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    A b s t r a c t 

 

 

 In this work we investigated a novel resonator for the Israeli 100 GHz electrostatic 

accelerator Free Electron Laser (FEL). Generally, the laser resonator has to be of high 

quality (have low total internal losses) to ensure attainment of lasing threshold and thus 

laser operation. In order to allow e-beam entrance, exit and propagation on the axis of the 

resonator and still maintain a high Q factor in the W-band operation range (around 100 

GHz), the resonator contains several unique wave-guiding sections. Characterization 

of such a resonator and estimation of its parameters (its round-trip reflectivity, losses) are 

important for achievement of laser operation. 

 Our FEL resonator is investigated in this work analytically, numerically and 

experimentally. Field distribution inside the Curved Parallel Plates (CPP) waveguide and 

the Talbot effect reflectors (components that enable transmission of electron beam through 

entrance and exit holes without degrading the Q factor) are described analytically. Mode 

matching between waveguides with different cross sections, ohmic, and diffraction losses 

in the resonators waveguides are studied numerically using Matlab simulation. An optical 

model of the FEL resonator as a non-symmetrical Fabri-Perot interferometer with possibly 

high losses is presented. An experimental method for determination of the internal round-

trip reflectivity of the FEL resonator by direct measurement of the reflected wave resonant 

spectral peaks was developed and utilized. A special 3-grid variable out-coupling element 

was developed, fabricated, investigated and reported [6]. 

 Among the results of the present investigation: the round-trip loss in the present 

version of the resonator (including all coupling elements) was approximately 50 %. 

Modification of the resonator structure was made in order to decrease this high loss. Based 

on our model calculations and measurements, this modification decreased the total internal 

losses to 35 %. This allowed achievement of first lasing operation of the FEL in the new 

configuration (with radiation out-coupling resonator) in September 2003 [11]. 
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Chapter 1  
 

Introduction 
 

 In this work we investigate a novel resonator intended for use in a Free 

Electron Laser. Free Electron Lasers (FELs) differ from most other types of 

laser as they do not utilize a lasing medium in the traditional meaning of this 

term. In fact, the lasing medium for FELs is a high vacuum. A charged particle 

beam from an accelerator passes through a structure called an “undulator” or 

“wiggler” array - a series of powerful magnets of alternating polarity (Fig1.1). 

 

 

 

 
 

Fig. 1.1 Motion of charging particles through a FEL wiggler. 

 

 

 As the charged particles oscillate back and forth in response to the 

magnetic field, photons are emitted in all directions - some along the axis of the 

beam. Electromagnetic radiation can be emitted whenever a charged particle is 
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accelerated in a magnetic field (this is called synchrotron radiation). Mirrors 

placed before and after the magnets structure completes the laser resonator. As 

photons along the beam axis bounce back and forth, they stimulate new photons 

to be emitted in the same direction – “stimulated emission”. 

 The wavelength of FEL 'light' depends on two main parameters: the energy of 

the electron beam and the period of the wiggler structure. This is why the coherent 

output of an FEL can span the electromagnetic spectrum ranging from 

microwave to X-Rays and may be continuously tuned over a wide wavelength 

band. 

 The block diagram of a FEL is similar to other kinds of lasers and 

consists of a pump (wiggler), a lasing medium (interaction region), a high-

quality resonator and a power output system (Fig. 1.2). 

 

 

Pump 
(e-beam) 

Lasing medium 
enclosed in a 
resonator (wiggler) 

Power output 
system 

P 

t 

G 

Rrt

 
     (a) 
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     (b) 

Fig.1.2 Block-diagram of an electrostatic accelerator free electron laser (a); 

conceptual design of a FEL for mm-wave radiation (b). 

 

 

 The electrostatic accelerator FEL that we employ is designed to operate 

at the mm-wave (W-region) near a frequency of 100 GHz. Electrons of about 60 

keV energy  from a electron gun are accelerated up to energy of 1.5 MeV 

provided by an electrostatic Van-der-Graaf generator before entering into the 

resonator region. 

 The resonator of our FEL consists of several waveguide sections of 

differing profiles and is integrated into the wiggler system so that interaction 

between the electron beam and the magnetic field of the wiggler occurs inside 

the waveguide cavity. This cavity uses curved parallel plate (CPP) waveguide 

(two elliptically shaped copper plates) open at the narrow ends.  This 
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waveguide was designed in such a way that the electron beam at the design 

energy can interact only with the fundamental mode TE01 according to the 

dispersion relation. The waveguide geometry, fundamental mode description 

and dispersion diagram are shown in the following figure: 

 

 

     (a) 
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      (b) 

 

Fig.1.3  CPP waveguide and its fundamental mode structure (a); dispersion    

diagram (b). 

 

 

 In order to have positive feedback from resonator mirrors, two wave 

splitters (reflectors, based on overmoded rectangular waveguides shorted with a 

perforated mirror at one end) were placed at both terminations of the CPP 

waveguide as shown in Fig.1.4. In previous experiments ([26], [27]), the same 

reflectors (shown in Fig.1.4(a)) were placed in both ends of the CPP waveguide. 

The length of each of these splitters equals to one half of the Talbot effect 

optical imaging distance (described subsequently in Chapter 2). At half the 

Talbot imaging distance, the rectangular waveguide provides splitting of the 

original field distribution at the termination plane of the rectangular 

waveguides, where reflecting mirrors are placed. This effect allows perforation 
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of the center of each metallic mirror as there is no field at this position and this 

makes it possible to pass the electron beam through the resonator without 

disturbing the cavity field high round trip reflectivity. This is described in 

Fig.1.4. 

 Operation of the FEL with this type of resonator configuration and 

measurements of the power generated was reported earlier ([26], [27]). Only a 

small part of the generated energy was coupled out in these previous 

measurements from the cavity through the perforated mirror and a vacuum 

window at the end of the accelerator beam line. This is because the electron 

beam and the out coupled RF power were not physically separable after exciting 

the resonator mirror, and thus the RF power could not be transported efficiently 

out of the accelerator tank. In the more recent experiments at the new site of the 

EA-FEL in Ariel a new splitter/reflector configuration was used. To separate 

the laser RF radiation from the electron beam and to out-couple the desired part 

of the RF energy, the beam output splitter was substituted by a bent reflector, 

that consists of two identical splitters at right angles one to another mitered by 

the slanted perforated plane metallic mirror as it shown in Fig. 1.5. 

 As a result of such modification at the plane of the out-coupling element 

at the top of the vertical section (see Fig.1.5), the field distribution of CPP 

waveguide is reconstructed, because it is situated exactly one Talbot imaging 

distance from the CPP waveguide end. The out-coupled power from the 

resonator is then controlled, by the coupling element, away from the electron 

beam. 

 Lasing in a FEL is achieved only if a high quality (low loss) resonator cavity is 

employed. High total round-trip reflectivity of the resonator provides possibility of 

oscillation built-up in the resonator and start of the lasing process. The round trip 

oscillation parameter defines quantitatively the value of the threshold gain and, 

consequently, the threshold current of start of oscillation. In a regular laser the 

oscillation condition for the threshold gain constant γth is [1]: 
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(1.1) [ ]2
1 2 1th lr r e γ α− =  

 

where r1, r2 are the amplitude reflection coefficients of the back and front mirrors, and α 

is the distributed loss constant of the amplitude alone the interaction length l. After 

taking the absolute value square of (1.1) and using a more general notation, it can be 

written as: 

 

(1.2) 1rtGR =  

 

where Rrt is the round-trip power reflectivity of the resonator and G is the round trip 

gain (which in the case of the FEL is simply the single-path gain, since it exhibits gain 

only in one direction). The total round-trip losses of the resonator are . In 

the limit (1-R

_ 1tot rt rtL R= −

rt) << 1 one can approximate 1/Rrt~ 1+Ltot_rt and thus the oscillation 

condition can be written then in terms of the incremental gain and the resonator losses: 

 

(1.3) _1 tot rtG L− =  

 

Clearly, characterization of the resonator and an estimate of its round-trip 

reflectivity are most important for proper laser operation. 
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     (a) 
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     (b) 

 

 
     (c) 

Fig.1.4 Talbot effect splitter (a); perforated splitters at the CPP waveguide ends 

(b); manufactured Talbot splitter (c). 
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Fig.1.5  Modified resonator with the bent reflector of Talbot length. 
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 This work, for the most part, is experimental. All measurements of the FEL 

resonator were made without the presence of an electron beam – “cold” measurement. 

Therefore, interpretation of the measured data required a theoretical formulation of the 

resonator parameters; comparison was made to results derived from different resonator 

models. 

 Matlab code simulation of the electromagnetic field distribution is described in 

Chapter 2. An optical approach for interpretation of data measured on the resonator that 

we used is discussed in Chapter 3. A non-symmetric Fabri-Perot interferometer model 

for the FEL resonator is also discussed in chapter 3.  Measurements were made and used 

in calculation of the FEL resonator parameters (Chapter 4). Chapter 5 presents 

conclusions of this thesis that led to the modification of the resonator.   
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Chapter 2  
Calculation of resonator losses using Matlab simulation 
 

2.1 Introduction 

 
In this chapter, we evaluate the field distribution and wave propagation 

in our FEL resonator. Since the resonator is comprised of several waveguides 

with differing profiles, dimensions and electrical properties, wave excitation 

and propagation is also different in different parts and planes of such a 

resonator. Furthermore, the dimensions of the waveguides used are much 

greater than the radiation wavelength, thus enabling a number of transverse 

modes to be excited and to propagate through the resonator (makes it 

“overmoded”). This is a quasi-optical situation in general design of microwave 

devices there are usually a single mode waveguides.  This multimode nature of 

mm-wave cavity leads to some quasi-optical effects, which may be utilized to 

achieve the desired performance. It may also lead to some undesirable effects 

such as diffraction, additional losses in the waveguide walls and decrease of 

efficiency. In this chapter, we estimate the ohmic and the diffraction losses in 

an overmoded mm-wave resonator by computer simulation of excitation and 

propagation of electro-magnetic waves inside the combined waveguide 

resonator. The simulations are repeated based on two different mathematical 

models; each is a different representation of modes supported by Curve Parallel 

Plate (CPP) waveguide. The coupling element of the resonator with the reflection 

tuning mechanism is not considered at all in this chapter and will be discussed later in 

this work. 
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2.2 Problem definition 

 

A schematic of the FEL resonator is presented in Fig.2.1. This resonator 

is comprised of long curved parallel plates (CPP) waveguide placed inside a 

magnetic wiggler, within which the interaction between an accelerated e-beam 

and a waveguide radiation mode takes place, and the rectangular waveguide 

Talbot-effect reflector structures, which incorporate open holes to let the 

electron beam enter it and exit out. 

 

 
Fig.2.1 FEL resonator comprised of different waveguide sections.  

 

 

 An accelerated electron beam enters the resonator through the rectangular hole 

3, traverses through the rectangular waveguide 2, the Curved Parallel Plates (CPP) 

waveguide 1 and the rectangular waveguide 2. It exits from the resonator through a 

circular hole in the bend section 4. Because of modes dispersion in the waveguide, only 

one mode out of all the transverse modes of the overmoded CPP waveguide has phase 

velocity, which can be synchronized with the wiggling electron current. The FEL is 

designed to interact with the fundamental mode of the waveguide (the TE01
CPP mode). 

Although the dimensions of CPP waveguide allow other high-order modes to be 

excited, they do not interact with the beam and therefore, if excited, they do not 

experience gain, and decay relatively fast as the modes traverse back and forth along the 

resonator. Thus, such high-order modes may be considered as ‘parasitic’ (considered as 



Chapter 2     Calculation of resonator losses using Matlab simulation                      

-14- 

diffraction losses), and when excited, they eventually dissipate their energy to the 

resonator walls. 

  Radiation that is generated in the CPP waveguide in the TE01
CPP mode and 

propagates to the right, arrives to junction 6 (between CPP and the rectangular 

waveguide), and excites in the overmoded rectangular waveguide many transverse 

modes having different amplitudes and propagation constants. The TECPP
01 mode has 

field distribution with a maximum in the center of the waveguide, which decay to zero 

near the walls. A field distribution of the TECPP
01 mode is transmitted into the entrance 

of waveguide 2 (under a quasi-optical assumption of the absence of reflected wave at 

the junction 6). The rectangular waveguide modes, excited by this distribution, 

propagate toward window 3 and after traversing the half Talbot length LT/2 = 210 mm 

are reflected from the conducting wall back to the CPP waveguide.  

 The Talbot effect, described in the next section, is an imaging effect that takes 

place in any overmoded waveguide at a certain distance LT.  At this particular distance, 

all the transverse modes interfere in phase and reconstruct coherently a replicated image 

of the input radiation field. It is further shown in the next session, that at half the 

distance LT/2 the modes interfere in such a way that a single spot at the entrance to the 

waveguide splits into two spots with a space in between. 

 The Talbot image splitting effect is taken advantage of in the straight splitter 

reflector section (part 2 in Fig.2.1). The interference of the propagating modes creates a 

split image of two spots at the position of the reflecting mirror at the end of the section 

(part 3 in Fig.2.1). This mirror is made out of two parts, which are spaced 10mm apart, 

leaving an opening (‘window’) through which the electron beam can be transported. 

Because the image at this point is split at this position, the window opening does not 

affect the radiation pattern and it is reflected almost at is entirely back towards the CPP 

– rectangular waveguide junction 6. Arriving back to this position, the radiation beam 

goes in its round trip through an entire Talbot length LT, and thus regenerates at the 

entrance to the CPP the original distribution of the mode TECPP
01, that was coupled into 

the rectangular waveguide. 

 Except for slight distortion due to imperfect imaging by the Talbot effect and 

due to imperfect reflection at the end mirror because of its window opening, the pattern 

of the back-coming beam reconstructs well the TECPP
01 mode pattern. It, consequently, 
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excites it back inside the CPP waveguide with high efficiency. The mode now 

propagates up to the junction with the bent Talbot reflector at the left side (Fig.2.1) 

 The situation on the other side of the resonator is similar, but the splitter 

consists of two identical half-Talbot-length rectangular waveguides coupled by 

a mitre bend with 450 mirror. Except for the bend section (that will be discussed 

separately), the one-way propagation in the bent splitter/coupler is equivalent to 

one round-trip of propagation in the straight splitter on the other side. The mitre 

bend transmits the split (two spot) radiation field to the vertical rectangular 

waveguide section where the two spots merge into a single spot by the inverse 

Talbot imaging effect. The radiation is then partly coupled out through the grids 

reflector and partly reflected back into the resonator. 

  The ohmic losses in the waveguide walls should be taken into account. 

The following losses in the resonator (in one round-trip) should be taken into 

account: 

 

 

Location Nature of losses 
x times occurs in round-

trip 

CPP-splitter transition diffraction 2 

CPP waveguide diffraction 2 

CPP waveguide walls  ohmic 2 

Splitter walls  ohmic 6 

Splitter-CPP transition diffraction 2 

Input and output electron 

beam windows 
diffraction 3 

Mitre bend section diffraction 2 

 

Tab.2.1  List of resonator losses. 

 

 The main goal of this work is to estimate these losses and measure them in the 

experimental waveguide structure. 
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2.3  The Talbot imaging and splitting effects 

 

Self-imaging (Talbot effect) requires the excitation of multiple modes in the 

waveguide by the input field. The input field at the CPP-rectangular waveguides 

junction (ECPP = Ein
rec at z = 0) may be written as a sum of the full set of rectangular 

waveguide modes ,ˆh e
mne as follows: 

 

(2.1)( ) ( ) ( ) ( )( )
0 0

ˆ ˆ, ,0 , ,0 , ,
M N

CPP rec h e
mn mn

m n
x y x y A x y A x y− +

= =

= = +∑∑ h e
mn mnE E e e  

 

 

where ,h e
mnA  represents the amplitude of the mn-th  TE (h) or TM (e) waveguide mode, 

which is defined in terms of overlap integral [15]: 

 

(2.2)( ) ( )
( )

,
,

2,

ˆ, ,

ˆ ,

CPP h e
mnh e

mn h e
mn

x y x y dxdy
A

x y dxdy
=

⎡ ⎤⎣ ⎦

∫ ∫
∫ ∫

E e

e
 

 

This is an eigenmodes decomposition where the
,ˆh e

mne 's are the TE or TM 

eigenmodes of the rectangular waveguide accordingly. The field propagation along z in 

the rectangular waveguide is then described as follows: 

 

(2.3)( ) ( ) ( )( )
0 0

ˆ ˆ, , , , mn

M N
j zrec h h e e

mn mn mn mn
m n

x y z A x y A x y e β−

= =

= +∑∑E e e  

 

 

where the βmn's are the propagation constants of each mode of the rectangular 

waveguide. 
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Self-imaging effect (Talbot Effect) 

 

 The transverse propagation constant for the mn-th mode of a rectangular waveguide is 

given by 

 

(2.4)22

, ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

b
n

a
mk mnco

ππ  

 

where a and b are the transverse dimensions of the rectangular waveguide aperture. The 

longitudinal propagation constant is 

 

(2.5)2 2
0 ,mn co mnk k= −β  

 

In an “overmoded waveguide”, where k0 = 2π/λ for modes far from cut-off 

( , 0co mnk k ) (which corresponds to paraxial rays approximation) a second order Taylor 

expansion of (2.5) results in: 2
0 , 0/ 2mn co mnk k kβ ≅ − . This can be written as follows: 

 

(2.6)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−≈

22

0 4 b
n

a
mkmn

πλβ  

 

 Note, that for a fixed n index and for the two first indexes m = 0 and m = 1: 
2 2

0 1 0 02 2 2 2

1
4 4 4 4n n

n nk k
b b a a

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − − − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

πλ πλ πλ πλβ β . For any index m, 

 

(2.7)
2

0 4mn n
m
a

πλβ β ⎛ ⎞≈ − ⎜ ⎟
⎝ ⎠
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Using this notation, we can write the electric (or magnetic) field for fixed n: 

 

(2.8)( ) ( )

( ) ( )
2

20 0

,

4
, ,

, , ,

, ,

mn

n n m

j z
x mn mn x

m

j m zj z j z ja
mn mn x mn mn x

m m

x y z A x y e

A x y e e A x y e e

β

πλ
β β φ

−

− −

=

= =

∑

∑ ∑

E e

e e
 

 

where  

(2.9)( ) 2
24m z m z

a
πλφ =  

 

 

is a phase. The distance, where the phase difference between the m-th mode and the 

fundamental mode is a multiple of 2π for any m is found from the condition: 

 

(2.10)
2

2

2
4

8 ,             1, 2,3...            

m

N

z N
a

az N N

πλ π

λ

= ⇒

= =
 

 

At this distance ( ) 22m Nz Nmφ π= , and 1mie φ = . Consequently, there will always be 

imaging (up to a constant phase) at position N iz NL= , where 
28

i
aL
λ

= : 

 

(2.11)( ) ( )0, , , ,0n ij L
ix y L e x yβ−=E E  

 

  

Equation (2.11) describes the well known self-imaging (Talbot) effect, 

published by Henry Fox Talbot in 1836 [28]. The original effect related to a periodic 
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object in the transverse dimension (which is an equivalent diffraction problem). 

Suggestions on using this effect in overmoded waveguides was first mentioned in [31], 

[32]. One can find more information about recent applications of Talbot effect in [12], 

[29], [30]. We will consider now some special cases of this effect. 

 

Flip (mirrored) imaging effect  

 

At
24

2
i

m
L aL

λ
= = , the phase of a m-th mode is (see Eq.(2.9)): 

 

(2.12)( ) ( )
2 2        

2 1                 

1, 2,3...

m m

N m even
L m

N m odd

N

π
φ π

π
, −⎧ ⎫

= = ⎨ ⎬+ , −⎩ ⎭
=

 

 

Since the profile function of the modes of the rectangular waveguide are either 

symmetric or anti-symmetric: 

 

(2.13)( ) ( ) ( ), ,, 1 ,m
mn x mn xx y x y− = −e e  

 

we get from Eq. (2.8) : 
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 Any original distribution at z = 0 will be imaged and mirrored reversed with 

respect to plane x = 0 (center of aperture). Therefore, because of the symmetry of the 

modes, first imaging plane is at length
2

i
m

Lz L= = . 

 

 

Symmetric initial field 

 

 If the field pattern at z = 0 is symmetric relative to the plane x = 0, it will excite 

only even ( 2m μ= ) modes in the x dimension. In this particular case, we will get 

imaging even at shorter distance: 

 

(2.15)

22
2 4
m i

t
L L aL

λ
= = =  

 

This can be directly verified by substituting in (2.9): 

( )
2

2 , 1
2

mi
m t

mL e φπφ πμ2= = =  Thus for a symmetric input pattern first imaging occurs 

at z = Lt. We will call further to this distance “Talbot length”. For the parameters of the 

FEL reflector λ = 3 mm and a =25 mm, the Lt = 417 mm.  

 

 

Splitting of a symmetric mode distribution 

 

 

 Assuming symmetric (relative to plane x = 0) initial (at z = 0) field distribution 

polarized in the x dimension, one could insert into the rectangular waveguide along its 

entire length a thin conducting plate at its center (x = 0; -b/2<y<b/2) without disturbing 

the field (see Fig. 2.2).  
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Fig. 2.2 Illustration of a symmetric mode splitting at z = a2/λ. 

 

 Thus, we can consider each side of the split waveguide independently with its 

corresponding half-initial field distribution.  Now we can consider for each part the flip 

imaging effect as described above (Eq. (2.14)) with '
2
aa = . A reversed (mirror) image 

will be created on each side (see Fig. 2.2) at distance 

 

 

(2.16)
2 2 24 ' 4

4s
a a aL
λ λ λ

= = =  

 

 

If the initial field distribution at the entrance to the rectangular 

waveguide is narrower than its width (see Fig. 2.2), then the mirrored imaging of 

each half-waveguide independently will seem like splitting of the initial picture. 

 

 

x 

y y

x
a/2-a/2 a/2-a/2a/4a/4 a/4 a/4

Z = 0 Z = a2/λ 

Conducting 
plate 

Symmetric 
mode profile 
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2.4  Curved Parallel Plates waveguide. Ohmic and 

diffraction losses 

 

 The main waveguide section of the resonator is made of two curved 

parallel plates with a curvature R, at a distance b from each other. The 

geometric relation that holds for the CPP waveguide section may be written as 

 

(2.17)2
2

2

2
RbRyx ≤⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −±+  

 

which is depicted in Fig.2.3: 

 

 
 

 

Fig.2.3 Curved plates geometry: R=15.875mm; b=10.7mm; a1=22mm; 

 

 The model used in the analysis of this CPP waveguide is following I.Yakover 

[12]. It assumed that the fundamental mode TE01
CPP could be described by a relatively 

simple expressions: 

 

a1/2 
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(2.18)

( )
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−
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π

π
 

 

 

where U0
CPP is an amplitude, w0 is the Gaussian beam waist parameter and ZCPP 

is an impedance. If we define: 

 

(2.19)2
_

2 bRbR −=  

 

 

the cut-off wave number CPP
coK and the Gaussian beam waist parameter w0       

are [12]: 

 

 

 

(2.20)
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b

R

barctg
K

cpp
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co
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_

0

1
_

==

=

+

= −

π

 

 

 

The corresponding field profile E(x,y) at the CPP aperture is shown in 

the following figure:  
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     ( a ) 

 

 
     ( b ) 

 

Fig.2.4  Electric field profile in CPP: (a) cross-section view; (b) 3D view. 

Ex01(x,y) 
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The following table gives additional information about the CPP geometry and 

the CPP propagation mode TE01
CPP : 

 

CPP waveguide length LCPP, (mm) 890 

Curvature radius R, (mm) 15.875 

Cross section area Acpp, (mm2) 174.56 

Volume of waveguide Vcpp, (cm3) ~ 155 

Internal walls surface area Scpp, (cm2) 432.61 

Wide dimension of CPP waveguide a1, (mm) 22 

Distance between parallel plates b, mm 10.7 

Parameter w0 , (mm) 6,53 

Cut-off wave number, (mm-1) 0.35 

 

Tab.2.2 Geometry of the CPP waveguide and its fundamental mode propagation 

parameters. 

 

 

 A different approach based on paper [13] was described by Y.Lurie [14]. 

In this more precise model, the modal structure of CPP waveguide is 

represented by a set of Gauss-Hermit modes.  Mr. A.Anaton and Mr. 

O.Markish, (two undergraduate students of Tel-Aviv University), utilized 

Lurie’s model as part of their graduation project. A description and a full list of 

the Gauss-Hermit modes for our CPP waveguide are given in [18]. Assuming 

that only the fundamental mode TE01
CPP propagates we get: 
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(2.21) 
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where 

 

  

 

 

(2.22)
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The coefficient Dcpp is the amplitude of the fields normalized to carry 1 Watt of 

the total power: 
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(2.23) { }* *1 Re ( ) 1
2

CPP h h h h
in x y y xP dxdy= − =∫∫ E H E H  

 

 

 We have considered both x̂  and ŷ  components of the electric field cpp
01E as well 

as corresponding of magnetic field components. The electric field profile cpp
01E (x,y) 

of the fundamental Gauss-Hermit mode is shown in Fig.2.5 (compare with Fig.2.4 ): 

 

 
      

Fig.2.5  Electric field distribution in CPP waveguide. 

 

Propagating electromagnetic waves in a CPP waveguide decay with distance due 

to finite conductivity σ of the copper waveguide walls. Furthermore, because at points 

(a1/2;0) and (-a1/2;0) (see Fig.2.4) the cavity is open, a small part of energy leaks out 

through the gap between the resonator plates. 
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Ohmic losses 

The ohmic losses per unit length in the CPP waveguide walls may be found from 

the follow general expression [2]: 

 

 

(2.24)

 

2

||2l
l

RsP H dl= ∫  

 

Here HII is the tangential magnetic field near the walls and RS is the real part of the 

wall’s surface impedance given by 

 

 

(2.25)

 

( ) S
s

S RjjZ +=
+

= 11
σδ  

 

where δs is a skin depth. 

 A detailed description and calculation of the tangential magnetic field at the 

curved walls for the Gauss-Hermit model may be found in [18]. Assuming the case of 

the small losses, the total ohmic losses can be given by multiplication of waveguide 

length Lcpp by the dP/dz since the last is a constant at any z in the CPP walls. 

 

The result of calculation is: 
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*100% 0.014*0.89*100 1.25%GH loss
wall cpp

dPP L
dz

= = =  

 

after one pass for the Gauss-Hermit model, and 

 

*100% 0.001*0.89*100 0.09%G loss
wall cpp

dPP L
dz

= = ≈  

for the Gaussian approximation model. 

 

 

 

Diffraction losses 

 

 
     (a) 

 
     (b) 

Fig.2.6  Explanation for the diffraction losses calculation: a) cross-section view; b) 

zigzag propagation. 

-a1/2 a1/2 radiation
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 To estimate the diffraction losses between the curved plates we use a 

zigzag ray propagation of the waveguide mode. We assume that on each 

incidence of the ray on a plate a power fraction (2.26) is lost. 

 

 

(2.26)
1

2

/ 2

2
2

xa
diff

x

E dx
P

E dx
δ

∞

∞

−∞

=
∫
∫

 

 

 

Equation (2.26) follows from the geometry of the curved plates and (see 

Fig.2.6(a)) equals to the ratio of the “out-of-plates tails” power and the total power of 

the CPP energy distribution.  Thus, the total diffraction losses are diff diffP P Nδ= , 

where N is the number of “zigzag” reflections of the ray along the waveguide 

(see Fig. 2.6(b)): 

 

 

(2.27)
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 The relation between the different wave numbers is explained in the 

following diagram: 
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Fig.2.7  Longitudinal and transversal wave numbers 

 

Calculation of Eq.(2.26) gives 0.064% of diffraction loss in one-way trip 

along the waveguide for the Gauss-Hermit distribution. The Gaussian 

approximation gives a 0.05% diffraction loss. 

 

The total round-trip losses in the CPP waveguide are therefore the sum 

of the diffraction (radiation) losses and the ohmic losses in the walls. The 

results are ~1.25% for the Gauss-Hermit representations and ~0.1% for the 

Gaussian approximation model. These losses could be neglected in further 

considerations. 

 

 

 

 
 
 
 
 
 
 
 
 

K=w/c Kc,01=K┴ 

Kz=β 
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2.5 Transition from CPP to rectangular waveguides 

 
 

The fields in the rectangular waveguide (see Fig. 2.8) can be described by the 

complete set of TE and TM eigenmodes [2] (apart from the factor zj mne β− ): 
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The Dmn
 coefficients are determined from the normalization of the modes 

to 1W of power: 

 

(2.30){ }* *
, , , ,

1 Re ( ) 1
2

p p p p p
mn x mn y mn y mn x mnP dxdy= − =∫∫ e h e h  

 

where index p refers to h ( for TE-mode) or e (for TM-mode). 
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Fig. 2.8 Profiles mismatch at the CPP-rectangular waveguide junction. 

 

 The integrals in (2.30) can be solved analytically and the normalization 

coefficients for the TE and TM modes are: 
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In general, the problem of excitation of a waveguide through an aperture 

can be solved by “full mode-matching” technique. The solution is found from 

equations of continuity of the transverse electric and magnetic fields, taking 

into account both forward and backward waves at the excitation plane. In our 

problem – for our operation frequency, both waveguides are overmoded, and we 

can use the qiasi-optical approximation. In the CPP waveguide we assume a 

single incident (TE01) propagation mode and neglect backward reflection of the 

mode or any excitation of reflected higher order modes from the interface of the 

two apertures (geometry of the interface apertures mismatch is shown in the Fig. 

2.8). It means that the entire energy of the incident wave TE01
cpp mode is 

redistributed among all the rectangular waveguide modes, which are excited in 

the splitter. We will calculate the amplitude of each of the excited mode, which 

is proportional to its field overlap with the exciting input wave and will confirm 

that the energy conservation law holds for this transition. 

 The continuity equations for both the x and y components of the electric 

fields at the interface plane are: 
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We can cross multiply the electric field at the both sides of the junction 

plane z=0 by the vector *
m n′ ′h  and calculate the power at both sides by taking the 
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integral of the result over the intersection aperture. We will also define the 

normalization power of the mode as: 

 

(2.33)( )*1 ˆ 1
2

norm p p
mn mn mnP dxdy W= × =∫∫ e h z  

 

Thus, we will get, using the orthogonality condition 

 

(2.34)( )*
' '

1,  if m,n = m',n'
ˆ

0,  else
p p
mn m n dxdye h z

⎧ ⎫
× =⎨ ⎬

⎩ ⎭
∫ ∫  

 

for the TE or TM modes respectively: 

 

 

(2.35) 
{ }* * ,

, ,
1 ( )
2

cpp p cpp p norm p p
x y mn y x mn mn mnE h E h dxdy P A− =∫∫       

 

 

The amplitude of the mn mode excitation is given, therefore, in terms of the 

overlap integral:  

 

 

(2.36) ( )
* *
, ,( )

ˆ

cpp p cpp p
x y mn y x mnp

mn p p
mn mn

E h E h dxdy
A
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−
=
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From the energy conservation law using the normalization procedure, we should also 

accept: 

 



Chapter 2     Calculation of resonator losses using Matlab simulation                      

-37- 

(2.37) WAAPP TM
mn

m n

TE
mnoutin 1

22
=+== ∑∑    

 

 

 In the Gaussian approximation model, we get simpler expressions. Since there is 

only x-component in the exciting electric field (Eq.2.18), and the curvature of the plates 

(Fig. 2.8) is neglected, it is found [12], [16] that only x-component of the electric field  

ˆxE x  and y-component of the magnetic field ˆyH y  will present in the excited fields of the 

Talbot rectangular waveguide. Furthermore, due to continuity in the ˆ ˆ−y z plane, the 

CPP fundamental mode (Eq.2.18) will excite on by modes with index n=1. Finally, due 

to symmetry of the problem, the amplitudes of the rectangular waveguide modes will 

vanish for all odd m. Thus, the modes that will be excited and propagate in the 

rectangular splitter are: 

 

 

  

(2.38) 
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here  1
h
mZ  and 1

e
mZ  are wave impedances of the modes.  

Note that this is correct only in the Gaussian approximation. In the Gauss-

Hermit model, y-component of the electric field, x-component of the magnetic field and 

higher order modes are excited too. 

 The power distribution to each rectangular mode as part of the total excited field 

power (1W) is shown in the following diagrams: 
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              (a) 

 
     (b) 

 

Fig. 2.9  Weight distribution of excited modes in rectangular waveguide: (a) Gauss- 

Hermit model; (b) Gaussian approximation. 
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 Comparison of the main cross-section profiles of power flow density at both 

sides of the junction provides proves of the adequacy of the approximation for the two 

models: 

 

 

  
(a) 



Chapter 2     Calculation of resonator losses using Matlab simulation                      

-40- 

 
     (b) 

 Fig. 2.10 Comparison of the main cross-section profiles (a) Gauss-Hermit model; (b) 

Gaussian approximation 

 

 

 

2.6 Propagation in an overmoded rectangular waveguide 

(splitter). Ohmic and diffraction losses 

 

 There is a particular field distribution in the splitter input, which can be 

described as a sum of a number of rectangular waveguide modes. The wave propagates 

through the splitter up to the perforated short at the half Talbot length plane z = 210 

mm. Initially the maximum of field (and power flow density) distribution is located at 

the center of the splitter. All fields, are negligible near the sidewalls. As the wave 

propagates toward the splitter, the electromagnetic field splits along the x-coordinate 

plane while in the y direction the distribution does not change (assuming that only the 
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n=1 modes are excited). As a result, electromagnetic energy of the propagating waves 

increases near the sidewalls (narrow b-dimension) of the rectangular waveguide and 

becomes maximal near the b-walls at the plane of the perforated mirror. Hence, we can 

expect extremely small ohmic losses right after the CPP-rectangular junction (z=0 mm) 

and maximal loss near the end of the splitter (at z=210 mm) where a maximal tangential 

component of the magnetic field is generated 

. The following 3-D plots illustrate the effect of fields splitting: 

 

 

 
 

      (a) 
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(b) 
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      (c) 

 

Fig. 2.11   Power density flow propagation: (a) X-Z dependence in y = 0 plane; (b) Y-Z 

dependence in x = 0 plane; (c) power flow density distribution (x,y 

dependence) at different distances along the Talbot rectangular waveguide: 

z=0 – input, z=105mm – starting to split, z=210mm – full splitting, z=420 - 

imaging. 

 

 

The power density plots shown in the Fig.2.11 a) and b) were calculated from 

the calculated field distributions according to: 

 

(2.39) *
1 1

1 1

1
2 m m

m m

S e⎛ ⎞= ℜ ×⎜ ⎟
⎝ ⎠
∑ ∑E H    
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All plots shown were calculated with the Gaussian approximation model in 

order to illustrate the fields splitting effect. For the more accurate Gauss-Hermit model, 

the corresponding plots look very similar. 

 

 

 

Wall losses 

 

In a single mode waveguide or, when a single mode propagates in an overmoded 

waveguide, the power loss into the walls per unit length is found from (2.24): 

 

 

(2.40) 2

, ˆ
2

s
l mn mn

L

RP dl= ×∫ n H    

 

 

Assuming small losses, the mode would propagate as in a lossless waveguide, 

but with slowly varying amplitude 

 

 

(2.41) { } ( ) ( ){ }ˆˆ, ( ) , , , mnj z
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A z x y x y e β−=E H e h    

 

 

The fast varying coefficient ( mnj ze− β ) cancels out in the absolute value operation 

in (2.40). By conservation of energy, the power loss rate to the walls is equal to the 

power attenuation rate of the mode: 

 

(2.42) ( )
22

,
ˆˆ

2
mn s

l mn mn mn
L

dP RP A z dl
dz

= − = ×∫ n h    
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Since |Amn|2 is proportional to the mode power, we can write: 

 

 

(2.43) ( ) ,
mn

mn mn l mn
dP P z P
dz

α− = =    

 

 

where αmn is the power attenuation constant of the mode mn which apparently attenuates 

exponentially. 

 In the case when a number of modes propagate in the waveguide, the simple 

mode constant attenuation rate derivation does not apply. When, substituting (2.41) in 

(2.40):  
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where the integral is taken along the perimeter of the waveguide cross section (cs). In 

this case, the ohmic losses per unit waveguide length become a function of the 

coordinate z and not constant even in a small loses approximation. The mnj ze β−  factors 

do not cancel out and the interference between the modes causes z dependent 

attenuation rate of the total power. 

  

 The power losses per unit length as a function of the coordinate z and the total 

ohmic losses as a function of z shown in the following plots: 
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     (a) 

 

     (b) 

Fig.2.12  Power losses per unit length. Input power - 1 W; (a) Gauss-Hermit model; 

(b) Gaussian   approximation. 
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The total ohmic losses as a function of z were calculated using (2.44) and are 

shown in the following plots for the case of wave propagation in the rectangular splitter 

excited by the TE01 CPP mode: 

 

 

 

 

 

      (a) 
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      (b) 

 

Fig. 2.13  Total ohmic losses in the splitter as a function of z. Total input power – 1W;    

(a) Gauss-Hermit model; (b) Gaussian approximation.  

 

 

Thus, after one round-trip of propagation the total ohmic losses found for the 

splitter are: 

2.03  %  found from the Gauss-Hermit model 

1.4 %  for a Gaussian model 
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Diffraction losses at the Talbot splitter hole 

 

 At the plane z = 210 mm, that is at the Talbot length, the splitter is terminated by 

a conducting plate with a rectangular window in the y-direction as shown in the Fig. 

2.14 : 

 

Fig. 2.14  Rectangular window plate terminating the splitter at z=210 mm. 

 

Due to the splitting effect, the main part of the wave power density is distributed 

on the sides (in the x direction) toward the b-walls of the rectangular waveguide, and 

thus one obtains high power reflection from the terminating plate.  Nevertheless, a small 

part of energy is contained in the tails of split Gaussian -like distribution. It leaks out 

through the window. A simple way to find the power loss due to this effect is to 

multiply the power density distribution at the plane of the window by a window 

function that equals to zero at the mirrors and equals to 1 at the opening. Note that this 

approximation is possible only for the optical approximation. Such a window in a single 

mode waveguide represents reactive load not fully matched using free space outside of 

resonator. The power flow density distribution before and after reflection from the 

perforated termination is shown in the following figures: 

 

b=10.7mm 

a=25mm 

aw=10mm 

x

y 
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(a) 
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(b) 

 

Fig. 2.15  Power flow density distribution at the end of splitter before (a) and after (b) 

reflection. Gauss-Hermit model. 
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     (a) 

 

     (b) 

Fig. 2.16  Power flow density distribution at the end of the splitter before (a) and after 

(b) reflection. Gaussian approximation model. 
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Power losses calculated due to power leakage through the window opening are 5.3 %. 

 

Within the bounds of this approach, calculated power losses are 2 %. 

 

The lost part of energy contains a weighted contribution of each mode. Hence, 

each mode becomes distorted after reflection from the end mirror, which contains a 

window. The way to consider this diffraction effect is to calculate the overlap integral 

again and to find the new modal energy distribution of the reflected wave. This 

operation does not result in any additional loss, but changes the distribution of the 

multi-mode backward wave and will affect the further recovery of the original CPP 

mode distribution by the Talbot imaging effect. Therefore, we shall use the overlap 

integral technique repeatedly to solve each discontinuity problem in our resonator. For 

each exciting field distribution there will be a particular set of excited modes. In the 

case above the wave reflected from the terminating plate excites the full set of 

rectangular waveguide modes. 

 

  

2.7 Re-excitation of the fundamental TE01
cpp mode in the 

Rectangular / CPP waveguides junction 

  
After one round trip of propagation in the splitter, the electromagnetic wave 

returns to the junction of the different waveguides. The rectangular aperture becomes 

the exciting field distribution aperture and the curved parallel plate waveguide forms the 

waveguide of the excited cavity. A similar consideration (see section 2.5)  was used to 

find the amplitude distribution of the excited modes in the rectangular waveguide. Due 

to the Talbot imaging effect, the transverse power distribution after a round trip in the 

splitter is expected to regenerate the original distribution of the TE01 mode of the CPP 

waveguide at the z = 0+ plane (see Fig. 2.17). Due to this field distribution 
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reconstruction, the main part of the energy is concentrated in the center of aperture. 

Losses at the corners of rectangular waveguide are not significant, and the original TE01 

mode can be re-excited in the CPP waveguide quite efficiently. 

 

 

 
 

    (a) 
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    (b) 

 

Fig. 2.17   Reconstruction of the original distribution due to Talbot effect; Gauss-Hermit 

model (a); Gaussian model (b); 

 

 

According to the Gauss-Hermit model, only the following modes meet the 

synchronism condition with the electron beam [14]: 

3030202010100101 ,,,,,,, TMTETMTETMTETMTE , 

in addition, may be relevant for FEL interaction in the CPP. 

However, only modes TE01 and TM01 have significant magnitude at the center of 

the waveguide (x=y=0). Hence, for a small radius of electron beam only these modes 

can be amplified. We are interested in excitation of the TE01 mode only, so that the part 

of energy contained in the excited TM01 mode may be said to be lossless (from the FEL 

operation point of view).  
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It should be enough to calculate the energy enclosed only in the excited TE01 

mode. The remainder of energy does not contribute to the FEL amplification process in 

the laser resonator. 

Re-excited modes power distributions at z = 0- and the power flow density plot 

are shown in Fig. 2.18: 

 

 
            (a) 
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     (b) 

 

Fig. 2.18  Gauss-Hermit model: re-excited modes power distribution (a); reconstructed 

power flow density distribution at the CPP aperture at z=0- (b). 

 

Calculated power loss due to re-excitation of the CPP waveguide by the 

rectangular aperture distribution of backward wave are: 

5.4 % for the Gauss-Hermit model; 

1.9 % for the Gaussian model. 
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2.8 Estimation of the mitre bend losses 

 
The reflector on the decelerator side of the resonator consists of two identical 

rectangular splitters connected through a waveguide bend that contains of a perforated 

conductive mirror according to the Fig. 2.19:  

   
Fig. 2.19   Description for the mitre bend reflector. 

 

As mentioned in the Introduction chapter, such a construction allows one to separate the 

electron beam and the propagated electro-magnetic energy and allows one to guide the 

radiation to a user outside of the laser. Using an optical approximation, the split wave is 

reflects from the waveguide bend metallic mirror at 90o, and continues its propagation 

without distortion through an addition Talbot splitting section. As a result, one-way 

passage of the electromagnetic wave through the splitter is equivalent to a round-trip 

propagation in half of the Talbot length splitter. 
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Fig. 2.20   Approximation of the bend region. 

 

 The problem of the multi-mode wave propagation in the bend region has no 

simple analytical solution because of the huge number of modes excited and the 

interaction of modes in the bend region. Furthermore, the numerical solution is 

complicated for the same reason, because of limitation of modern computers. However, 

some approaches to this problem are outside of the scope of this work, but are described 

in the project of A.Anaton and O.Markish [18]. According to simulation they carried 

out based on two symmetric aperture transitions (see Fig. 2.20) and calculations of the 

Fresnel integral of diffraction [18], the power losses for a one-way pass through the 

bend are 6.2%. The diffraction losses at the round hole in the center of the mirror are 

4%. They predict power losses after one round-trip through the bend region of (6.2 * 2 

+ 4 * 2) = 20.4%. This estimation is a rough approximation and needs more detail 

consideration. However, one should note that experimental measurement of bend losses 

gave about 18 ±  3% round-trip power losses. The Gaussian model calculation gives 

about 13 % of total power losses in the bend region. 
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2.9 Conclusions 

 
The different kinds of losses in the resonator can by schematically 

represented as follows: 

 
Fig.2.21   Block-diagram of the resonator losses. 

 

 

 Different parts of this diagram are complying with those from Fig. 2.1 and are 

described it Table 2.1. In the following table, the results of simulations carried out so far 

are summarized (based on the diagram in Fig. 2.21). 

 

 

Kind of losses 

Block on 

diagram 

Power losses in 

one round-trip, %; 

Gauss-Hermit 

model 

Power losses in 

one round-trip,%; 

Gaussian 

approximation 

CPP waveguide losses (ohmic + 

diffraction) 

A ~1 ~0 

CPP-rectangular waveguide (wg) 

transition loss 

Optic 

approx. 

0 0 

C A 

B 

C D 

C 

E 

F 

B 
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Rectangular wg ohmic losses C 2.03 1.4 

Rectangular window (beam 

input) loss 

F 5.3 2 

Round window (beam output) 

loss 

E 8 2 

CPP wg re-excitation loss B 5.4 1.9 

Mitre bend losses D 12.4 9 

 

Tab.2.1 Distribution of losses in the FEL resonator. 

 

Finally, the total round-trip losses Lrt of the resonator can be estimated from the 

following expression: 

 

 

(2.45) 

 

Lrt = A + 2*B + 3*C + D + E + F = 42.5 % Gauss-Hermit model 

Lrt = A + 2*B + 3*C + D + 2*E + F = 22.6 % Gaussian model 
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Chapter 3  
 

Methods for characterization of the mm-wave resonator 

 

3.1 Introduction 

 
Microwave cavities are important microwave devices, which are an 

integral part of oscillators also in the mm-wave region. Microwave cavities are 

considered in the literature either from a lumped equivalent circuit viewpoint or 

from the standpoint of a transmission line bounded by known discontinuities. 

At high (mm-wave) frequencies, when the resonator dimensions are much larger 

than a wavelength, a distributed circuit approach must be used. However, a 

lumped circuit approach would yield the same results if the Q-factor is high 

(i.e. the losses in the cavity are small). For low Q-factors, the lumped 

equivalent circuit approximation is not valid. The difficulty stems from the fact 

that in this case the resonant frequencies are sufficiently close to each other and 

interfere with the desired frequency, so that the one-pole representation is no 

longer adequate [19]. The multi-frequency mm-wave cavity is similar to the 

situation in quasi-optical resonator and may, therefore, be analyzed using 

optical resonator formulation. 

In this chapter we will define the fundamental parameters of distributed 

resonators and will introduce the different models used for hollow resonators. 

Further, we will describe the experimental measurements that were made on the 

FEL resonator. First, I will present the measurement of the reflection resonant peaks of 

the FEL resonator and the scheme of measurement will are described. Subsequently, a 

novel coupling element into and out of the FEL resonator and its calibration procedure 

will be described. An optical approach for measurements of mm-wave resonator will be 

formulated based on an optical model for a non-symmetric lossy Fabri-Perot (FP) 

interferometer. An algorithm which allows estimating the total round-trip reflectivity of 
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the resonator from the directly measured FWHM (resonance linewidth) will be 

presented. This parameter is most important because it determines the oscillation 

threshold of the FEL. We will also introduce a new model of multiple coupled FP 

interferometers, useful for better matching of the data and interpretation of the measured 

reflection coefficient patterns. Finally, results of the experimental investigation of the 

FEL operation with resonator and ways to improve of the resonator for future 

development of the FEL will be discussed. 

 

 

3.2 Experimental methods used for Q-factor measurement 

in the lumped – element circuit (single pole) model 
 

The three fundamental characteristics of an RF resonator that can be determined 

by measurement are: (1) resonant frequency, (2) coupling coefficient, and (3) unloaded 

Q factor (Q0). The last can be defined by using the exact fields inside the resonator. 

Practical calculation of the values of Q0 is usually very difficult and it is hard 

to take into account practical causes of internal resonator losses. As a result, the 

real value of Q0 may be mach lower than that obtained from exact field 

equations. 

In the past, RF resonators were tested by specialized instruments, such as         

Q-meters [25]. Those devices have largely been replaced by more universal ones e.g. 

network analyzers. At microwave frequencies, the Q factor which used to be measured 

by precision slotted lines, have also been replaced by network analyzers. As will be 

described in more detail later, a 3-point measurement can determine all the three needed 

numbers. A novel Q-factor measurement is the use of an over-determined measurement 

procedure in which some 20 or more points are taken by an automatic network analyzer 

and subsequently processed by use of a personal computer. The results of the data 

processing provide not only the three fundamental parameters, but also the estimates on 

their standard deviations and an estimate of the coupling losses. 
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Fig.3.1 Lumped-elements and distributed-elements resonators. 

 

In contrast to a lumped element resonator, a distributed element resonator may 

be a simple half-wavelength microstrip transmission line, capacitively coupled to a 

input microstrip line, such as shown in Fig.3.1(b). To achieve a high Q factor, a 

dielectric resonator can be inductively coupled to the microstrip line, such as in 

Fig.3.1(c). For high power handling, it may be necessary to employ a hollow cylindrical 

or rectangular cavity, such as in Fig. 3.1 (d), in which the input is connected to a coaxial 

transmission line. 

Figure 3.2 show the lumped RLC equivalent circuit, which is, according to [25], 

appropriate for all the distributed element resonators shown in Fig. 3.1. An external RF 

source of voltage Vs and internal impedance Rc, which is matched to the input 

transmission line is shown. This source would represent the network analyzer, which is 

connected to the input port 3 of the resonator through a transmission line and coupling 

L-R elements. The transmission line of length l, located between input (port 1) and the 

location of the coupling (port 2) could be physically very short. This length is usually 

not known very accurately. 
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Fig.3.2  A resonator and an external circuit 

 

Port 3 is the location of the resonator itself. The impedance Rs+jXs   represent 

the transformation properties of the coupling mechanism. For a loop coupling, Xs is a 

positive reactance, and for a probe coupling, Xs is a negative reactance. The value of Xs 

can be considered as constant [25] in a frequency range of interest (say 1 % on each 

side of the resonant frequency). The reactance of the resonator, represented by a parallel 

LC circuit, varies with frequency hundreds or even thousands time faster than Xs. 

 

On the right hand side of port 3 is the unloaded resonator. As discussed above, 

for the case of a low-loss cavity the unloaded Q factor is denoted Q0: 

 

  

(3.1) 0

0
0

2
G

CfQ π
=  

 

 

where f0 is a resonance frequency. The conductance G0 represents the dissipation inside 

the resonator proper. Typically, this dissipation is caused by conductor losses and by 

dielectric losses G0. The corresponding resistance Ro is the inverse value, R0 = 1/ G0.        
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(a) 

 

 
    (b) 

Fig.3.3 (a) Thevenin and (b) Norton equivalent circuits for port 3. 

 

To the left of port 3 (towards port 1), is the series resistance Rs and the reactance 

Xs, and behind them a transmission line terminated in a Thevenin source. As the source 

impedance is equal to the characteristic impedance of the transmission line, the length 

of the transmission line does not change the impedance seen by the observer (any length 

of a transmission line, which is terminated in a matched load, has input impedance, 

equal to Rc). 

Using circuit theory, the external circuit, can be replaced by a Norton equivalent, 

consisting of a current source in parallel with the impedance, as shown in Fig.3.3(b). As 

a further simplification, the impedance Rc+Rs+jXs can be transformed into an 

admittance Gex+jBex as shown in Fig.3.3(b), thus is the external admittance of the 

resonator. 

 At port 3 one may note that the external circuit influences the resonator in two 

ways. First, the susceptance Bex detunes the resonant frequency. However, this 
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frequency shift is usually small, and is of little consequence. The loaded resonator has a 

slightly different resonant frequency. Secondly the, conductance Gex is in parallel with 

Go. Thus the coupling elements increase the resonator conductance to Go+ Gex, 

lowering the overall Q to a value QL, expressed by  

 

(3.2)  
exL QQQ

111

0

+=  

 

 

where the external Q factor Qex is: 

 

 (3.3)  

ex
ex G

Cf
Q 02π

=  

   

 

The ratio of the power dissipated in the external circuit to the power dissipated 

in the resonator is called the coupling coefficient k. As both G0 and Gex are at a voltage 

V, the ratio of powers is equal to the ratio of conductances: 

 

 (3.4)  

ex

exex

Q
Q

G
G

GV
GVk 0

00
2

2

===  

   

 

 

If the power dissipated in the external circuit is equal to the power dissipated in 

the resonator, the coupling is said to be critical, and the coupling coefficient in this case 

is k=1. Undercoupling regime means that more power is dissipated in the resonator than 

in the external circuit, while overcoupling regime means that more power is lost in the 

external circuit than in the resonator. Use of (3.2) in Eq.(3.4) gives the relationship 

between unloaded and loaded Q : 
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 (3.5)  )1(0 kQQ L +=  

 

In the process of measurement, the resonator is loaded by the external circuit 

(here the network analyzer), and the measurement will yield the loaded Q, QL. For 

strong coupling between the network analyzer and the resonator, the measured loaded Q 

is lowered. To find the unloaded Q, the measurement should be designed in such a way, 

that it also provides the value of the coupling coefficient k. Then, using QL and k, one 

computes Q0 from Eq.(3.5). This is how most Q factor measurements are made [19], 

[24]. 

For this resonator measurement one needs one port only. When the network 

analyzer is attached to this port, the equivalent circuit looks as shown in Fig.3.2. The 

measurement procedure is well documented in microwave measurement handbooks 

such as Ginzton [19], Sucher and Fox [23], or Matthaei, Young and Jones [24]. 

Although these books were written before the first network analyzer was made, the 

principles involved remain unchanged from the slotted-line and admittance-bridge era. 

With few modifications, the reflection-type measurement can be performed with a 

network analyzer [25]. The beauty of this measurement is that a perfect circle that gives 

the reflection coefficient is plotted on a Smith chart, measured as a function of 

frequency. (If one does not get perfect circle, there is usually something wrong with the 

calibration or the reference position!) 

 

 

 

3.3 The Measurement Scheme Used in the Present Study 
 

The quasi-optical mm-wave resonator was assembled and installed into 

the accelerator tank in January 2002. The configuration of the resonator 

installed in the FEL is shown in Fig. 3.4: 
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Fig. 3.4 Resonator configuration. 

 

Attainment of low round-trip resonator losses (smaller than the FEL 

single-path gain) is a necessary condition for obtaining the desired laser 

operation. Therefore, accurate experimental measurements of resonator losses 

are most important.  

The resonator location in the wiggler allows a signal for probing the 

resonator to be fed only from the coupling element end. Thus, excitation of the 

resonator for the measurement of its quality is accomplished by energy feed 

through the coupler. The coupling coefficient was determined separately and 

the signal reflected from the resonator system was measured. The theory 

described in Chapter 2 and the theory of optical resonators predicts that the 

reflection coefficient of a resonant cavity is minimal at the resonance frequency 

and it is maximal at antiresonance [2]; there is a periodicity in the absorption 

peaks. Information on internal resonator losses can be extracted from the 

measured pattern of reflection coefficient vs. frequency. The experimental 

scheme for reflection coefficient measurements is shown in the figure 3.5: 

 

 

 

 

 

Electron beam 
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     (b) 

 

Fig.3.5 (a) Schematic of the experimental setup for reflection coefficient 

measurements; (b) transmission line components: mitre bend and cylindrical 

corrugated waveguide. 

 

 

The measurement equipment comprises a microwave source in the W-

band range (75-115 GHz), a wide frequency band sweeper and a Scalar Network 

Analyzer (SNA). The input wave was transformed using a specially designed 

mode exciter in order to obtain a good matching between the signal source and 

the circular waveguide. The probing wave and the wave reflected from the 

resonator are transmitted through the corrugated circular waveguide mm-wave 

transmission line that was developed to transmit the FEL radiation from the 

resonator outcoupler out of the accelerator (see Fig.3.5). The transmission line 

is about 5m long. To obtain good matching between the circular aperture of the 

feed transmission line and the rectangular aperture of the resonator splitter, a 
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special curved off-axis matching mirror was used. The transmission coefficient 

of the variable outcoupler was about 10% and provided week coupling between 

the resonator and an external load (source, network analyzer, corrugated 

transmission line and matching curved mirror). 

The measured power reflection coefficient is shown in Fig. 3.6: 
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Fig.3.6 Measured resonator response (narrow peaks) masked by a large 

amplitude “low frequency” parasitic reflection pattern. 

 

 

The weak power absorption dips correspond to resonance absorption of 

the resonator for weak coupling. The “low-frequency” envelope curve is due to 

parasitic reflections between mismatched sections in the transmission system. 

An attempt was made to eliminate parasitic reflections and to extract the 

intrinsic resonator behavior. 

Using the FFT computer filtering procedure from the “MicroCal Origin” 

program libraries we strongly reduce the “low frequency” spectral pattern 
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associated with parasitic reflections. The resulting spectral pattern is shown in 

Fig.3.7: 
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Fig. 3.7  Resonance peaks pattern of the excited FEL resonator obtained from 

Fig.3.6 by strongly reducing parasitic reflection. 

 

 

A crude estimate of resonator losses was made by calculation of the 

loaded Q-factor of the resonator according to:  

 

(3.6) 
0

2/1

2/1

0

λ
δλ

δ
==

f
fQ  

 

 

where f0 is the resonant frequency of a particular  peak and δf1/2 is the -3dB 

bandwidth of that peak. The results for two typical peaks (#1 and #6 in the 

Fig.3.7) are shown in Fig. 3.8: 
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Fig. 3.8   Calculated loaded Q-factor of the resonator: (a) peak #6, f0=100.41 

GHz; (b) f0=99.93 GHz. 
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3.4 The Adjustable Grid Reflector/Outcoupler 

 
3.4.1  3-grid coupler 

 
 The adjustable coupling element consists of a set of three polarizing grids which 

are parallel to each other and assembled into one unit as depicted in Fig. 3.9: 

 

 
 

Fig. 3.9 Adjustable 3-grids coupler. 

 

Each grid is a diffraction lattice using parallel Tungstem wires supported by a 

copper frame. The diameter of the two outer grids is smaller than the central grid as 

shown in Fig. 3.10: 
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     (a) 

 

 
    (b) 

 

Fig.3.10 Structure and dimensions of the polarizing grids (a); the grid in its 

supporting ring (b). 
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The two outer grids are fixed and allow maximum transmission of power. 

This occurs if the parallel grid wires are perpendicular to the E-field 

polarization of the incident wave [2]. The inner grid can be rotated so that the 

angle Θ between the parallel grid wires and the electrical field direction can be 

adjusted (Fig. 3.9). The wave incident on the central grid can be considered as 

the composition of two waves – one polarized parallel to the wires and the other 

perpendicular to them (Fig.3.11): 

 

Fig.3.11 Central grid: decomposition of the incident wave 
__
E  into '

xE  and '
yE . 

 

The decomposed incident wave component polarized perpendicular to the 

wires (Ey’ in Fig.3.11) is transmitted because the grid is transparent for this 

polarization. The part of the decomposed incident wave polarized parallel to the 

wires (Ex’ in Fig.3.11) is reflected (except for ohmic losses of the filaments)  

towards one of the outer grids. Because of this 3-grid system, the wave, 

incident on the 3-grid reflector and the wave reflected from it are of the same 

x 

x’ y’ 

E 

Ex’ 

Ey’ 

y
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polarization. Similarly, the transmitted wave (after passing three grids) is also 

in the original polarization direction. The 3-grid reflector is used as a coupling 

element between the resonator cavity and the feeding transmission line. It 

allows adjustment of the reflection (transmission) coefficient without changing 

the polarization of the waves reflected into (transmitted out) the resonator. 

A theoretical description of the operation of the 3-grids system may be 

found in [3] and [6]. According to [3], a system consisting of three grids can be 

subdivided into two basic sections separated by electrical lengths φ1and φ2. Each section 

consists of two successive grids and the space between them. The scattering matrix of 

each section can be written using network representation [4], [5] as: 
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where  Φp = kdp = ωdp/c is the phase change between 2 adjacent grids given in radians, 

d – is the physical distance between grids and p = 1 or 2 according to the selected pair 

of grids. 

The total scattering matrix of the 3-grid system is calculated by multiplying the A 

matrices of the two basic sections [A] =[A1] ⋅ [A2]. Using (3.7) the elements of [A]: 
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The power transmission coefficient T can be calculated [2]:      

    

 

(3.9) 
2

22211211 ||
4

AAAA
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The power transmission coefficient of the 3-grids tunable reflector as a function 

of the central grid rotation angle for the different distances between the grids is shown 

in   Fig. 3.12: 

 

  

                                         (a)  
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(b) 

 

Fig.3.12 Power transmission coefficient of the adjustable 3-grids coupler: (a) – 

for equidistant    phase shift and spacing Φ1= Φ2; (b) – for non equal 

spacing Φ2=π/4, Φ1≠ Φ2. Frequency – 100GHz. 

 

 

 According to [6], for optimal spacing between the grids a symmetrical 

curve around the half-power transmission points is obtained; minimal internal 

re-reflections between two neighboring grids are obtained for: 

 

(3.10)[ ]radkopt 48
πλφ ==  

 

In this case Eq.(3.9) may be rewritten as: 
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(3.11)
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 Finally, it should be noted that the transmission coefficient of a isolated 

single grid depends on the angle between the direction of the grid wires and the 

incident wave polarization (goes as sin4θ). 

 

 

 

3.4.2 Measurement of the 3-grid coupler reflection coefficient 

 
 The experimental arrangement for the measurement of the 3-grid 

coupling element is shown in the Fig. 3.13: 

 
R1 Polarizing grids

Polarizing grids

Source

Spectrum Analyser

 
 

Fig.3.13 Scheme of setup for the reflection coefficient measurement. 

 

 The 3-grid coupling element, which enabled control of the resonator end 

reflector from short to full transmission by adjusting the inner grid angle, was 

assembled and placed at the output of the resonator bend section. At the other 

end, the resonator was excited by a HP 100 GHz source through a mode exciter 

that converts the TE01 mode of the source output waveguide to the hybrid mode 

of the CPP waveguide. The power reflected from the grids was measured. The 
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results of the reflection coefficient measurement as a function of the rotation 

grid angle are shown in Fig. 3.14 for several frequencies: 
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Fig.3.14 Reflection measurement: (a) single grid; (b) set of three parallel grids. 
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 The measured data (shown in Fig.3.14) is in good agreement with theory. 

One can conclude from the plot of Fig. 3.14 (b) that grid spacing is nearly 

optimal at a frequency f = 105 GHz. An additional conclusion is that the 3-grid 

reflector can be used as a suitable coupling element in FEL resonators, 

providing coupling which can varied continuously from zero reflection to total 

reflection. 

 

 

 

3.5 Fabri-Perot Resonator Model. Optical Approach 

 
3.5.1 Fabri-Perot Interferometer with Losses 
 

The multi-mode mm-wave resonator can also be described in terms of 

optical interferometry. In optics a multi-ray Fabri-Perot (FP) type 

interferometer is a resonator in which build up of electromagnetic energy can 

occur. This electromagnetic waves energy recirculates inside the interferometer 

of due to reflections from parallel interferometer mirrors at the end of the 

resonator (see Fig. 3.15) like in the FEL mm-wave resonator.  
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Fig. 3.15 Schematic view of Fabri-Perot resonator; n – is a refractive index, L -  is 

the length of the resonator. 

 

 

A detailed analysis of a lossless FP interferometer can be found in [8]-

[10] and in [1] (only for symmetric interferometer with identical mirrors). 

According to Haus [7], the scattering matrix [S] of an ideal interferometer FP, 

composed of two flat mirrors, can be written as: 
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where r1, r2 and t1,t2 are the reflection and transmission coefficients (real 

positive numbers) of the  wave amplitude and δ is the phase shift of a plane 

wave in passing from one mirror to the other at an angle θ to the x-axis: 
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(3.13)( ) ( )Lcn θωδ cos/2=  

 

 

From (3.12) we can write explicitly the expressions for the power transmission 

and reflection coefficients T = |S12|2, Г = |S11|2 : 
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Fig. 3.16 Transmitted (a) and reflected (b) power pattern for a Fabri-Perot resonator. 
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 The dependence of these parameters on the phase δ for is shown in 

Fig.3.16. The transmission coefficient exhibits a periodic “comb” pattern of 



    Chapter 3     Methods for characterization of the mm-wave resonator                                
                            

-87- 

peaks, spaced apart by Δδ=2π. The reflection coefficient exhibits a 

complementary “comb” pattern of dips. 

With the notation of the Fig. 3.16 we can define the maximal and minimal 

values of the reflected power: 
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and for the transmitted power: 
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 Maximum transmission and minimum reflection power are observed 

simultaneously when the distance between the interferometer mirrors is an 

integral number p of half-wavelengths. This is a resonance condition. If the 

distance between mirrors is an odd integer of quarter-wavelengths (electrical 

length k*l is an integer number of half-wavelengths plus a quarter-wavelength), 

the antiresonance condition is exist and a minimum of transmission power 

occurs with a maximum of reflection power. 

 In the context of this work, we shall extend the FP analytical model to 

include non symmetrical interferometers (with a lossy medium inside the 

resonator). The mathematical derivation of this case is given in Appendix.  

According to Eq.(A1.24 ), Eq.(3.14) can be rewritten as: 
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where T1=(t1)2, T2=(t2)2 are the power transmission coefficients. τ is the one 

way power transmission coefficient in the medium between mirrors (it is 

assumed that there are no internal reflections). If one assumes uniform losses, 

along the z-direction, then τ = e-2αL, where α is the field amplitude decay 

coefficient of the medium. In the extended derivation (Appendix) the 

propagating wave is not necessarily a plane wave, but can be a single transverse 

mode propagating with wave number kz. In this case δ=2kzL instead of 

Eq.(3.13). In an overmoded waveguide (as is the case in the FEL CPP resonator), 

the fundamental mode is satisfies 2
zk

c
ω π

λ
≈ = . The expressions for maximum 

transmitted and minimum reflected power for the resonance condition δ = 2πp 

are then: 

  

 

(3.18)
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The antiresonance phase condition δ = 2π(p+1/2) is obtained for minimum 

transmission and maximum reflection power: 

 

[ ]
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( )
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1

;
1

2
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min12min

2
21

2
212

max11max

rr
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rr
rrS

τ
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τ
τ

+
==Τ

+
+

==Γ

 

 

 

 

 

(3.19)

 

 

 The frequency range between transmission maxima (or reflection 

minima) Δf is called free spectral range (FSR) of an interferometer and is 

defined in the plane wave model as follows: 

 

(3.20)
1 2 cosFSR p p

cf f f
L+Δ = − =

Θ  
 

 

For a waveguide mode, the definition is derived from: 

 

 

 

(3.21)

( ) ( ) ( )1 1

1

2 2 2

2

z
z p z p p p

g
FSR p p

dkk f k f L L
d

v
f f f

L

ω ω π
ω+ +

+

⎡ ⎤− = − =⎣ ⎦

Δ = − =
 

 

  

For the fundamental mode of an overmoded waveguide cv g ≈ and Eq.(3.20) applies 

with θ = 0. 
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Fig. 3.17 Reflection of an ideal Fabri-Perot interferometer; r1 = r2. 

 

 The width δf1/2 of the maxima of transmission power (or minima of 

reflection power) FWHM is defined at the half maximum power level (Fig.3.17) 

1/ 22
2

p δπ ± : 

 

(3.22)1/ 2 1 2

4
1 2

11sin
4 2 2

rt

rt

Rr r
r r R

δ τ
τ

−−⎛ ⎞ = =⎜ ⎟
⎝ ⎠

   

 

 

where ( )221rrRrt τ=  is the power round-trip reflectivity factor of the resonator. 

 By differentiation of δ (Eq.3.13), one obtains 

 

(3.23)1/ 2
1/ 2 2 2

gv
f

L
δδ
π

= , 

 

and consequently the FWHM frequency linewidth for transmission or reflection 

resonance is a function only of ΔfFSR and Rrt:  



    Chapter 3     Methods for characterization of the mm-wave resonator                                
                            

-91- 

 

(3.24)
1/ 2 4 4

1 12 2arcsin arcsin
2 2 2

g rt rt
FSR

rt rt

v R R
f f

L R R
δ

π π

⎛ ⎞ ⎛ ⎞− −
= = Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

 

This expression is valid even if there are large round-trip losses. In most cases 

(1>Rrt>0.5) it is a good approximation: one can for these cases expand the 

arcsin function to first order in terms of its argument: 

 

(3.25)
1/ 2 4

1 rt
FSR

rt

R
f f

R
δ

π

⎛ ⎞−
= Δ ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

 This can be expressed in terms of the "Finess" parameter, which is the 

optical term for describing the sharpness of the interferometer: 

 

(3.26)4

1/ 2 1
rtFSR

rt

Rf
f R

π
δ
Δ

ℑ = =
−

 

 

 In a lossless symmetric resonator (r1)2 = (r2)2 = R and Rrt = R2. For this 

case only: 

 

(3.27)
1

rt

rt

R
R

πℑ =
−

 

 

which is the expression given in [1]. 
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3.5.2 The Q-factor of a Fabri-Perot cavity resonator 
 

 We now make the connection between the optical characterization and 

microwave parameters of resonators. As discussed in section 3.6, for isolated 

modes, the resonator can be characterized by the quality parameter Q. We 

choose here to define the Q-factor as the ratio between the frequency f0 

(resonant wavelength λ0) and bandwidth of the resonator mode δf1/2 (or δλ1/2): 

 

(3.28)
0

2/1

2/1

0

λ
δλ

δ
==

f
fQ  

 

Consequently, 

 

(3.29)
( )

0 0

4arcsin 1 / 2FSR g rt rt

f f LQ
f v R R

π
= ℑ =
Δ ⎡ ⎤−⎣ ⎦

 

 

and, for small round-trip losses (Rrt~1): 

 

(3.30)4
0 02 .

1
rt

FSR g rt

Rf f LQ
f v R

π
= ℑ =
Δ −

 

 

 If cvg =  then a simple relation appears: 

 

(3.31)42 .
1

rt

rt

RL LQ
R

π
λ λ

= = ℑ
/2−

 

 

 

It should be noted that in Eq.(3.31) above Q is the loaded Q-factor since 

both internal and external (coupling mirror) losses are included. 
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3.5.3 Determination of the round-trip reflectivity parameter 

from measured resonance linewidth 
 

The round-trip resonator reflectivity is the significant resonator parameter 

affecting the laser performance, as it defines the needed threshold gain Gth (and 

in the case of FEL-threshold current) for the lasing condition: 1th rtG R = . A 

round-trip reflectivity parameter can be defined based on the spectral linewidth 

of the resonant curve of power obtained from the resonator.  

 Let us defined a new parameter 

 

(3.32)1/ 2 1/ 2sin
g g

f L f LC
v v

πδ πδ⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

or, in terms of the parameter Q (defined as 0

1/ 2

fQ
fδ

= ): 

(3.33)0 0sin
g g

f L f LC
v Q v Q
π π⎛ ⎞

= ≈⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

 The parameter C  (Eq.3.32) can always be evaluated from the measurable 

parameter 1/ 2fδ . Substituting Eq.(3.31) results in an exact expression from 

which Rrt can be evaluated: 

 

(3.34)
4 4

1 1
sin

2
rt rt

rt rt

R R
C

R R

⎛ ⎞− −
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

For a given value of C , this is a fourth order algebraic equation in terms of 

4
rtx R≡ . It can be readily solved; the only physically meaningful solution is 

( )2

1 1x C C= − + + . Thus, we have an explicit equation: 



    Chapter 3     Methods for characterization of the mm-wave resonator                                
                            

-94- 

 

(3.35)( )
4

24
1 1rtR x C C⎡ ⎤= = − + +⎢ ⎥⎣ ⎦

 

 

 

which together with (3.32) - (3.33) makes it possible to calculate Rrt in terms of Q or 

directly in terms of δf1/2. In the approximation (3.33) (Rrt>0.5; vg=c), this can be 

rewritten: 

 

 

(3.36)

4 4
2 2

1/ 2 1/ 22 22 2 1 1rt
g loaded g loaded g g

L f L fL LR
Q Q v v

π δ π δπ π
λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥= − + + = − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

 

The total round-trip reflectivity Rrt of the FEL resonator was calculated in the 

present work based on Eq.(3.36) and direct measurement of the FWHM linewidth δf1/2 

of the resonant peaks. This linewidth  was obtained from measurement of the power 

spectral reflection pattern. 

 

 

3.5.4 Determination of the coupling transmission coefficient from 

measured spectral reflection pattern 

 

 As we have shown, a measurement of the resonator linewidth δf1/2 (or 

Q=f0/δf1/2) determines completely the round-trip parameter 1 2rtR R Rτ 2= . However, it 

does not enable the determination of the three reflectivity factors separately, and in 

particular of R1. This parameter is of interest, because it can be used to calculate the 

coupling mirror transmission coefficient, which is given (assuming zero losses in the 

mirror) by: 
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(3.37)1 11T R= −  

 

 A possible way to determine the parameter R1 in addition to Rrt is to match the 

entire theoretical reflection pattern given by Eq.( 3.14) and particularly the extreme 

points Eqs.(3.18)-(3.19) to the measured reflection comb pattern. The expressions for 

the reflection pattern and its extreme points are rewritten here in a revealing way in 

terms of only two parameters R1 and Rrt: 

 

(3.38)( )( )
( ) ( )

1 1 1
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1 4 sin
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rt rt

R R R R

R R δ

− −
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− + /2
 

 

 

 

(3.39)
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 This technique was difficult to employ (in our case) because of the difficulty in 

measuring the reflection pattern (due to attenuation and parasitic reflections in the 

probing transmission line (Figs.3.5, 3.6), and because the dip of the function Γmin/Γmax 

is quite shallow if one is far from the “critical coupling” condition 1 rtR R= ). 

 If one could measure the coupling mirror reflection coefficient R1 independently 

and vary it in a wide range, then one could determine the internal round-trip reflectivity 

(namely, the reflectivity when R1=1): 

 

(3.40)int 2R R τ 2=  

 

and, consequently, the internal loss factor: 
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(3.41)int int1L R= −  

 

 This can be done by measuring Rrt for a large range of R1 which would effect 

significantly δf1/2, and then determine Rint by extrapolation of the data to 1 1R → . 

 If R1 could be varied in a wide range, then one could independently determinate 

R1 and Rrt (and consequently Rint). This can be done by successive measurements of 

Γmin (3.15) for different R1. In particular, determination of Rint is attained at the critical 

coupling condition: 

 

(3.42)1 intrtR R R= =  

 

for which the reflection coefficient is null: Γmin = 0. 

 It is now proper to refer back to the lumped circuit model, and to check to what 

extent is the expression (3.2)   valid in view of the more accurate optical model results: 

 

(3.2)  
0

1 1 1

loaded extQ Q Q
= +  

 

 In the limit of high Q (low losses), Eq.(3.36) can be expanded to first order in L
Q

π
λ

, 

resulting in a linear relation between 1/Q and (1-Rrt). In particular:  

 

(3.43)11
8 /

rt

loaded

R
Q Lπ λ

−
= . 

 

This expression is valid only if: 

 

(3.44)( )2 / 1 1 1
4 rt

loaded

LC R
Q
π λ

= = − << . 
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 In this limit the multiplicative relation between Rint = R2τ2 and Rex = R1 can be 

written as an additive relation: 

 

 

(3.45)

( ) ( )

( ) ( )

int int

int

1 1 1 1 1 1 1

1 1

rt ext ext

ext

R R R R R

R R

− = − = − − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

≈ − + −
. 

 

and consequently 

 

(3.46)
int

1 1 1

loaded extQ Q Q
= + . 

 

where   

 

(3.47)int

int

1 11 1;      .
8 / 8 /

ext

ext

R R
Q L Q Lπ λ π λ

− −
= = . 

 

 For critical coupling condition the exact expression Rint = Rext reduces (see 

Eq.(3.47).) to the expression  Qint = Qext, which is correct only for low losses. 

 We therefore conclude that use of the lumped circuit model (Eq.(3.43)) for 

determination of the parameters Rint and Rext (Eqs.(3.47)) is valid only if special care is 

taken to satisfy condition (3.44). 
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3.5.5  Adaptation of the Fabri-Perot model to the experimental 

setup 
 

 A definition of round-trip resonator reflectivity for a model of several 

Fabri-Perot resonators in series including attenuation due to internal surfaces 

imperfections and due to local losses at different points, is given by: 

 

(3.48)....TTTRRR 32121rt ⋅⋅⋅⋅=  

 

 

Note that Ti is the one-way transmission attenuation factor of an electromagnetic 

(EM) field pattern corresponding to the TE01 mode only. Local reflections and 

excitation of EM fields in higher order waveguide modes are considered as losses. For 

the FEL resonator investigated, the local losses in the bend region, for instance, can be 

included in the total reflectivity as follows: 

 

(3.49)
24

21 bend
l

rt TeRRR α−=  

 

 

Here Tbend also corresponds only to attenuation of the field pattern that is used 

eventually to reconstruct the TE01 mode. Other field components generated by 

diffraction at the bend, as higher order modes, are considered as losses. 

 Due to impedance mismatches between the RF source and the feed line before 

the resonator, reflections in the section between '
1R  and '

2R  (Fig. 3.18) may be treated 

as occurring in a low-Q FP interferometer with almost transparent mirrors. 
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Fig. 3.18 Measurement transmission line terminated by a RF source and by resonator 

cavity at each end respectively. 

 

 

  We consider two Fabri-Perot interferometers in series assembled into a unified 

system with one common mirror between them (Fig. 3.19). This scheme describes the 

typical setup for reflection coefficient measurement. 

 
Fig. 3.19 Two Fabri-Perot interferometers in serial. 

 

The first two mirrors r1 and r2 of Fig.3.19 are part of a complex transmission 

line from the RF generator to the reflecting grids before entrance to the resonator. This 

system includes two calibrated detectors, a mode exciter which transforms the TE10 

mode of the rectangular waveguide to the desired mode of the corrugated cylindrical 
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waveguide; it also includes a parabolic mirror that provides matching between the 

output of the resonator and the transmission line separated from it by free space. 

The second pair of mirrors are part of the FEL resonator. According to the 

definition above, the letters with apostrophe refers to the FP #2 ( FEL resonator ) and 

letters without  apostrophe are related to FP #1 (entire transmission line ). To combine 

these two FP resonators in an appropriate model, we assume that: 

o The rear mirror of the FP#2 has a reflection coefficient r’2=1 therefore the whole 

incident energy is reflected back. 

o Two resonators can be joined by eliminating the gap between them: Lgap=0. 

o We define r2=0 opening the first resonator and we terminate it by the second 

resonator. Therefore we use actually three mirrors only: r1, r’1, and r’2. The 

mirror r’1 is common to both FP resonators. 

o For consistency of boundary conditions we also put b2=a’1 and a2=b’1. 

 

We can measure directly the reflection coefficient Γ = b1/a1, experimentally and 

compare it with the theoretical curve. Taking into account the symmetry properties 

(duality) of the scattering matrix s12=s21, we get: 

                                     

 

(3.50)

2 '
12 11

11 '
22 111

s ss
s s

Γ = +
−  

 

 

An additional verification of the approximation used for obtaining round-trip 

reflectivity was made by applying the model of several FP interferometers in series as 

described early above. The reflection pattern for two FP interferometers in series 

obtained from Eq.(3.50) was compared with the measured reflectivity pattern. For each 

waveguide section of the resonator and for its feed line differing appropriate 

propagation constants and actual values of mirrors reflectivity were used. The result is 

Rrt=52 % of round-trip reflectivity calculated by Eq.(3.49). There is good agreement 

between the simulation and the Lorenzian approximation used above. Comparison of 
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theoretical curves for our parameters and the measured reflectivity data is shown in 

Fig.3.20: 

 

 
 

Fig.3.20 Reflectivity of two FP interferometers in series. 

 

 

 

3.5.6 Operation of the Fabri-Perot resonator in the oscillation   

regime of the FEL 
 

Inspection of Eq. (3.38) reveals that it is easy to generalize this expression so as 

to make it applicable for the case where we measure the reflection from the resonator in 

the presence of FEL gain G. This can be of interest in FEL development as a way for 

determine both the resonator losses (or round-trip reflectivity Rrt ) and the FEL gain 

from the measured reflectivity pattern below lasing condition, namely RrtG < 1. 
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The reflectivity expression in the presence of gain can be derived 

straightforwardly by substituting RrtG instead of Rrt in Eq. (3.38): 

 

 

 

(3.51)
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Accordingly to Eq.(3.39) the minimum reflection condition is: 

 

 

(3.52)

( )
( ) πδ mfor

RGR

GRR

rt

rt 21

1 1
2

2

1
min =

−

−
=Γ  

 

 

For RrtG = 1 power accumulates in the resonator without an input signal (the 

resonator becomes self-excited). This regime of operation is also called the oscillation 

regime. As the FEL gain parameter G is increased, internal losses of the resonator are 

“compensated” until the oscillation condition G > 1/Rrt is satisfied. Several curves of 

reflected power at the resonant frequency for the various values of gain G are shown in 

Fig. 3.21 : 
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Fig. 3.21 Resonant peak of reflected power for several gain values for parameters 

Rrt=0.5, R1=0.98. 

 

 

It can be seen in this figure that a critical coupling condition near 100GHz is 

reached for G = 1. Up to the point of critical coupling the measured dip of the reflected 

power increases (!) as the gain is increased. When the gain increases beyond the critical 

coupling point the dip becomes smaller. It then turns into a peak (G = 1.965), and 

explodes when G = 1/Rrt = 2. Measurement of the power spectral reflection pattern 

while passing current through the FEL, can be a way for measuring the FEL gain before 

oscillation threshold. However, this requires being able to measure Rrt. 
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Chapter 4 
 

Measurement of round-trip reflectivity 

 

 

4.1 Introduction 
 

Two procedures which I used in the laboratory for measurement of the round-trip 

reflectivity of the resonator are described in this chapter. After installation of one resonator 

into the FEL system, a duplicate resonator was assembled in a separate laboratory in order 

to enable a concurrent experimental investigation of the resonator system outside the FEL 

tank. Firstly the round-trip reflectivity of this duplicate resonator was measured using the 

specially designed remote-controlled motorized 3-grid reflector described in the previous 

chapter. In a second experiment the round-trip reflectivity of the resonator installed in the 

laser tank was measured using excitation through a parabolic off-axis mirror. In both 

experiments, the reflected signal from the excited resonator cavity was measured directly 

and the round trip reflectivity was calculated according to the theory presented in the 

previous subchapter. 

 

 

 

 

 

 

 

 



Chapter 4     Measurement of round-trip reflectivity 

 - 105 -

4.1.1 First experiment: measurements on the duplicate resonator 

system 
 

 The measurement setup is shown in Fig.4.1. It consists of two main parts. In 

the shorted resonator system, the bent reflector was equipped with two remote-

controlled stepped motors, which can cause the reflector grids system to be moved 

in two planes. Motion of the grid system along the z-axis of the resonator changes 

the length of the resonator cavity and allows fine-tuning the resonator to a desired 

frequency. Rotation of the grid system in the x-y plane allows continuous fine 

variation of the coupling between the cavity and the excitation system so that the 

desired operation regime of the resonator is achieved (critical coupling for 

example). The RF excitation section was assembled from a feed horn mode exciter 

with an aperture that provides excitation of a mode, which is the operating mode. 
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      (b) 

 

Fig.4.1 (a) Experimental setup for measurement of the resonator, excited by an 

appropriate aperture: setup diagram; (b) photograph of the experimental setup. 

 

 

The measured reflected signal patterns for various coupling coefficients (different 

polarization angle θ of the central grid) are shown in Fig. 4.2 (a). 

Stronger coupling deepens the absorption resonant peaks. The deepest peaks are 

obtained for the critical coupling condition; the condition for which the impedance of the 

cavity is fully matched to the external circuit impedance.  

The effect of the longitudinal shift of the coupler mirror (change of the length of the 

cavity) is shown of Fig. 4.2 (c). It demonstrates the possibility of a frequency shift in a 
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longitudinal mode (resonant peaks at different coupler positions along the z-axis of the 

resonator). 
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Fig.4.2 (a) Dependence of the reflection pattern of the resonator on the central grid 

angle in the coupler; (b) zoom on a single resonant peak; (c) frequency shift 

of the resonant peak for the different longitudinal coupler positions. 

 

 

 

4.1.2  Second experiment: reflection measurements the resonator    

installed in the FEL system 

 
 In these experiments the resonator was excited through a 50 cm long section 

of a corrugated cylindrical waveguide (see Fig.3.5 (b)). A specially made mode 

exciter connects this waveguide to the standard W-band waveguide of the Scalar 

Network Analyzer (SNA). The mode exciter is designed so as to excite in the 
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corrugated waveguide only the fundamental linearly polarized EH11 "improper" 

mode. This mode has a profile which is very close to that of the free space TEM00 

linearly polarized Gaussian mode. The Gaussian mode is excited at the waveguide 

end with an optical coupling efficiency of 97%. This Gaussian mode is then 

focused and injected into the resonator cavity through an off-axis parabolic mirror 

which was designed and positioned to generate a Gaussian beam waist onto the 

resonator 3-grid coupler as shown in Fig. 4.3: 
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Fig. 4.3 Setup for resonator reflectivity measurement inside the FEL tank. 

 

 

 

 The coupling coefficient of the polarizing grids mirror was controlled by the angle 

of the middle polarizing grid (see sub-chapter 3.5) and could be varied within a wide range 
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by manually changing the angle in the range 0…to 50 degree in steps of 5 degrees. The 

measured reflection coefficient from the real resonator for several coupler grid angle values 

is shown in Fig. 4.4: 
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Fig. 4.4  Reflection from the resonator cavity measured for different coupling 

coefficients: (a) In a wide frequency range; (b) blow-up of a single   

resonant longitudinal mode dip of the resonator in Fig. 4.4(a). 

 

 

As shown in Fig. 4.4, the resonant peaks ride on a “parasitic”, “low-frequency” 

envelope due to the high-loss transmission line section preceding the resonator. 

The subsequent analysis of the measured data, obtained in both of the experiments 

described above, includes extraction of the deconvolved resonance dips from the reflection 

pattern and evaluation of the Q-factor and round-trip reflectivity parameter of the resonator 

in a wide frequency range around 100 GHz. 
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4.2 Analysis of measured data  

 

According to the theory detailed in the subchapter 3.6, the algorithm of the 

round trip reflectivity is based on measurement of the reflection coefficient resonance curve 

and uses “optical” formulation. The reflection coefficient of the asymmetric Fabri-Perot 

resonator is (Eq.(3.60)): 
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 According to Eqs.(3.36) - (3.37), Rrt can be calculated from 
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or directly in terms of the parameter δf1/2: 
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 Because of the presence of a “parasitic pattern” in the measured reflectivity 

data and because of its frequency dependence, the procedure for determination of 

FWHM (δf1/2) described in section 3.6.1 is used. To reduce errors using that 

procedure, we match the measured resonant dip pattern to a Lorenzian curve: 
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The notation used in Eq. (4.4) is described in Fig. 4.5: 
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Fig. 4.5 The Lorenz curve approximation: y0 – off-set of Lorenzian curve; 

 xc,yc – coordinates of the resonant maxima; ΔfFWHM = δf1/2 = w – width of the 

resonance peak at -3dB level (yc-y0)/2; 
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 In order to match the dip patterns of the exact Fabry-Perot comb (Eq.(3.17)) to a 

Lorenzian curve (at least in the frequency range 0 1/ 2f f fδ− < ) it is necessary to satisfy: 

 

(4.5) 
__

1/ 2 1/ 2
2 2sin 1l lC f f
c c
π πδ δ⎛ ⎞= ≈⎜ ⎟

⎝ ⎠
 

 

or, in terms of QL, 
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Q Q
π π
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In terms of the optical parameter of the Finess, this inequality states F π  which usually 

is easily satisfied for good quality resonators. 

For the parameters of our resonator system and for a typical value δf1/2 ≈ 10 MHz 

we get: 

 

(4.7) 
__

1/ 2
2 0.314 1lC f
c
π δ≈ =  

 

 

which justifies the Lorenzian curve approximation. 

In Fig.4.6 we plot the parameter 
_
C  vs. the exact dependence of the FWHM 

frequency with δf1/2 of a FP interferometer resonant pattern (first equality in Eq.(4.6)). For 

comparison we plot also the approximate dependence (second equality in Eq.(4.6)). 

Evidently, the approximation is very good for δf1/2 = 10MHz.  
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Fig.4.6  Exact dependence of the C  parameter (red) on the FWHM frequency width δf1/2  

of the FP resonator  and the approximation of Eq.4.6 (green). 

 

 

 

In both experiments we used the curve fitting procedure to evaluate the measured 

data. The typical outputs using this procedure are shown in the following figures: 
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Fig. 4.7 An example of the Lorenz approximation curve-fitting procedure for 

particular resonance peak. 

 

 

 In Fig.4.8 the experimental results are indicated by the points for various 

angles of coupler grid as given in the legend in the lower left-hand corner. The 

solid curves were obtained by use of the curve-fitting computer procedure.  An 

example of the results of the Lorenzian curve-fitting procedure for a 15 degrees 

grid angle is given in table 4.1. 
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Fig. 4.8 Quality of Lorenzian fit approximation. The single measured resonance 

peak for the different coupling conditions (different coupler grid angles). 

 

  

 

Lorentzian fit to 15 degree: 

 

Tab. 4.1 An example of the Origin curve-fitting procedure output. 

  

  

 The loaded Q-factor was calculated for several resonant peaks near 100 

GHz. The round trip reflectivity was calculated according to Eq.(4.8). Fig. 4.9 

Center, GHz Width, GHz Offset, a.u. Height, a.u. Qloaded 

99.602 0.0094 0.0038 -0.053 10600 
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demonstrates that when the polarization grid angle is smaller, the transmission of the grids 

coupling mirror is decreased and, consequently, the loaded Q-factor (total round-trip 

reflectivity) tends to its limiting value – the unloaded Q factor Q0 and the measured round-

trip reflectivity Rrt ends to the internal reflectivity factor Rint (the round-trip reflectivity for 

a perfectly reflecting grids) : 
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Fig. 4.9 Total round-trip reflectivity of the resonator calculated for a typical 

resonant peak: (a) inside the FEL tank; (b) in the laboratory experiment. 
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Chapter 5  
 
Conclusions 

 
 
 Estimation of FEL resonator losses using Matlab simulation predict about 

50 % of internal resonator loss as described in Chapter 2. Since a parallel RLC 

resonant circuit model is applicable only for a single mode cavity, for the 

multimode FEL resonator it is essential to use a quasi-optical model of a FP 

interferometer. The results of the measured and calculated round trip reflectivity 

parameters of 3 longitudinal resonator modes near 100 GHz for the known coupling 

coefficient (grids mirror reflectivity R1) are: 

 

freq.,f0 
GHz 

(Δf)FWHM 
MHz 

Qloaded Rrt 
 % 

Ltot 
 % 

R1  
% 

Linternal  
% 

99.906 10.1 10194 54 46 98 45 
100 10.0 10000 53 47 98 46 
100.1 10.0 10010 53 47 98 46 
 

Tab.5.1 Measured and calculated round trip reflectivity parameters. 

 

  The error in round-trip reflectivity calculations is about 5 % and consists 

mainly of errors in measurement of the FWHM, of the recorded Fabri-Perot 

resonator peaks and an error in the Lorenzian function curve-fitting procedure.  

 The obtained round-trip losses of the resonator are relatively high and 

correspond to operating the FEL near oscillator threshold. The losses are not 
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distributed uniformly over the resonator length. Their main contribution to the 

round-trip losses is in the bend region of the splitter. 

 As a consequence of this work, and the consistent results of measurement 

and calculation of the resonator parameters, the FEL group has concluded to 

modify the structure of the resonator in order to decrease the round-trip losses and 

assure attainment of the oscillation threshold condition. The modification consisted of 

insertion of a low-transmission grid mirror before the bend of the Talbot reflector, and so 

removes this lossy section from the resonator. This grid is shown in Fig.5.1  as a yellow 

block.  A more detailed description of the resonator modification and of the grid 

characterization may be found in [11]. 

 

 
 
Fig. 5.1  Modified FEL resonator. 
 

Polarizing grids
Polarizing grids

Pin Pout

P1

P1Tbend

R1

R2



10/9/2005 00:01:00chapter_5_final.doc                                                                        
Conclusions 

 - 122 -

 
Using the above described procedure of Lorenzian multi-peak analysis, the 

following results were obtained for the modified resonator: 

 

 

freq.,f0 
GHz 

(Δf)FWHM 
MHz 

Qloaded Rrt 
% 

Ltot 
 % 

R1  
% 

Linternal 
% 

99.938 7.9 12650 65 35 92 29 
100.051 6.7 14933 69 31 92 25 
 

Tab.5.2 Measured and calculated round trip reflectivity parameters after modification. 

 

 Curve-fitting using the multi-peak analysis procedure of the mentioned 

resonant peaks before and after resonator modification are shown in Fig.5.2: 
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     (b) 

Fig. 5.2  Multi-peak analysis of resonant peaks before (a) and after (b) resonator 

modification. 

 

 The oscillation threshold gain Gth relates to the round trip reflectivity Rrt 

by [11] : 

 

(5.1) 
rt

th R
1G =  

 

In the low-gain regime, according to FEL theory, the oscillation threshold current is related 

to Rrt by: 
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Thus the ratio of threshold currents before and after modification is: 

 

(5.3) 
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for Rrt1 = 53% (before) and Rrt2 = 65% (after) values of the round-trip reflectivity.  

 

The following table gives an estimate of the improvement in threshold gain and the 

corresponding reduction in the (unknown) threshold current in three possible examples of 

Ith:  

 

  
Before 
modification 

After 
modification

      
Rrt 0.53 0.65 
Gth 1.89 1.54 
Gth-1 89 % 54 % 
Ith, [A] 1.5 0.91 
  2 1.21 
  2.5 1.52 

 

Tab.5.3 Threshold gain and the corresponding threshold current values. 

 



10/9/2005 00:01:00chapter_5_final.doc                                                                        
Conclusions 

 - 125 -

Since the current available to the experimenters was below 2A, it seems likely that the 

modification of the resonator based on our measurements and calculation enabled the 

attainment of lasing in the Israel FEL [11]. 
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א  

 תקציר

  

 100GHzבעבודת תיזה זו פיתחנו וחקרנו את המאפיינים של מהוד ייחודי לתחום תדרים של 

. הישראלי )Free Electron Laser - FEL(המיועד לשמש בהתקן לייזר האלקטרונים החופשיים 

כך , )בעל הפסדים פנימיים נמוכים(באופן כללי נדרש שהתקן מהוד הלייזר יהיה באיכות גבוהה 

בכדי לאפשר התקדמות אלומת .  סף הלזירה הדרוש לפעולה יעילה של התקן הלייזרשיושג

  ועל מנת להבטיח בו בזמן )כולל כניסה ויציאה דרך חורים במהוד (אלקטרונים לאורך ציר המהוד

המהוד כולל מספר מקטעים  ) 100GHzסביב  (W-band - גבוה בתדרי ה(Q)קבלת גורם איכות 

 השגת חשובים לצורך ) למעבר שלםאו ההפסדים(אפיון טיב המהוד . יםלייחודיים של מוליכי ג

  .FEL -פעולת ה

והשווינו את תוצאות המדידות למודל , במסגרת עבודת המחקר מדדנו את מאפייני המהוד

שבנוי משני לוחות , פילוג השדות בתוך המרכיב העיקרי של המהוד. אנליטי ולחישוב נומרי

, )Talbot reflector ( ובתוך מחזיר טלבוט) Curved Parallel Plates - CPP(עקמומיים מקבילים 

  .נותחו אנליטית, המאפשר להפריד בין אלומת האלקטרונים וקרינת הלייזר

הפסדים אוהמיים והפסדי דיפרקציה ,  בין מוליכי גלים בעלי שטח חתך שונהאופניםתאום 

כן בעבודה זו מתואר מודל אופטי של מהוד -כמו . ”Matlab“ -  באמצעות תוכנית סימולציה ב,נחקר

FELטכניקת . )כלל אפשרות להפסדים גדולים (פרו אסימטרי עם הפסדים- כאינטרפרומטר פברי

, FEL- מהוד ה מקדם ההחזרה במעבר שלם בתוךמדידת לצורך שפותחה ויושמה, המדידה

ן צימוד התק. מהוד של הספקטרום ההחזרה של התהודההתבססה על מדידה ישירה של רוחב פסי 

  . ]6[נחקר ודווח , יוצר, תוכנן לשמש במהוד פותחרשתי ש-תלת

 התקניכולל  (מהוד  במסלול שלם בתוך ההפסדי המעבר: עיקרי הישגי המחקר שמוצג להלן

לצורך , שינוי מבנה המהודבעקבות הבחנה זאת נעשה . 50% -  כחושבו ונמצאו,  נמדדו)הצימוד

 השגת ואפשר 35% הביא להורדת ההפסדים הפנימיים לכדי השינוי. יםהקטנת ההפסדים הגבוה

בספטמבר ) בתצורת מהוד המאפשרת צימוד קרינה חיצוני(הישראלי  FEL - של ה ראשונהלזירה

2003 ]11[.  
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