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Control of wave propagation in a dielectric medium
by tailoring its dispersive properties
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Abstract

In recent studies we have developed a space–frequency model for the propagation of a high frequency signal in an arbitrary dis-
persive medium. The model can be solved analytically under certain conditions for a Gaussian pulse, revealing the conditions under
which pulse compression or expansion occurs. In this work we have utilized previously obtained results to calculate analytically the
medium resonance parameters for manipulating a signal with a given width for a carrier frequency that is on resonance. This enables
tailoring materials for certain pulse characteristics in order to achieve an a-priori-defined amount of compression, expansion and
delay.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent works [1,2] we have studied the effect that a
general dispersive medium in which the complex dielec-
tric permittivity depends on the frequency, on a pulse
traveling through this medium. Previous literature in-
cludes several theoretical papers that dealt with the
problem of distortion occurring when a short pulse is
propagating in absorptive and dispersive media, includ-
ing gases and plasmas [3–9]. They also studied the delay
and pulse shape evolution along the path of propaga-
tion. Gibbins [8] extended earlier investigations [4,6]
and examined distortions of short Gaussian pulses,
modulating millimeter waves and propagating in the
atmosphere. An approximation of the wave propagation
factor was used to derive analytical expressions for the
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pulse shape. Conditions for pulse broadening and com-
pression were identified.

The aim of this study is two fold: to understand how
a naturally occurring medium affects electro-magnetic
pulses traveling inside this medium, this is a typical
problem in applications such as communications, radar
systems and energy transfer. Another purpose is to de-
scribe a method for which one can affect the properties
of the electromagnetic pulse such as its power, width
and time of propagation (delay time) by introducing a
dielectric medium in its path. In particular in this paper
we study how a material with a resonant absorption line
can be used to obtain the desired modifications. This of
course will be shown to depend on the intrinsic proper-
ties of the absorption line that include its strength, reso-
nance frequency and width. As a model for such an
absorption line a Lorentzian curve was utilized. It will
be shown that in order to realize useful features such
as pulse compression a non-trivial choice of medium
parameters should be considered.
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2. Results

2.1. The medium

We assume a dielectric medium, the effect of the med-
ium on the electro-magnetic pulse is described by a com-
plex dielectric permittivity that depends on the
frequency. We further assume that the permittivity con-
tains resonant like features. Since the most interesting
effects occur near resonance we choose to study the
behavior of the pulse at resonance frequencies. In this
case the susceptibility ve is given by the Lorentzian
function

veðf Þ ¼
v

1� ðffr Þ
2 þ jðffrÞQ

�1
. ð1Þ

In which fr is the resonant frequency and v is a measure
of the �strength� of the resonance, Q is the quality factor
and j ¼

ffiffiffiffiffiffiffi
�1

p
. Q also measures the Lorentzian width

since for large enough Q, jve(f)j drops to about 44% of
its value for f

fr
¼ 1� 1

Q. ve(f) is related to the complex

propagation factor k(f) used in the transfer function
given in [1,2] by the formula
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In what follows we make the approximation: v Æ Q =
e1 � 1 this will enable us to write the propagation factor
as a sum of two terms
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One is the free space propagation factor given by

ksðf Þ ¼
2pf
c

¼ bsðf Þ ðas ¼ 0Þ; ð4Þ

(a, b are the imaginary and real parts of k see [1,2]). And
the other is the �resonant� propagation factor given by

krðf Þ ¼
pf
c

� veðf Þ ¼ brðf Þ � jarðf Þ. ð5Þ

This allows the factorization of the transfer function (see
[1,2]) as follows:

H ¼ d0

d þ d0

e�jkd ¼ HSH r. ð6Þ

This will result in a simpler numerical scheme in which
we only need to integrate Hr in order to calculate A,
from which it is trivial to calculate the pulse shape func-
tion (defined in [1,2]) Aout
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Z þ1
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2.2. Analytical calculations

The analytical calculations of the various quantities
such as delay time, pulse width and pulse power include
the calculations of derivatives up to second order of a
and b (see [1,2]). But first we will differentiate between
trivial �free propagation� effects and non-trivial �reso-
nant� effects. Following the definition of td in [1,2] we
can write the contributions to td as

td ¼
b0
S

2p
d þ tr ¼ tS þ tr ¼

d
c
þ tr. ð8Þ

In which tr is the �resonant� delay time give only in term
of resonant quantities
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The other quantities of interest that can be dissected in
this way are the pulse width (see [1,2])
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From the above formula it is obvious that a change in
the pulse width is only due to the resonant contribution,
in the free propagating scenario the pulse retains its
width as expected. To calculate the change in the square
root of the pulse power we take the absolute value of the
analytical approximation of Aout (given in [1,2]) in
t = td:

PF ¼ jAoutðtdÞj ¼ PFs � PFr )
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The free space power factor PFs just scales linearly with
the distance as expected, for the resonant part PFr we
obtain a more complex expression, which contain dom-
inant exponential factors.

2.3. Approximation validity

In calculating the above analytical expressions one
should bare in mind that the following approximations
are made, first v Æ Q = e1 � 1. Second: it is assumed that
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From Eq. (12) in which derivatives are taken to third
order one derives the condition

1 � e2 ¼
2Q
rinfr

ð13Þ

at resonance, in the case that Q is large. This means that
the width of the Gaussian in the frequency domain
should be much smaller than the width of the Lorentz-
ian curve. Further more in [1,2] we state an additional
condition for the analytical approximated transfer func-
tion integral to converge, the condition takes the follow-
ing form for resonant frequencies

r2
in > 8Q3 � vtS

4pfr
. ð14Þ
2.4. Pulse with a carrier frequency at resonance

Bearing in mind the above conditions we can now
calculate the various quantities of interest. For the reso-
nant delay time we obtain the result

tr ¼
1

2p
b0
r � d ¼ �tSvQ

2. ð15Þ

The negative sign of tr indicates that signal arrives faster
than should be expected by speed of light propagation,
hence it appears super-luminar. However, this is only
an illusion, which is caused by the infinite extent of
the Gaussian pulse. In fact the super Luminal Gaussian
results from the tail of the original Gaussian as is ex-
plained in many papers and text books [10–12]. (The
propagation of the pulse still has causal characteristics
that can be described by the Sommerfeld forerunner
[13]).

To evaluate the effect of the resonance on the pulse
width we calculate the a, b derivatives in Eq. (10) at res-
onance, this can rewritten as
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The above formula shows clearly that the largest pulse
expansion in the time domain (and hence the best coher-
ence in the frequency domain) is achieved when r̂2

in is
very close to 8Q3. Introducing the small parameter
D2 ¼ r̂2

in � 8Q3 we obtain the pulse expansion coefficient

ER2 ¼ r2
out

r2
in

ffi Q

2D2
. ð17Þ
For minimal expansion and compression we utilize an
equation from [1,2], which gives the width of the input
signal needed to achieve maximum compression. It has
the resonant value
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For which the minimal width of the output signal and
compression ratio can be written as
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We see that whatever the effect: time delay, pulse expan-
sion or compression the size of the effect depends on the
quality factor of the Lorentzian.
3. Conclusions

In this work we suggest a method to �tailor� the fea-
tures of the medium in order to obtain some desired ef-
fects on the signal. Such effects as pulse compression,
expansion or introducing a �negative� time delay can be
realized for a Lorentzian absorption line in which the
pulse carrier frequency is equal to the resonance fre-
quency of the absorption line. Unfortunately for such
effects to be realized intense electro-magnetic wave radi-
ation is needed in order to compensate the large absorp-
tion the signal has to suffer.
References

[1] Y. Pinhasi, A. Yahalom, O. Harpaz, G. Vilner, IEEE Trans.
Antenn. Propag. 52 (11) (2004) 2833.

[2] Y. Pinhasi, A. Yahalom, J. Non-Cryst. Solids, this issue,
doi:10.1016/j.jnoncrysol.2005.05.042.

[3] O.E. Delange, Bell Syst. Tech. J. 31 (1952) 91.
[4] M.P. Forrer, Proc. IRE 46 (1958) 1830.
[5] L.E. Vogler, Radio Sci. 5 (1970) 1169.
[6] G.I. Terina, Radio Eng. Electron. Phys. 12 (1967) 109.
[7] D.B. Trizna, T.A. Weber, Radio Sci. 17 (1982) 1169.
[8] C.J. Gibbins, IEE Proc. 137 (5) (1990) 304.
[9] A. Maitra, M. Dan, A.K. Sen, S. Bhattacharyya, C.K. Sarkar,

Int. J. Infrared Millim. Wave. 14 (3) (1993) 703.
[10] J.D. Jackson, Classical Electrodynamics, 3rd Ed., Wiley Text

Books, New York, Chichester, Brisbane, Toronto, Singapore,
1998.

[11] S. Chu, S. Wong, PRL 48 (1982) 738.
[12] A. Katz, R.R. Alfano, S. Chu, S. Wong, PRL 49 (1982) 1292.
[13] M. Mojahedi, E. Schamiloglu, F. Hegeler, K.J. Malloy, PRE 62

(2000) 4.

http://dx.doi.org/10.1016/j.jnoncrysol.2005.05.042

	Control of wave propagation in a dielectric medium by tailoring its dispersive properties
	Introduction
	Results
	The medium
	Analytical calculations
	Approximation validity
	Pulse with a carrier frequency at resonance

	Conclusions
	References


