t) =
iÎ St

vi = the capacity usage (number of slots occupied) in period t.

The value B(t) keeps track of the used (and therefore implies the available)
capacity in every period. It is updated every time that the heuristic changes the
state of the system.

3.1. The weighted backward distance (WBD) algorithm
Matzliach and Tzur (1997) presented a heuristic algorithm (denoted there as

heuristic 2), based on weighted distances of the future, that was shown to perform
very well (producing solutions that are on average about 2% more costly than the
optimal solution). We use here a similar idea, modi® ed to incorporate the uncer-
tainty in the demand.

The algorithm is iterative, that is, makes at every iteration (period) t a decision
with respect to that iteration only. The algorithm is further based on the expectation
that future demands will have a pattern that is similar to past demands; this is a basic
assumption in most forecasting systems. Combining this expectation with the good
performance of the above-mentioned weighted distances heuristic for the static case,
we calculate here weighted backward distances (WBD) as a basis for the decision at
each iteration of the heuristic regarding which tools to remove (when necessary).

For every period t, and every tool i Î St- 1 s.t. i /= d(t) , we de® ne:

3410 B. Matzliach and M. Tzur

back_dist(i,t) = the distance (number of periods) from the last period when
tool i was required until period t. In fact, back_dist(i,t) is the age of tool i in the
system at time t.

(We assume that the magazine is initially empty; therefore if i Î St- 1, it was
undoubtedly required in the past, according to the principle of no initiated switches;
if this assumption does not hold, the distance of i Î St- 1 which was not required in
the past should be set to t.) We refer to this quantity as the backward distance of tool
i. A notational de® nition is as follows:

back_dist(i, t) = m if d (t - m) = i and d (t - ¿) /= i for ¿ = 1, ...,m - 1

We are now ready to de® ne back_w(J,t) , the backward weighted distance of a set of
tools J that are in the tool magazine in time t - 1.

For every J Í St- 1 s.t. d(t) /Î J:

back_w(J,t) = average distance of tools in the set J
sum of the sizes of tools in the set J

= iÎ J
back_dist (i,t) J| |

i Î J
vi

. (1)

Our algorithm removes from the tool magazine the set of tools J that has the
maximum backward weighted distance and whose removal frees enough capacity for
inserting the required tool. The motivations leading to this criteria are:

(1) the further in the past a tool has been required, the further in the future it is
expected to be required again, since the past gives us an indication on its
usage rate;

(2) the larger the tool size is, the less attractive is its removal, because of its larger
removal cost.

However, if every set J Í St- 1 will be examined, the algorithm will not run in
polynomial time; therefore we choose a relatively small parameter L which denotes
the maximum number of tools to be included in the set J. We denote by Y St- 1

L all sets
of up to L tools which are subsets of St- 1 . The choice of L is guided ® rst by the
computational complexity required to consider all sets J in Y St- 1

L (the complexity
increases with L) and by a feasibility constraint that needs to ensure that, in all cases,
we will be able to ® nd a set of up to L tools that free enough capacity. For the latter
consideration, a choice of

L = max
i

(vi) min
i

(vi)

for example will satisfy the constraint; more ¯ exibility will be obtained by choosing
larger L , on account of an increased complexity. (A more complicated procedure
may choose L as a function of the needed capacity, but in this paper we choose L to
be a constant.)

The algorithm proceeds as follows:

Step 1. For every iteration t, if d(t) Î St- 1 then proceed to iteration t + 1.
Otherwise:

Step 2. If B(t - 1) + vd (t) £ K then insert tool d (t) into the tool magazine and pro-
ceed to iteration t + 1. Otherwise:

Online tool switching problem 3411

Step 3. For all i Î St- 1 evaluate back_dist(i,t) and for every J Î Y St- 1
L which

satis® es B(t - 1) + vd (t) -
i Î J

vi £ K, calculate back_w(J, t) according to (1).
Step 4. Remove the tools in the set J, which achieves the maximum back_w (J,t) .

(Tie-break arbitrarily.) Insert tool d (t) .

In the above description we have omitted the technical and trivial details of
initializing the algorithm and updating the state of the system at every iteration.

If we apply our weighted backward distance algorithm to the special case where
the tool sizes are uniform, we are back to the LRU policy applied in the paging
problem, as discussed in the introduction.

3.2. The weighted probabilistic (WP) algorithm
The essential di� erence between the weighted probabilistic (WP) algorithm of

this section and the weighted backward distance (WBD) algorithm presented in the
previous section is in the method of using past data. While the WBD algorithm looks
back to the last time a tool was required, assuming that the expected distance until
the next demand is identical, the WP algorithm accumulates information on all the
times in the past in which the tool was required. Based on this information, the
probability that a given tool will reappear is calculated at every iteration t and
the expected distance until its next demand is calculated as the reciprocal of this
probability. The latter calculation is appropriate when the demand distribution is
geometric, and we ® nd it useful to use when no other information on the distribution
type is available.

For every tool i and time t de® ne:

prob(i,t) = n(i,t)
t

where n(i,t) is the number of periods (up to period t) in which the requested tool was
i. Updating the probabilities from period t - 1 to period t is performed as follows,
for all i:

prob (i,t) =
prob (i,t - 1) ´ (t - 1) + 1

t d (t) = i

prob (i,t - 1) ´ (t - 1)
t otherwise

Now we estimate in period t the expected distance to the next demand of tool i as:

P_dist (i,t) = 1/prob (i,t)
based on which the expected weighted distance of a set of tools is calculated (denoted
by P_w(J, t)) , exactly as in the WBD algorithm:

P_w(J,t) = iÎ J
P_dist (i, t) / J| |

iÎ J
vi

and the tools in the set J Î Y St- 1
L which satis® es B(t - 1) + vd(t) - iÎ J vi £ K and

has the maximum value of P_w(J, t) are removed.
The advantage of the WP algorithm over the WBD algorithm is indeed in utiliz-

ing more information, and learning from the past in order to get a better estimate of
the expected distance to a future demand. On the other hand, the WP algorithm

3412 B. Matzliach and M. Tzur

needs to keep information about all tools, including those that are presently not in
the tool magazine. For a typical process this may not be a problem since the total
number of tools is larger by only a constant factor than the average number of tools
that can simultaneously be present on the tool magazine. However, in other applica-
tions of this problem this fact may cause large memory requirements. For example,
in the related paging problem mentioned in the introduction, the number of pages
involved in a process is much larger than the capacity of the fast memory and this is
the reason for not using such an algorithm. Compared to that, in the WBD algor-
ithm, only information with respect to the tools that are in the tool magazine is kept;
once a tool leaves the tool magazine the information with respect to it is forgotten.

If we apply the WPalgorithm to the special case where the tool sizes are uniform,
then we choose to remove in every period t the tool with the smallest probability
(estimated thus far) of reappearing.

3.3. Computational experiments
We note that the cost of an optimal solution of the static problem (when all

requirements are known in advance) is a lower bound for the cost of the dynamic
problem discussed in this paper. In general, the cost of an optimal solution of the
static problem is not achievable in a dynamic setting.

In this empirical study we compare the two dynamic algorithms to a heuristic
algorithm for the static problem, the heuristic denoted as heuristic 2 in Matzliach
and Tzur (1997), which is also mentioned in the previous section. The reason that we
use a heuristic for the static problem is that obtaining the optimal solution is very
time consuming (the problem is NP-Complete and it took us several hours to get an
optimal solution to one instance of the problem by solving its integer programming
formulation); the heuristic’s value comes extremely close (< 2% average) to the
optimal value.

In addition, to evaluate the e� ectiveness of the heuristics, we compare their
values to a simple policy, the random solution, obtained as follows: removing a
tool is performed only when the required tool is not in the tool magazine, and not
enough capacity is available for it. In that case, one of the tools in the tool magazine
is chosen randomly (with an equal probability for each tool), and removed. If this
does not free enough capacity for the required tool, another tool will be removed in
the same way until the required tool can be loaded on the tool magazine. We also
specify the value of a naive solution whose rule is to load every tool on the tool
magazine when it is required, and to remove it immediately thereafter. The naive
solution is not intended as an alternative or reasonable policy, but rather as a bench-
mark representing the worst possible case.

The parameters for the test problems were generated as follows: for each tool, a
geometric distribution was assumed, indicating whether the tool is required in each
time period. The probability parameter of the distribution was generated from a
uniform distribution between 0 and 1 (later normalized so that the sum of the
probabilities of all tools is one). The size of each tool was generated from a discrete
uniform distribution in the range (5, 15). We generated 10 instances for every prob-
lem set where, in every instance, a new realization of the requirements as well as a
new realization for the tool sizes is generated. The dynamic heuristics (WBD and
WP) were executed with L = 3.

In problem set 1 we used N = 25 (number of tools), T = 200 (number of require-
ments) and a varying value for the capacity K. The resulting cost values are presented

Online tool switching problem 3413

in table 1 and ® gure 1, as a function of the parameter K. By de® nition of the naive
solution, its cost is constant as a function of Kwhile the other heuristics’ cost values
decrease as a function of K. We note that the relative order of all heuristics’ cost
values remains unchanged as a function of K. For K = 250, all items could ® t
together in the tool magazine, therefore no cost was incurred.

The average deviations (over the values 50 £ K £ 200) of the WBD and WP
heuristics from the cost of the (close to optimal) static solution were 135% and
103% respectively, while the average deviation of the random solution was 203%.

3414 B. Matzliach and M. Tzur

K K = 20 K = 50 K = 100 K = 150 K = 200 K = 2500

Naive
solution

3965
(81)

3695
(81)

3695
(81)

3695
(81)

3695
(81)

3695
(81)

Random
solution

3555
(163)

2952
(141)

(1980
(134)

1294
(180)

(582
(70)

0

WBD
heuristic

3539
(169)

2825
(104)

1795
(140)

1088
(170)

364
(61)

0

WP
heuristic

3511
(161)

2752
(129)

1502
(133)

791
(190)

347
(42)

0

Static
problem
(heuristic)

3407
(161)

1961
(65)

904
(90)

403
(100)

111
(25)

0

Remark: the costs are averages of 10 instances, the standard deviation is in parenthesis.

Table 1. Problem set 1: total cost values of the various solutions.

0

1000

2000

3000

4000

20 250
K

cost

naive

random

WBD

WP

STAT

Figure 1. Problem set 1: total cost of the various solutions as a function of K.

The maximum deviations were 227%, 212% and 424%, respectively, for the three
solutions. The best heuristic appears to be WP, which is not surprising given that it
uses more information about past demands than the other heuristics. Both the WP
and WBD heuristics demonstrate a big improvement over the random solution.
However, note that the deviation from the static solution is still signi® cant,
around 100% on average for WP.

In problem set 2 we focus on the behaviour of the heuristics as a function of T,
the number of periods/requirements. We used N = 25 and K = 125 throughout, and
T varied from 50 to 300 in intervals of 50. The resulting cost values per time period
are presented in table 2 and ® gure 2, as a function of T. In this case, while the value
of the naive solution varies according to the randomness of the tool sizes, the other
heuristic values are less variable as a function of T. Among those, we observe that
the value of the WP heuristic is decreasing with T, and this result is due to the
learning that occurs over time with respect to the probabilities of the tools being
required. The relative order of all heuristic values remains unchanged as a function
of T as well.

Online tool switching problem 3415

0

5

10

15

20

50 100 150 200 250 300
T

co
st

 p
er

 p
er

io
d

naive

random

WBD

WP

STAT

Figure 2. Problem set 2: cost values per period as a function of T.

T T = 50 T = 100 T = 150 T = 200 T = 250 T = 300

Naive solution 18.3 19.3 18.4 18.8 18.2 18.4
Random solution 8.5 8.8 8.5 8.5 8.4 8.3
WBD heuristic 8.1 7.4 7.3 7.2 7.1 7.3
WP heuristic 7.7 6.4 6 5.8 5.6 5.6
Static problem
(heuristic)

2.8 3.2 3.2 3.3 3.1 3.2

Table 2. Problem set 2: cost values per period (average of 10 instances).

Finally, in problem set 3 we analyse the cost of the heuristics as a function of the
demand’ s variability among the tools. We denote by Var (Pr) the variance of the
probability distribution according to which the requirements are generated, and run
all algorithms for variance values of 0, 2 ´ 10- 4, 4 ´ 10- 4, 6 ´ 10- 4, 8 ´ 10- 4 and
10 ´ 10- 4. The other parameters are: N = 25, K = 125 and T = 200. The results
(depicted in ® gure 3) are quite interesting. As the variance increases, algorithms
WBD and WP are improving and getting closer to the value of the static problem,
while the other algorithms are relatively constant over the variance range. We
explain it as follows: with a large variance among the tools, some tools are much
more likely to be required than others. These two algorithms apply past experience,
recognize the p̀opular’ tools and try to keep them in the tool magazine. The WP
algorithm accumulates more information about the past than the WBD algorithm
and therefore its advantage is once again very clear. The random algorithm does not
make use of past data, and therefore is not a� ected much by variance changes. In the
extreme case where Var (Pr) = 0, the probability distribution of the demands for the
tools is uniform, in which case the WBD and WPalgorithms have no advantage over
the random algorithm.

4. Heuristic for non-stationary demand distributions
The underlying assumption in the design of the heuristics of the previous section

was that the demand distribution of the requested tools does not change over time.
In particular, this is the reason why, in the WP heuristic, information was accumu-
lated over the entire history. If the demand distribution changes over time, the entire

3416 B. Matzliach and M. Tzur

0

1000

2000

3000

4000

0 2 4 6 8 10

Var(Pr)

cost

naive

random

WBD

WP

STAT

- 4111

Figure 3. Problem set 3: total cost as a function of the demand variability between items.

history is a misleading estimator, and the performance of the WP heuristic would
deteriorate.

For those processes that are characterized by (possible) changing activities and
therefore by changing demand probabilities, we suggest in this section a heuristic
which gives a large weight to recent information, and a smaller weight to older
information. We do this by using an exponential smoothing approach with respect
to the demand probabilities, combined with the WP heuristic. More speci® cally, we
update each tool’ s demand probability by averaging a new estimate for it with a
factor of a (0 £ a £ 1) and its old estimate with a factor of 1 - a .

Our new estimate is based on a duration of several periods, denoted by length. At
the completion of each length we update the demand probabilities. We use the
following de® nitions:

¿ = the running index for length
Prob (i,t,¿) = the probability of demand for tool i in period t of length ¿,
calculated at the end of length ¿ - 1 for ¿ > 1, and at the end of period t - 1
for ¿ = 1.
num (i,¿) = the number of demands for tool i in length ¿.

According to the de® nition above, we have the following formula:

Prob (i, t,¿) =
n(i, t - 1)

t - 1 ¿ = 1

(1 - a) Prob (i, length, ¿ - 1) + a ´num (i,¿ - 1)
length otherwise

In the ® rst length, the probability is updated every single period, since no prior
information is available; afterwards, it is updated at the end of every length. The
rest of the algorithm is identical to that of WP and we denote it as the exponential
algorithm (EXP). Finally, the parameters length and a have to be determined. The
value of length has to be long enough (multiples of N) so that enough information
can be gathered, but not too long, so that the system is updated in real time. The
value of a needs to be determined as in every exponential smoothing application: if
we believe that there is a rapid change in the demand probabilities then a large a
needs to be chosen so that more weight is given to the new information. On the other
hand if we think that the system is relatively stable then we better choose a relatively
small a so that our estimate will not get biased by the last length realization.

In the next test problem set, denoted as set 4, we study the performance of the
EXP algorithm compared with the previous algorithms, as well as the e� ects of the
parameters length and a on it. The overall duration of this problem was 800 periods,
but every 200 periods, the probability distributions of the 5 tools were changed,
according to the vectors shown below. These probabilities were used to generate
the requirements, but obviously were not known during the execution of the EXP
algorithm. For simplicity we used here equal tool sizes of 1, K = 3 and N = 5. The
value of length was chosen to be 2N, that is: 10.

Pr (i, t) =

[0.5,0.2,0.1,0.1,0.1]
[0.1,0.1,0.1,0.2,0.5]
[0.1,0.5,0.2,0.1,0.1]
[0.2,0.1,0.1,0.5,0.1]

0 < t £ 200
200 < t £ 400
400 < t £ 600
600 < t £ 800

Online tool switching problem 3417

The resulting costs of all algorithms are shown in tables 3 and 4 where, in table 4, the
result of the EXP algorithm is shown for various values of a . These results are
depicted graphically in ® gure 4. Finally, in table 5 and ® gure 5 the dependency of
the cost of algorithm EXP on the parameter length is presented; there, a value of
a = 0.5 was chosen.

3418 B. Matzliach and M. Tzur

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

random

WP

WBD

EXP

STAT

ALFA

cost

Figure 4. Problem set 4: cost values as a function of a .

Algorithm Total cost

Static problem (heuristic) 252
Random solution 495
PBD heuristic 402
WP heuristic 480

Table 3. Problem set 4: total costs with changing
demand distributions.

a = 0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6 a = 0.7 a = 0.8 a = 0.9 a = 1

476 420 385 362 360 357 358 359 362 371 390

Table 4. Problem set 4: cost of the EXP heuristic as a function of a .

N 2N 3N 4N 5N 6N 7N 8N 9N 10N

370 357 358 360 369 389 402 425 450 470

Table 5. Problem set 4: cost of the EXP heuristic as a value of length.

We ® rst note from these results that when the demand distribution is non-
stationary, algorithm WBD performs better than algorithm WP, as opposed to
the case where the demand distribution is stationary. This results from the fact
that the WP algorithm remembers all past information with equal weights,
therefore not estimating correctly the most recent (and relevant) distribution.
On the other hand, the WBD algorithm looks back only until the most recent
request which (except for the transition times) is drawn from the recent and relevant
distribution.

Better than these two algorithms is the EXPalgorithm, for almost all values of a
and length. For large values of length (> 7N) the EXPalgorithm becomes inferior to
WBD, since its updating procedure becomes too slow. Overall, the enhancement of
the EXP algorithm is rewarding.

5. Conclusions and future research
We presented in this paper the ® rst analysis of the dynamic tool switching

problem with non-uniform tool sizes. We developed several heuristic rules to control
the switching strategy, di� ering from each other in their underlying assumptions
with respect to the process randomness. Having no prior rules to compare our
heuristics to, we compared them to a random policy and demonstrated their
superiority.

Several related issues remain unanswered and may be part of future research.
One such issue is developing an e� cient strategy for an environment where a forecast
window exists for a limited number of periods in the future in which demand is
known, and beyond that demand is unknown. Another interesting related question is
the determination of the best storage size, that is, the capacity of the tool magazine.
There is a clear trade-o� between a large tool magazine which allows for lower

Online tool switching problem 3419

0

100

200

300

400

500

600

N 2N 3N 4N 5N 6N 7N 8N 9N 10N

cost

random

WP

WBD

EXP

STAT

length

Figure 5. Problem set 4: cost values as a function of length.

operating costs (tool switches), and a smaller tool magazine that is less costly to
purchase but more expensive to operate.

References

Bard, J. F., 1988, A heuristic for minimizing the number of tool switches on a ¯ exible
machine. IIE Transactions, 20, 382± 391.

Belady, L. A., 1966, A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal, 5, 78± 101.

Coffman, E. G. and Denning, J. P., 1973, Operating Systems Theory (Englewood Cli� s, NJ:
Prentice Hall).

Crama, Y., Kolen, A. W. J., Oerlemans, A. G. and Spieksma, F. C. R., 1994, Minimizing
the number of tool switches on a ¯ exible machine. The International Journal of Flexible
Manufacturing Systems, 6, 33± 54.

Irani, S. and Karlin, A. R., 1997, On-line computation. In Approximation Algorithms for
NP-hard Problems, edited by D. S. Hochbaum (PWS Publishing Company).

Jain, S., Johnson, M. E. and Safai, F., 1996, Implementing setup optimization on the shop
¯ oor. Operations Research, 43, 843± 851.

Matzliach, B. and Tzur, M., 1997, Storage management of items in two levels of
availability. Submitted for publication to European Journal of Operational Research.

McGeoch, L. A. and Sleator, D. D., 1991, A strongly competitive randomized paging
algorithm. Algorithmica, 6, 816± 825.

Privault, C. and Finke, G., 1995, Modeling a tool switching problem on a single NC-
machine. Journal of Intelligent Manufacturing, 6, 87± 94.

Shanker, K. and Tzen, Y. J., 1985, A loading and dispatching problem in a random ¯ exible
manufacturing system. International Journal of Production Research, 23, 579± 595.

Stecke, K. E., 1983, Formulation and solution of nonlinear integer production planning
problems for ¯ exible manufacturing systems. Management Science, 29, 273± 288.

Tang, C. S. and Denardo, E. V., 1988, Models arising from a ¯ exible manufacturing
machine, part I: minimization of the number of tool switches. Operations Research,
36, 767± 777.

3420 Online tool switching problem

http://www.catchword.com/nw=1/rpsv/0740-817X^28^2920L.382
http://www.catchword.com/nw=1/rpsv/0018-8670^28^295L.78
http://www.catchword.com/nw=1/rpsv/0920-6299^28^296L.33
http://www.catchword.com/nw=1/rpsv/0030-364X^28^2943L.843
http://www.catchword.com/nw=1/rpsv/0178-4617^28^296L.816
http://www.catchword.com/nw=1/rpsv/0956-5515^28^296L.87
http://www.catchword.com/nw=1/rpsv/0020-7543^28^2923L.579
http://www.catchword.com/nw=1/rpsv/0025-1909^28^2929L.273
http://www.catchword.com/nw=1/rpsv/0030-364X^28^2936L.767
http://www.catchword.com/nw=1/rpsv/0018-8670^28^295L.78
http://www.catchword.com/nw=1/rpsv/0920-6299^28^296L.33
http://www.catchword.com/nw=1/rpsv/0030-364X^28^2936L.767

