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Abstract

Possible variational principles for excitation of an electromagnetic field in a wave guide are discussed. Our emphasis is not on
the calculation of the modal shapes, which is common in previous art, but rather on the calculation of modal amplitude evolution,
which are important in electron devices such as free electron lasers and gyrotrons. Variational principles have considerable
importance in theoretical physics and are used among other things to derive numerical solution schemes, conservation laws via
the Noether theorem and correct boundary conditions for the derived equations including the important effects of the backward
waves amplitudes.
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PACS: 41.20.-g; 41.20.Jb; 41.60.-m; 41.60.Cr

1. Introduction

Interaction of radiation and plasma waves in many electron devices takes place inside an open or closed cylinder
(wave guide) of some arbitrary cross-section (e 1for a schematic illustration).

A well-known example is the free-electron laser, in which the electromagnetic field interacts with an electron
beam in the presence of an undulator, generating high power coherent radiation. In order to achieve lasing, the
radiation is being excited inside a resonator, dictating boundary conditions for both forward and backward waves
(seeFig. 1).

Solution of the electromagnetic radiation field inside the resonator, requires simultaneous integration of the
coupled excitation equations of forward and backward wl@s However, it becomes difficult to accommodate
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Fig. 1. The FEL scheme.

the different boundary conditions for both forward and backward modes in the same numerical integration scheme.
Although the radiation power is built gradually in the direction of the electron beam propagation, the natural
boundary conditions for the backward waves are given at the end of the interaction region. Thus it is desirable to
develop a numerical procedure that allows non-local boundary conditions.

We suggest employing variational methods for calculating the total electromagnetic field, including excitation
of forward and backward waves. Our developed variational principle is based on a modal representation of the total
electromagnetic field in terms of the eigenmodes of the geometry in which the radiation is excited and formulation
of the electromagnetic field action in the space—frequency domain.

Variational principles for electromagnetic field dynamics, including their interaction with matter are abundant in
the literaturg1-9]. Moreover, the behavior of the electromagnetic field inside a wave guide in terms of a variational
principle was studied in many texf4—9], most of the times in order to provide a basis for a numerical scheme.
These works are concerned mainly with the derivations of eigenmodes for the case of non-trivial geometries or an
inhomogeneous refraction index. In this work we are not concerned with the modal form rather we assume that it
is known. Our main concern is the development of the modal amplitude inside the wave guide due to its interaction
with propagating charge.

An additional difference between this work and previous art is the methodology we use for developing our vari-
ational principle. While previous workers initiated the development of their frequency domain variational principle
from the relevant equations (usually defining the square of the equations as the variational functional). We start
from the general ‘canonical’ form of the variational principle for electromagnetic fidltiswhich is stated in
terms of gauge fields, we than adapt it to a form which is relevant for the physical scenario taking place inside a
wave-guide.

Variational principles have importance in theoretical physics. And are used to:

derive numerical methods for obtaining the modal amplitudes;

obtain constants of motion using the Noether theorem;

derive the differential equation of motion and tterect boundary conditions to those equations;
guantize the system under investigation using the action in a path integral.

In this Letter we introduce three different variational principle describing the modal propagation inside a wave
guide.

The structure of this Letter is as follows: first we discuss the fundamentals of electromagnetic field presentation
in the frequency domain, followed by a short review of the modal representation in a wave guide. Then the vector
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potential modal representation is introduced. After that we review the classical variational principle of the elec-
tromagnetic field and its variational derivatives. Next the action is represented in the spectral-modal scheme and
second order equations are obtained for the fields amplitudes. Finally the introduction of the quasi Hamiltonian al-
lows us to obtain first order equations in terms of the field amplitudes, while the introduction of backward—forward
waves puts the variational principle in a particular simple form which concludes our report.

2. Fundamental of electromagnetic field presentation in the frequency domain

The electromagnetic field in the time domain is described by the space—time digctricand magneti¢i(r, r)
signal vectorst stands for théx, y, z) coordinates, wheréx, y) are the transverse coordinates anslthe axis of
propagation. The Fourier transform of the electric field is defined by

+00
E(r,w) = / E(r, t)et " dt, 1)

—00

wherew is the angular frequency and= +/—1. Similar expression is defined for the Fourier transfétmn, w) of
the magnetic field. Since the electromagnetic signal is real E¥&r, t) = E(r, 1)), its Fourier transform satisfies
E*(r,w) =E(r, —w).

Fourier transformation of the electric field results in a ‘phasor-like’ funcfign, ) defined in the positive
frequency domain and related to the Fourier transform by

2E(r,w), >0,
0, w < 0. @

The Fourier transform can decomposed in terms of the ‘phasor-like’ functions according to

E(r, w) = 2E(r, o)u(w) = {

1. 1.
E(r,a))zéE(r,a))+§E*(l’,—w) 3)
and the inverse Fourier transform is then
1 “+o00 1 o0
E(r,7) = > / E(r,w)e /" dw = m{ > f E(r, w)e /! da)}. 4)
—00 0

3. Modal presentation of electromagnetic field in the frequency domain

This section presents the formalism employed throughout this Letter for analyzing the excitation of electro-
magnetic fields by current sources distributed along a wave dudié2,13] The approach taken here utilizes
representation of the total electromagnetic fields and their sources in terms of vector functions, which are the
eigenmodes solutions of the medium, free of charge or current sources. The ‘phasor like’ quantities dé#ned in
can be expanded in terms of transverse eigenmodes of the medium in which the field is excited and propagates. The
perpendicular component of the electric and magnetic fields are given in any cross-section as a linear superposition
of a complete set of transverse eigenmodes

Ei(ro)=) Vi@ o&i(x,y), Hiho)=) Iz o)Hyi(x,y). )
q q



A. Yahalom et al. / Physics Letters A 344 (2005) 18-28 21

The summations include propagating and cut-off TE and TM modes, for whj¢h ») and /, (z, w) are the
scalar amplitude of the electric and magnetic fields respectivelyﬁ'qm(lx, y) and’}:t,“(x, y) are their respective
profiles.

Expressions for the longitudinal component of the electric and magnetic fields are obtained after substituting the
modal representatiofd) of the fields into Maxwell’'s equations, where the Fourier transform of the current density
J, J(r, w) is introduced

. - 1 . . .
EZ(r7w):;Iq(zaw)qu(x’ y)+]EJZ(r7w)7 HZ(rvw)z; Vq(z,w)qu(xy)’)- (6)
By imposing the appropriate boundary conditions, the Maxwell vector equations are transformed into scalar dif-
ferential (‘transmission line’) equations, which describe the evolution of the equivalent electric and magnetic
amplitudesV, (z, w) andi,(z, w):

dV,(z, w) . dl,(z, w) ) )
-t = —jkgly(z, 0) +v4(z, ®), —q7=_]kzqvq(zﬁw)+’q(z’w)’ )
dz dz
where
. J\Jk3, — k2= jlkyql, k <k (cutoff modes) ©
9 —

JkZ — kiq = |kzql, k > k14 (propagating modes)

is the axial wave number of modeand

1 e . 12 L
vq(z’w)zj\—/q//]zngdxa’y’ ’q(sz)EA—/qZ—;//Jqudedy. 9)
The normalization of the field amplitudes of each mode is made via each mode’s complex Poynting vector power
N, ://[qu(x’y)XﬂZJ_(X,y)]-idxdy (10)
C.S.

and the mode impedance is given by

\/EL = %% for TE modes

Z, = (11)

\/Ekﬂ =k forTm modes

€ k T we

¢ is the electric susceptibility and is the magnetic permeability.
The transmission-line equatiofig) can also be written in the form

V) (2, 0) + k2, V(2. 0) = =0} (2. 0) — jikegig(z. o),
I (2, 0) + k2,14 (2, 0) = — jkzqvg (2. 0) — i} (2, ), (12)
where () denotes a derivative in respectzd\otice that only one of the equations(it2) needs to be solved, since

solving forV, (z, w) we obtain immediately the solution fdy (z, ») through Eq(7).
4. Thevector potential
The scalar potentiab (r, t) and vector potentiaA(r, r) are related to the electric and magnetic fields by

uH(r, 1) =V x A(r, 1), E(r,t):—%A(r,t)—qu(r,t). (13)
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Choosing a gauge transformation wheré, ) = 0, the vector potential is given by the time integration

t

A(r,t):—/E(r,t’)dt’. (14)

Consequently, in the frequency domain

- 1.
A(r,w) = —E(r, ). (15)
Jw
Using expansioi5), the perpendicular component of the vector potential can be presented by
- 1 -
ALrw)=— > V@ )qi(x.y) (16)
q
and from(6), the longitudinal component of the vector potential is
~ 1 ~ 1 .
Az(r’a))=f(ZIq(Zaw)ng(xv)’)‘i‘.—Jz(r,w)>- (17)
Jw p Jwe
In terms of Eq(9) the longitudinal component can be shown to have the form
Az(r,w)ziz I™(z, ) — ijvT""(z,w) Eq. (X, ). (18)
jo £\ K2 %
q

In this case Eq(7) serve as a definition faf:

0.V + vy

; (29)
szq

I, =

5. Theclassical variational principle

It is well known that the action of the electromagnetic field can be given in terms of the vector potential in the
following form [11]:

1 1
A:f[i (s(B,A)Z — Z(V x A)2> +J- A] d3x dt. (20)
7
Taking the variational derivative od with respect the vector potentialwe obtain

8A =8A; + 8 Apoundary+ 8. Aequations (21)
3 A, is the time condition term given by

7]

SA =¢ f A - SAd>x (22)

n

11 is the initial time of the system ang is the final time 5 Apoundaryis the boundary term

8 Apoundary= f H x 8A -dSdt (23)



A. Yahalom et al. / Physics Letters A 344 (2005) 18-28 23

the integral is taken over all the surface containing the volume under consideration. Finally, the equation part is
given by

8Aequation5= /(SA . (SB,E —VxH+ \]) d3x dt. (24)

Provided that.4; ands.Anoundaryvanish for otherwise arbitrary variations théota) = 0 vanishes if and only
if
V x H=¢ed,E+J. (25)

The other Maxwell equations are satisfied automatically by virtue of the vector potential representa(ip8) Eq.
and by virtue of the continuity equation.

6. Spectral representation

In order to use the spectral representation in the variational techniqgue one must assure in advance that the
conditions A, = 0 (Eq.(22)) is taken care of. This can be done by choosing 0 andt, = T and demanding that
A(0) = A(T). ThusA is given (instead of Fourier transform of the type given in @g) by the Fourier sum

ad . 2mn
A= Z Apelt . w, = T (26)
n=—o0
for which
T
1 —jwnt
A"ZT Ae /! dt (27)
0

andA_, = A} sinceA is real.
In terms of this notation Eq20) takes the form

A=T|:ZA"+ADC]. (28)

n=1

In which
1
Ay = [aw5|An|2 — ;|V X AP+ 35 A+, .A;} d3x
1
= /[5w5|An|2 — 2|V x Ay P+ 20%(3 -A,,)}d%,
"

1
ADC:/[_Z_W X A0|2—|—JO-AO] d®x. (29)
W

J,, is the Fourier component of the current densityx) stands for the real part of, |x| stands for the absolute
value ofx andx* stands for the complex conjugatexafThe action given in Eq28) and Eq.(29)is obviously real
(despite its apparent complex nature). From now on we disredgedwhich is not relevant for time dependent
source currents.
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7. Theaction in awave guide

Inserting the modal representation E¢j6) and (17)nto Eqgs.(28) and (29)wve obtain

Z Z qn Lg.n, an/Eq,ndZv
an

z
— 2
£q,n = |Vq n| |anq,n| -

Zq n

2 8%
Eczka_ [g.nl” = RV} 8 Vgn) — (ke iqn V' n) (30)
in which J(x) stand for the imaginary pakt. FromAppendix A(see alsd13]) it is obvious thatN" ~ is real and

so are the Lagrangiah, , and the Lagrangian densify, ,. The quantities, ., v, , are defined i |n Ec(9) From
now on we will suppress the indicgsn.
In terms of the amplitud® and its complex conjugaté*, the Lagrangian densit§ can be written as

2

1
L= _{kfvv* — 3. Vo,V —

5 v* =9, Vu* — 9, Viv+ jkiV* — jk;‘i*V}. (31)

w
v
2
ZkL
It should be noted that using the modal representation given if1Bjjthe boundary Apoundaryterm given in
Eq. (23) vanishes on the circumference of the wave-guide in the modal representation and the only contributions
come from the planes= 0 andz = L,, which amount to the condition

J(k18V*)|5" =0 (32)

for each mode.
Taking the variational derivative of E¢31) we obtain

L i fr
SL= E{/[]kzt + K2V + 32V +3,0|8V*dz — (3. V + v)sV* i
in which c.c. stands for complex conjugate. The boundary conditions given i{88&xare the same as in E(B2)
by virtue of Eq.(19). The equations obtained are the same as iEt).and its complex conjugate.

+ c.c.} (33)

8. Some numerical aspects

At this stage it is already clear that the Lagrangian appearing i{@Bjjis real. However, in order to understand
its mathematical structure we shall write it in terms of real quantities. Every complex nutnb@n be written
asC = C, + jC; in which C,, C; are real numbers and, = R(C) is the real part of” while C; = J(C) is the
imaginary part ofC. Representing all the quantities appearing’itEg. (30)) in terms of their real and imaginary
parts we arrive at the result

L

i w2 — R(v*8, V) — I(k,i V*)

1 1
ZK2VIP =2l V)P -2
KV =30V =5 o

1
=5 [kf(v,2 + VA = (8.VZ+9,V?) —

1 [kGV, =i V)  (propagating modes)
|k, |GV, —i; Vi) (cut-off modes)

2
22 (v,2 + vlz) — 0, Vv, — 8ZVivii|
1

(34)
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Notice that the cut-off modes Lagrangian density decouples into two separate Lagrangian densities

L=L, 40
1 2y/2 2 2 2
L, = E[kz Ve— 0,V — czki ve— 0, Vv, — |kZ|irVr:|,
1 2 2 2 2 2
Ei=§|:kZVri — (Vi) —in _aniUi‘i‘|kZ|iiVii| (35)
1

while the propagating modes Lagrangian density cannot decouple. Using any type of discretization the Lagrangian
density given in Eq(34) will become a real bilinear form. For cut-off modes the form-of appears to be positive
sincek? = —|k?| according to Eq(8). Thus the solution will correspond to the minimum of the bilinear form which

can be found by standard numerical techniques such as the conjugate gradient[ffgthamt propagating modes

kz? = |k§| the solution will correspond to a saddle point of the linear form and can be found using techniques such
as the ones described[ib6—-18]

9. Thequasi-Hamiltonian

In certain cases it is desirable to obtain first order equations instead of the second orde).Hn.analytical
mechanic$14] their is a well-known technique to reach this goal using the Hamiltonian construction./Sgicen
in Eq. (30)is not strictly speaking a Lagrangian (time which appears in proper Lagrangians is replaced here by the
longitudinal coordinate) we will denote the analogue construction of the Hamiltonian a ‘quasi-Hamiltonian’. For
convenience we introduce the Lagrangian denity

2

L=—20=0.VO.V*—K2VV* + =

202 v + 9. Vo' + 9. Vi — jkiV* 4 jkIi*V (36)
k1

in which we utilized Eq(31). Next we define the quasi canonical momentum®&o& 3,V andV'* =9,V*:

AL , , L
Eav/zv*—{-v*:—Jk;‘I*, H*EBV/*

in which Eq.(19) is used. Notice that the quasi canonical momentums are proportion&laiod I, respectively.
Having done this we are in a position to define the quasi-Hamiltonian density

=V +v=jkI (37)

H=V'IO+V*T*-L

k2
= |k 21112+ K2V % — jkIv* + jKET*v — P |2+ jhiV* — jkE*V
1
_ 2 AR s 7k _ﬁ 2 vk - ok
=k, kz(|V| :l:|]|) JIvt £ jI*v k2|v| + jiVIFji'V (38)
1

the upper sign should be attributed to propagating modes while the lower signs should be attributed to decaying
modes. Thug can be written as

L=V O+V*T"—H

k
:kz[:FjI*V’ F IV =k (VR EP) + jIv F jIMv — jiV* £ ji*V + k—§|v|2i|. (39)
1



26 A. Yahalom et al. / Physics Letters A 344 (2005) 18-28

Our next step will be to take the variational derivative with respedtamd V and their complex conjugates bf
which is defined as

L:deZZ—zL. (40)
This will lead to the expression
SL = kZ/dz [S1(jV'* Fh I* + jv*) FI*(V' + kI + jv)

Ly
+8V(£j1"*F =k VF £ ji*) =SV + k. V + ji)] + jk(I8VFF I*8V)| . (41)
0

The boundary conditions term given in Eg1) is the same as in E¢§33) by virtue of Eq.(19). The equations
obtained are the same as Eg) and their complex conjugates.
10. Theforward-backward formulation

In terms of V and/ one can define the following new variablds]:

1 . 1 .
Cr=5(V+ e k2, —=5V - Del*, (42)
Or vice versa as
V=Crellipceiki [ =ChelRt - Ce R, (43)

ThusCy andC- appear as the amplitudes of forward and backward waves respectfulllyi¢gsé® in the case of
propagating modes. Inserting the above variablesiingiven in Eq.(40) we obtain

i} k
L :jkz{zfdz[cic/_ +CFCy —Cip+Cyp* +Cra—C_a* —j2k—zz|v|2:|

1
Ly
+ (CrCpePhd — C_Che™@kE — |C_ 2 - |C4)?) } (44)
0
In which
1 N\ Jkzz 1 N ,—Jjkzz
ot:E(v—l)e 22 ,B:E(v—i—l)e L (45)
Cavity
C.(0) I~ YaVaVs C—(Lz
Gain medium
zéo z; >z
w

| L :

w

Fig. 2. Interaction of the electromagnetic field in a gain medium.
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At this stage one is tempted to discard the boundary term in the above equation since it appears to have no effect
on the resulting equations, however, this will lead to unphysical boundary conditions and thus should be avoided.
Taking the variational derivative we obtain

8L = § Lequationt 8 Lboundary (46)
in which

8 Lequation= 2jk; /[(a +C)8C* — (B+C')SCY —c.cldz (47)
in which c.c. stands for complex conjugate and

8 Lboundary= — jk:[8C (C_e™2/%% — C,) — 8C* (Cpe¥h — C_) —c.c]y". (48)
The boundary term given in E¢48) are the same as in EB2) by virtue of Eq.(43). The equations obtained are

C.=—a, C,=-8 (49)

and their complex conjugates which provides a truly elegant way to compute the field dynamics.
For decaying modek given in Eq.(40) takes the form

_ k
L= jkz{zfdz[cjc’ +C4C* + Cra+ Cra* —C*B—C_p* — j2k—12|v|2:|
L
. . Lw
— [|C_|26—21kzz _ |C+|2621k;z + C_Cj_ + CiC.;_] } (50)

0

At this stage one is tempted to discard the boundary term in the above equation since it appears to have no effect
on the resulting equations, however, this will lead to unphysical boundary conditions and thus should be avoided.
Taking the variational derivative we obtain

SL= 3Z4equation+ SZboundary (51)
in which
8 Lequation= 2jk- /[(05 +C)3C, — (B+CL)8C* +c.c]dz (52)

in which c.c. stands for complex conjugate and

8 Lboundary= — jk:[C*(C_ — C1e¥57) 4 5C* (C_e 27 — C}) +c.c] |5 (53)

The boundary term given in E@§53) are the same as in E{32) by virtue of Eq.(43). The equations obtained
are the same as in E(9) and their complex conjugates which provides a truly elegant way to compute the field
dynamics.

11. Conclusions

Three different action principles were obtained in this work: one in terms o¥/timeodal amplitude leading
to second order equations. Another principle was formulated in terms df tHeamplitudes through the quasi-
Hamiltonian concept leading to first order equations. And finally an action principle in terms of the forward and
backward modes were derived including the correct boundary conditions for those equations. The action can be
used as a basis for a numerical scheme as outlined in Sé&ctiomas observed that different numerical techniques
should be used for propagating and cut-off modes. Additional possible applications of the above variational princi-
ples include derivation of constants of motion using the Noether theorem and quantization of the electromagnetic
field in a wave-guide using the action in a path integral technique.
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Appendix A. The complex nature of the electro-magnetic profilesin the wave guide

Table 1

Parameters of propagating and cut-off modes

Mode type Propagating Cut-off
Axial wavenumber kzg real imaginary
Impedance: Zyg real imaginary
TE mode:

Longitudinal magnetic field component: ﬁ,ﬂ real real
Transverse magnetic field component: ﬂql imaginary real
Transverse electric field component: qu_ imaginary imaginary
TM mode:

Longitudinal electric field component: qu real real
Transverse electric field component: E‘ql imaginary real
Transverse magnetic field component: ﬂql imaginary imaginary
Power normalization Ny real imaginary
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