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Abstract

Possible variational principles for excitation of an electromagnetic field in a wave guide are discussed. Our emphasis
the calculation of the modal shapes, which is common in previous art, but rather on the calculation of modal amplitude e
which are important in electron devices such as free electron lasers and gyrotrons. Variational principles have con
importance in theoretical physics and are used among other things to derive numerical solution schemes, conservatio
the Noether theorem and correct boundary conditions for the derived equations including the important effects of the b
waves amplitudes.
 2005 Elsevier B.V. All rights reserved.

PACS: 41.20.-q; 41.20.Jb; 41.60.-m; 41.60.Cr

1. Introduction

Interaction of radiation and plasma waves in many electron devices takes place inside an open or closed
(wave guide) of some arbitrary cross-section (seeFig. 1for a schematic illustration).

A well-known example is the free-electron laser, in which the electromagnetic field interacts with an e
beam in the presence of an undulator, generating high power coherent radiation. In order to achieve la
radiation is being excited inside a resonator, dictating boundary conditions for both forward and backwar
(seeFig. 1).

Solution of the electromagnetic radiation field inside the resonator, requires simultaneous integration
coupled excitation equations of forward and backward waves[10]. However, it becomes difficult to accommoda
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Fig. 1. The FEL scheme.

the different boundary conditions for both forward and backward modes in the same numerical integration
Although the radiation power is built gradually in the direction of the electron beam propagation, the
boundary conditions for the backward waves are given at the end of the interaction region. Thus it is des
develop a numerical procedure that allows non-local boundary conditions.

We suggest employing variational methods for calculating the total electromagnetic field, including exc
of forward and backward waves. Our developed variational principle is based on a modal representation of
electromagnetic field in terms of the eigenmodes of the geometry in which the radiation is excited and form
of the electromagnetic field action in the space–frequency domain.

Variational principles for electromagnetic field dynamics, including their interaction with matter are abun
the literature[1–9]. Moreover, the behavior of the electromagnetic field inside a wave guide in terms of a varia
principle was studied in many texts[4–9], most of the times in order to provide a basis for a numerical sch
These works are concerned mainly with the derivations of eigenmodes for the case of non-trivial geometr
inhomogeneous refraction index. In this work we are not concerned with the modal form rather we assum
is known. Our main concern is the development of the modal amplitude inside the wave guide due to its int
with propagating charge.

An additional difference between this work and previous art is the methodology we use for developing o
ational principle. While previous workers initiated the development of their frequency domain variational pr
from the relevant equations (usually defining the square of the equations as the variational functional).
from the general ‘canonical’ form of the variational principle for electromagnetic fields[11] which is stated in
terms of gauge fields, we than adapt it to a form which is relevant for the physical scenario taking place
wave-guide.

Variational principles have importance in theoretical physics. And are used to:

• derive numerical methods for obtaining the modal amplitudes;
• obtain constants of motion using the Noether theorem;
• derive the differential equation of motion and thecorrect boundary conditions to those equations;
• quantize the system under investigation using the action in a path integral.

In this Letter we introduce three different variational principle describing the modal propagation inside a
guide.

The structure of this Letter is as follows: first we discuss the fundamentals of electromagnetic field pres
in the frequency domain, followed by a short review of the modal representation in a wave guide. Then th
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potential modal representation is introduced. After that we review the classical variational principle of th
tromagnetic field and its variational derivatives. Next the action is represented in the spectral–modal sch
second order equations are obtained for the fields amplitudes. Finally the introduction of the quasi Hamilto
lows us to obtain first order equations in terms of the field amplitudes, while the introduction of backward–f
waves puts the variational principle in a particular simple form which concludes our report.

2. Fundamental of electromagnetic field presentation in the frequency domain

The electromagnetic field in the time domain is described by the space–time electricE(r, t) and magneticH(r, t)
signal vectors.r stands for the(x, y, z) coordinates, where(x, y) are the transverse coordinates andz is the axis of
propagation. The Fourier transform of the electric field is defined by

(1)E(r,ω) =
+∞∫

−∞
E(r, t)e+jωt dt,

whereω is the angular frequency andj = √−1. Similar expression is defined for the Fourier transformH(r,ω) of
the magnetic field. Since the electromagnetic signal is real (i.e.,E∗(r, t) = E(r, t)), its Fourier transform satisfie
E∗(r,ω) = E(r,−ω).

Fourier transformation of the electric field results in a ‘phasor-like’ functionẼ(r,ω) defined in the positive
frequency domain and related to the Fourier transform by

(2)Ẽ(r,ω) = 2E(r,ω)u(ω) ≡
{

2E(r,ω), ω > 0,

0, ω < 0.

The Fourier transform can decomposed in terms of the ‘phasor-like’ functions according to

(3)E(r,ω) = 1

2
Ẽ(r,ω) + 1

2
Ẽ∗(r,−ω)

and the inverse Fourier transform is then

(4)E(r, t) = 1

2π

+∞∫
−∞

E(r,ω)e−jωt dω = �
{

1

2π

∞∫
0

Ẽ(r,ω)e−jωt dω

}
.

3. Modal presentation of electromagnetic field in the frequency domain

This section presents the formalism employed throughout this Letter for analyzing the excitation of e
magnetic fields by current sources distributed along a wave guide[10,12,13]. The approach taken here utiliz
representation of the total electromagnetic fields and their sources in terms of vector functions, which
eigenmodes solutions of the medium, free of charge or current sources. The ‘phasor like’ quantities defin(2)
can be expanded in terms of transverse eigenmodes of the medium in which the field is excited and propag
perpendicular component of the electric and magnetic fields are given in any cross-section as a linear supe
of a complete set of transverse eigenmodes

(5)Ẽ⊥(r,ω) =
∑
q

Vq(z,ω)Ẽq⊥(x, y), H̃⊥(r,ω) =
∑
q

Iq(z,ω)H̃q⊥(x, y).
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The summations include propagating and cut-off TE and TM modes, for whichVq(z,ω) and Iq(z,ω) are the
scalar amplitude of the electric and magnetic fields respectively andẼq⊥(x, y) andH̃q⊥(x, y) are their respective
profiles.

Expressions for the longitudinal component of the electric and magnetic fields are obtained after substitu
modal representation(5) of the fields into Maxwell’s equations, where the Fourier transform of the current de
J, J̃(r,ω) is introduced

(6)Ẽz(r,ω) =
∑
q

Iq(z,ω)Ẽqz(x, y) + 1

jωε
J̃z(r,ω), H̃z(r,ω)=

∑
q

Vq(z,ω)H̃qz(x, y).

By imposing the appropriate boundary conditions, the Maxwell vector equations are transformed into sc
ferential (‘transmission line’) equations, which describe the evolution of the equivalent electric and ma
amplitudesVq(z,ω) andIq(z,ω):

(7)−dVq(z,ω)

dz
= −jkzqIq(z,ω) + vq(z,ω), −dIq(z,ω)

dz
=−jkzqVq(z,ω) + iq(z,ω),

where

(8)kzq =




j
√

k2⊥q − k2 = j |kzq |, k < k⊥q (cut-off modes),√
k2 − k2⊥q = |kzq |, k > k⊥q (propagating modes),

is the axial wave number of modeq and

(9)vq(z,ω) ≡ 1

Nq

∫ ∫
J̃zẼ

∗
qz dx dy, iq(z,ω) ≡ 1

Nq

Zq

Z∗
q

∫ ∫
J̃⊥ · Ẽ∗

q⊥ dx dy.

The normalization of the field amplitudes of each mode is made via each mode’s complex Poynting vector

(10)Nq =
∫ ∫

c.s.

[
Ẽq⊥(x, y) × H̃∗

q⊥(x, y)
] · ẑdx dy

and the mode impedance is given by

(11)Zq =




√
µ
ε

k
kzq

= ωµ
kzq

for TE modes,√
µ
ε

kzq

k
= kzq

ωε
for TM modes,

ε is the electric susceptibility andµ is the magnetic permeability.
The transmission-line equations(7) can also be written in the form

V ′′
q (z,ω) + k2

zqVq(z,ω) = −v′
q(z,ω) − jkzqiq(z,ω),

(12)I ′′
q (z,ω) + k2

zqIq(z,ω) = −jkzqvq(z,ω) − i′q(z,ω),

where (′) denotes a derivative in respect toz. Notice that only one of the equations in(12)needs to be solved, sinc
solving forVq(z,ω) we obtain immediately the solution forIq(z,ω) through Eq.(7).

4. The vector potential

The scalar potentialΦ(r, t) and vector potentialA(r, t) are related to the electric and magnetic fields by

(13)µH(r, t) = ∇ × A(r, t), E(r, t)=− ∂
A(r, t) − ∇Φ(r, t).
∂t
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l in the
Choosing a gauge transformation whereΦ(r, t) = 0, the vector potential is given by the time integration

(14)A(r, t) = −
t∫

−∞
E(r, t ′) dt ′.

Consequently, in the frequency domain

(15)Ã(r,ω) = 1

jω
Ẽ(r,ω).

Using expansion(5), the perpendicular component of the vector potential can be presented by

(16)Ã⊥(r,ω) = 1

jω

∑
q

Vq(z,ω)Ẽq⊥(x, y)

and from(6), the longitudinal component of the vector potential is

(17)Ãz(r,ω) = 1

jω

(∑
q

Iq(z,ω)Ẽqz(x, y) + 1

jωε
J̃z(r,ω)

)
.

In terms of Eq.(9) the longitudinal component can be shown to have the form

(18)Ãz(r,ω) = 1

jω

∑
q

(
ITM
q (z,ω) − jkzq

k2⊥q

vTM
q (z,ω)

)
Ẽqz (x, y).

In this case Eq.(7) serve as a definition forIq :

(19)Iq ≡ ∂zVq + vq

jkzq

.

5. The classical variational principle

It is well known that the action of the electromagnetic field can be given in terms of the vector potentia
following form [11]:

(20)A =
∫ [

1

2

(
ε(∂tA)2 − 1

µ
(∇ × A)2

)
+ J · A

]
d3x dt.

Taking the variational derivative ofA with respect the vector potentialA we obtain

(21)δA = δAt + δAboundary+ δAequations.

δAt is the time condition term given by

(22)δAt = ε

∫
∂tA · δAd3x

∣∣∣∣
t2

t1

t1 is the initial time of the system andt2 is the final time.δAboundaryis the boundary term

(23)δAboundary=
∮

H × δA · d �S dt
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the integral is taken over all the surface containing the volume under consideration. Finally, the equation
given by

(24)δAequations=
∫

δA · (ε∂tE − ∇ × H + J) d3x dt.

Provided thatδAt andδAboundaryvanish for otherwise arbitrary variations thanδAtotal = 0 vanishes if and only
if

(25)∇ × H = ε∂tE + J.

The other Maxwell equations are satisfied automatically by virtue of the vector potential representation E(13)
and by virtue of the continuity equation.

6. Spectral representation

In order to use the spectral representation in the variational technique one must assure in advance
conditionδAt = 0 (Eq.(22)) is taken care of. This can be done by choosingt1 = 0 andt2 = T and demanding tha
A(0) = A(T ). ThusA is given (instead of Fourier transform of the type given in Eq.(1)) by the Fourier sum

(26)A =
∞∑

n=−∞
Ane

jωnt , ωn = 2πn

T

for which

(27)An = 1

T

T∫
0

Ae−jωnt dt

andA−n = A∗
n sinceA is real.

In terms of this notation Eq.(20) takes the form

(28)A = T

[ ∞∑
n=1

An +ADC

]
.

In which

An =
∫ [

εω2
n|An|2 − 1

µ
|∇ × An|2 + J∗

n · An + Jn · A∗
n

]
d3x

=
∫ [

εω2
n|An|2 − 1

µ
|∇ × An|2 + 2�(

J∗
n · An

)]
d3x,

(29)ADC =
∫ [

− 1

2µ
|∇ × A0|2 + J0 · A0

]
d3x.

Jn is the Fourier component of the current density,�(x) stands for the real part ofx, |x| stands for the absolut
value ofx andx∗ stands for the complex conjugate ofx. The action given in Eq.(28)and Eq.(29) is obviously real
(despite its apparent complex nature). From now on we disregardADC which is not relevant for time depende
source currents.



24 A. Yahalom et al. / Physics Letters A 344 (2005) 18–28

ibutions

nd

y

7. The action in a wave guide

Inserting the modal representation Eqs.(16) and (17)into Eqs.(28) and (29)we obtain

A = T 2

π

∞∑
n=1

1

n

∑
q

N ∗
q,n

kzq,n

Lq,n, Lq,n ≡
∫

Lq,n dz,

(30)Lq,n ≡ 1

2
k2
zq,n

|Vq,n|2 − 1

2
|∂zVq,n|2 − 1

2

ω2
n

c2k2⊥q

|vq,n|2 − �(
v∗
q,n∂zVq,n

) − 	(
kzq,n iq,nV

∗
q,n

)

in which 	(x) stand for the imaginary partx. FromAppendix A(see also[13]) it is obvious that
N ∗

q,n

kzq,n
is real and

so are the LagrangianLq,n and the Lagrangian densityLq,n. The quantitiesiq,n, vq,n are defined in Eq.(9). From
now on we will suppress the indicesq,n.

In terms of the amplitudeV and its complex conjugateV ∗, the Lagrangian densityL can be written as

(31)L= 1

2

{
k2
zV V ∗ − ∂zV ∂zV

∗ − ω2

c2k2⊥
vv∗ − ∂zV v∗ − ∂zV

∗v + jkziV
∗ − jk∗

z i∗V
}
.

It should be noted that using the modal representation given in Eq.(16) the boundaryδAboundaryterm given in
Eq. (23) vanishes on the circumference of the wave-guide in the modal representation and the only contr
come from the planesz = 0 andz = Lw which amount to the condition

(32)	(
kzIδV ∗)∣∣Lw

0 = 0

for each mode.
Taking the variational derivative of Eq.(31)we obtain

(33)δL = 1

2

{∫ [
jkzi + k2

zV + ∂2
z V + ∂zv

]
δV ∗ dz − (∂zV + v)δV ∗

∣∣∣∣
Lw

0
+ c.c.

}

in which c.c. stands for complex conjugate. The boundary conditions given in Eq.(33) are the same as in Eq.(32)
by virtue of Eq.(19). The equations obtained are the same as in Eq.(12)and its complex conjugate.

8. Some numerical aspects

At this stage it is already clear that the Lagrangian appearing in Eq.(30) is real. However, in order to understa
its mathematical structure we shall write it in terms of real quantities. Every complex numberC can be written
asC = Cr + jCi in which Cr,Ci are real numbers andCr = �(C) is the real part ofC while Ci = 	(C) is the
imaginary part ofC. Representing all the quantities appearing inL (Eq. (30)) in terms of their real and imaginar
parts we arrive at the result

L≡ 1

2
k2
z |V |2 − 1

2
|∂zV |2 − 1

2

ω2

c2k2⊥
|v|2 − �(

v∗∂zV
) − 	(

kziV
∗)

= 1

2

[
k2
z

(
V 2

r + V 2
i

) − (
∂zV

2
r + ∂zV

2
i

) − ω2

c2k2⊥

(
v2
r + v2

i

) − ∂zVrvr − ∂zVivi

]

(34)− 1

2

{
kz(iiVr − irVi) (propagating modes),

|kz|(irVr − iiVi) (cut-off modes).
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Notice that the cut-off modes Lagrangian density decouples into two separate Lagrangian densities

L= Lr +Li ,

Lr = 1

2

[
k2
zV

2
r − (∂zVr)

2 − ω2

c2k2⊥
v2
r − ∂zVrvr − |kz|irVr

]
,

(35)Li = 1

2

[
k2
zVr i

2 − (∂zVi)
2 − ω2

c2k2⊥
v2
i − ∂zVivi + |kz|iiVi

]

while the propagating modes Lagrangian density cannot decouple. Using any type of discretization the La
density given in Eq.(34)will become a real bilinear form. For cut-off modes the form of−L appears to be positiv
sincek2

z = −|k2
z | according to Eq.(8). Thus the solution will correspond to the minimum of the bilinear form wh

can be found by standard numerical techniques such as the conjugate gradient method[15]. For propagating mode
k2
z = |k2

z | the solution will correspond to a saddle point of the linear form and can be found using technique
as the ones described in[16–18].

9. The quasi-Hamiltonian

In certain cases it is desirable to obtain first order equations instead of the second order Eq.(12). In analytical
mechanics[14] their is a well-known technique to reach this goal using the Hamiltonian construction. SinceL given
in Eq.(30) is not strictly speaking a Lagrangian (time which appears in proper Lagrangians is replaced her
longitudinal coordinatez) we will denote the analogue construction of the Hamiltonian a ‘quasi-Hamiltonian’
convenience we introduce the Lagrangian densityL̄:

(36)L̄= −2L= ∂zV ∂zV
∗ − k2

zV V ∗ + ω2

c2k2⊥
vv∗ + ∂zV v∗ + ∂zV

∗v − jkziV
∗ + jk∗

z i∗V

in which we utilized Eq.(31). Next we define the quasi canonical momentums ofV ′ ≡ ∂zV andV ′ ∗ ≡ ∂zV
∗:

(37)Π ≡ ∂L̄
∂V ′ = V ′ ∗ + v∗ = −jk∗

z I ∗, Π∗ ≡ ∂L̄
∂V ′ ∗ = V ′ + v = jkzI

in which Eq.(19) is used. Notice that the quasi canonical momentums are proportional toI ∗ andI , respectively.
Having done this we are in a position to define the quasi-Hamiltonian density

H ≡ V ′Π + V ′ ∗Π∗ − L̄

= |kz|2|I |2 + k2
z |V |2 − jkzIv∗ + jk∗

z I ∗v − k2
z

k2⊥
|v|2 + jkziV

∗ − jk∗
z i∗V

(38)= kz

[
kz

(|V |2 ± |I |2) − jIv∗ ± jI ∗v − kz

k2⊥
|v|2 + jiV ∗ ∓ ji∗V

]

the upper sign should be attributed to propagating modes while the lower signs should be attributed to d
modes. ThusL̄ can be written as

L̄= V ′Π + V ′ ∗Π∗ −H

(39)= kz

[
∓jI ∗V ′ + jIV ′ ∗ − kz

(|V |2 ± |I |2) + jIv∗ ∓ jI ∗v − jiV ∗ ± ji∗V + kz

k2⊥
|v|2

]
.
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Our next step will be to take the variational derivative with respect toI andV and their complex conjugates ofL̄

which is defined as

(40)L̄ =
∫

L̄dz = −2L.

This will lead to the expression

δL̄ = kz

∫
dz

[
δI

(
jV ′ ∗ ∓ kzI

∗ + jv∗) ∓ δI ∗(jV ′ + kzI + jv)

(41)+ δV
(±jI ′ ∗ − kzV

∗ ± ji∗
) − δV ∗(jI ′ + kzV + ji)

] + jkz

(
IδV ∗ ∓ I ∗δV

)∣∣∣∣
Lw

0
.

The boundary conditions term given in Eq.(41) is the same as in Eq.(33) by virtue of Eq.(19). The equations
obtained are the same as Eq.(7) and their complex conjugates.

10. The forward–backward formulation

In terms ofV andI one can define the following new variables[13]:

(42)C+ ≡ 1

2
(V + I )e−jkzz, C− ≡ 1

2
(V − I )ejkzz.

Or vice versa as

(43)V = C+ejkzz + C−e−jkzz, I = C+ejkzz − C−e−jkzz.

ThusC+ andC− appear as the amplitudes of forward and backward waves respectfully (seeFig. 2) in the case of
propagating modes. Inserting the above variables intoL̄ given in Eq.(40)we obtain

L̄ = jkz

{
2
∫

dz

[
C∗−C′− + C′ ∗+ C+ − C∗+β + C+β∗ + C∗−α − C−α∗ − j

kz

2k2⊥
|v|2

]

(44)+ (
C∗−C+e2jkzz − C−C∗+e−2jkzz − |C−|2 − |C+|2)∣∣∣∣

Lw

0

}
.

In which

(45)α = 1

2
(v − i)ejkzz, β = 1

2
(v + i)e−jkzz.

Fig. 2. Interaction of the electromagnetic field in a gain medium.
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At this stage one is tempted to discard the boundary term in the above equation since it appears to have
on the resulting equations, however, this will lead to unphysical boundary conditions and thus should be a
Taking the variational derivative we obtain

(46)δL̄ = δL̄equation+ δL̄boundary

in which

(47)δL̄equation= 2jkz

∫ [
(α + C′−)δC∗− − (β + C′+)δC∗+ − c.c.

]
dz

in which c.c. stands for complex conjugate and

(48)δL̄boundary= −jkz

[
δC∗+

(
C−e−2jkzz − C+

) − δC∗−
(
C+e2jkzz − C−

) − c.c.
]∣∣Lw

0 .

The boundary term given in Eq.(48)are the same as in Eq.(32)by virtue of Eq.(43). The equations obtained ar

(49)C′− = −α, C′+ = −β

and their complex conjugates which provides a truly elegant way to compute the field dynamics.
For decaying modes̄L given in Eq.(40) takes the form

L̄ = jkz

{
2
∫

dz

[
C∗+C′− + C+C′ ∗− + C∗+α + C+α∗ − C∗−β − C−β∗ − j

kz

2k2⊥
|v|2

]

(50)− [|C−|2e−2jkzz − |C+|2e2jkzz + C−C∗+ + C∗−C+
]∣∣∣∣

Lw

0

}
.

At this stage one is tempted to discard the boundary term in the above equation since it appears to have
on the resulting equations, however, this will lead to unphysical boundary conditions and thus should be a
Taking the variational derivative we obtain

(51)δL̄ = δL̄equation+ δL̄boundary

in which

(52)δL̄equation= 2jkz

∫ [
(α + C′−)δC∗+ − (β + C′+)δC∗− + c.c.

]
dz

in which c.c. stands for complex conjugate and

(53)δL̄boundary= −jkz

[
δC∗+

(
C− − C+e2jkzz

) + δC∗−
(
C−e−2jkzz − C+

) + c.c.
]∣∣Lw

0 .

The boundary term given in Eq.(53) are the same as in Eq.(32) by virtue of Eq.(43). The equations obtaine
are the same as in Eq.(49) and their complex conjugates which provides a truly elegant way to compute the
dynamics.

11. Conclusions

Three different action principles were obtained in this work: one in terms of theV modal amplitude leading
to second order equations. Another principle was formulated in terms of theV , I amplitudes through the quas
Hamiltonian concept leading to first order equations. And finally an action principle in terms of the forwa
backward modes were derived including the correct boundary conditions for those equations. The actio
used as a basis for a numerical scheme as outlined in Section8. It was observed that different numerical techniq
should be used for propagating and cut-off modes. Additional possible applications of the above variationa
ples include derivation of constants of motion using the Noether theorem and quantization of the electrom
field in a wave-guide using the action in a path integral technique.
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Appendix A. The complex nature of the electro-magnetic profiles in the wave guide

Table 1
Parameters of propagating and cut-off modes

Mode type Propagating Cut-off

Axial wavenumber kzq real imaginary

Impedance: Zq real imaginary

TE mode:

Longitudinal magnetic field component: H̃qz real real

Transverse magnetic field component: H̃q⊥ imaginary real

Transverse electric field component: Ẽq⊥ imaginary imaginary

TM mode:

Longitudinal electric field component: Ẽqz real real

Transverse electric field component: Ẽq⊥ imaginary real

Transverse magnetic field component: H̃q⊥ imaginary imaginary

Power normalization Nq real imaginary
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