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Abstract 

In this work I investigate the collective microdynamics in charged particle 

beams, particularly the stochastic microdynamics (noise development) at optical 

frequencies in modern high quality high current electron beams, used in Free 

Electron Lasers (FEL). I also analyze the generation of incoherent radiation in 

FELs, taking into consideration the stochastic microdynamics of noise 

development in the electron beam before it is injected into the FEL and within it. 

 The main assertion of this thesis is that electron beam noise can be 

controlled, even at optical frequencies, by adjusting the e-beam parameters, their 

drift length and use of dispersive magnetic elements. In particular, contrary to 

common belief, electron beam current shot-noise can be suppressed by collective 

effects below the classical shot noise limit of Poisson statistics. Since current-shot 

noise is the source of incoherent spontaneous radiation emission and self amplified 

spontaneous emission (SASE), the proposed scheme offers a way to control and 

suppress the radiation noise (and thus enhance the coherence) of seed-injected 

FELs.  

 The formulation used to establish the noise suppression theory is based on a 

one- dimensional linear solution of the beam plasma equations, combined with a 

modal excitation solution of Maxwell’s equations. The stochastic signal 

formulation is based on the extension to relativistic beam energies and optical 

frequencies of the early microwave vacuum tube theory of Haus and others. The 

analysis of the collective microdynamics in the beam is a distributed circuit 

(“transmission line”) model, which contrary to the short interaction length model 

used in conventional analysis of microbunching instability, is valid for multiple 

plasma wave oscillation lengths, and specifically for quarter plasma oscillation, 

where maximum noise suppression takes place in a free drifting beam. 

 The validity limits of the fluid plasma analysis and the noise suppression 

scheme are delineated. Necessary conditions of initial current-noise dominance 

(over velocity noise), ballistic thermal electrons phase spread neglect, and Landau 

damping neglect are identified and their relations are established. Finally, the 

theory is used to identify the technical and fundamental limits of coherence of 

short wavelength FELs analogously to the Schawlow-Towns limit for atomic 

lasers. It is found that after shot-noise suppression, the radiation noise in FEL is 

limited by the beam axial velocity spread, and fundamentally limited in the X-Ray 

regime by quantum noise. 

 



 iii 

 

Parts of this work are published in the following refereed journals: 

1. A. Gover, E. Dyunin, Y. Lurie, Y.Pinhasi, M.V. Krongauz, “Superradiant and 

stimulated-superradiant emission in prebunched electron-beam II. Radiation 

enhancement schemes” Physical Review Special Topics-Accelerators and Beams, 

8, p.030702 (2005) 

2. E. Dyunin, A.Gover, “The general velocity and current modulation linear 

transfer matrix of FEL and control over SASE power in the collective regime” 

Nucl. Instrum. Methods Phys. Res. A, 593, p.49 (2008)  

3. A. Gover, E. Dyunin, “Collective-Interaction Control and Reduction of Optical 

Frequency Shot Noise in Charged-Particle Beams” Phys. Rev. Lett. 102, p.154801 

(2009) 

4. A. Gover, E. Dyunin, “Coherence limits of free electron lasers” IEEE J. 

Quantum Electron., 46, p. 1511 (2010) 

5. A. Nause, E. Dyunin, A. Gover, “Optical frequency shot-noise suppression in 

electron beams: three-dimensional analysis” J. Appl. Phys., 107, p.103101 (2010) 

6. A.Gover, E.Dyunin, T.Duchovni, A.Nause, “Collective microdynamics and 

noise suppression in dispersive electron beam transport” Physics of Plasmas, 18, 

p.123102 (2011) 

7. A. Gover, A. Nause, E. Dyunin, M. Fedurin, “Beating the shot-noise limit” 

Nature Physics, 8, p.877 (2012) 

 

The following were presented in international conferences: 

 

1. Avi Gover, Egor Dyunin, “Coherence of e-beam radiation sources and FELs – A 

theoretical overview”, Proceedings of FEL 2006, BESSY, Berlin, Germany, 

MOAAU01 

2. A. Gover, E. Dyunin, “FEL coherence below shot-noise limit and its 

fundamental limits”, Proceedings of FEL08, Gyeongju, Korea MOCAU02 

3. A. Nause, E. Dyunin, A. Gover, “Shot-noise control and reduction by collective 

Coulomb interactions: 3D simulations evidence”, Proceedings of FEL2009, 

Liverpool, UK, MOPC01 

4. A. Gover, E. Dyunin, “Sub-radiance and the coherence limits of FEL”, 

Proceedings of FEL2010, Malmö, Sweden, MOOC3 



 iv 

 

Table of Contents 
Acknowledgments...................................................................................................... i 
Abstract ..................................................................................................................... ii 
Table of Contents ..................................................................................................... iv 

List of Symbols ........................................................................................................ vi 
List of Abbreviations .............................................................................................. xii 
List of Figures ........................................................................................................ xiv 
1 Introduction ....................................................................................................... 1 
2 Small signal propagation of space-charge wave on an electron beam in a non-

dissipative transport section .................................................................................... 13 
2.1 General formulation ........................................................................................... 13 

2.1.1 One dimensional model .......................................................................... 15 

2.1.2 Relativistic extension of Chu’s theorem ................................................. 18 
2.1.3 Small signal space-charge wave propagation on a finite cross section 

beam ................................................................................................................. 18 
2.2 The transfer matrix for a non-dissipative e-beam transport section ................... 23 

2.2.1 Properties of the general transfer matrix of a non-dissipative transport 

section ................................................................................................................. 23 

2.2.2 Uniform drift section............................................................................... 23 
2.2.3 Space charge interaction in an e-beam acceleration section ................... 24 

2.2.4 Dispersive section without space charge effects ..................................... 27 

2.2.5 Analysis of a dispersive section with space charge ................................ 29 

2.3 Collective microdynamics of noise in electron beams ....................................... 33 
2.3.1 Noise parameters at the cathode ............................................................. 33 

2.3.2 Collective microdynamics of e-beam noise in a non-dissipative free 

drift section ........................................................................................................... 36 
2.3.3 Interpreting the Coherent Optical Transition Radiation effect 

observed in LCLS ................................................................................................. 38 
2.4 Validity of the single Langmuir mode fluid plasma linear theory ..................... 43 

2.4.1 Ballistic electron phase spread condition ................................................ 43 
2.4.2 Landau damping condition ..................................................................... 44 
2.4.3 Space-charge dominated beam transport condition ................................ 45 

2.5 Landau damping and ballistic electron phase spread conditions in the 

context of noise suppression. ............................................................................................ 49 
3 Generation of coherent and incoherent radiation in FEL ................................ 52 

3.1 The general transfer matrix ................................................................................ 52 
3.2 The FEL transfer matrix ..................................................................................... 57 
3.3 High gain regime ................................................................................................ 60 
3.4 Generation of coherent radiation ........................................................................ 62 
3.5 Generation of incoherent radiation ..................................................................... 64 

3.6 Seed injected FEL .............................................................................................. 67 
4 The Coherence limits of FEL .......................................................................... 72 

4.1 Electron beam microdynamic and radiation noise development in a 

system consisting of a drift section followed by a wiggler ............................................... 72 
4.1.1 Suppressed radiation power still limited by shot-noise .......................... 80 

4.1.2 Suppressed radiation power limited by velocity noise ........................... 80 
4.1.3 The radiation quantum noise limit of FEL .............................................. 81 

4.2 Conclusions ........................................................................................................ 82 



 v 

Appendices .............................................................................................................. 84 
1. Vlasov equation .................................................................................................. 84 
2. Transformation from the kinetic equation to the moment equation ................... 88 
3. Symmetry properties of the transfer matrix ....................................................... 90 
4. The transfer matrix of an acceleration section ................................................... 93 

5. A new theorem for a sufficient condition for quarter plasma oscillation in 

free space e-beam transport ............................................................................................... 96 
6. Optical Transition Radiation ............................................................................ 101 
7. Spectral power density of radiation modes ...................................................... 103 
8. Landau damping in relativistic e-beams ........................................................... 106 

9. Derivatives of the Pierce equation roots ........................................................... 110 
10. The Radiation Noise Equivalent Power of an FEL considering the 

collective microdynamic process in a preceding e-beam drift section ........................... 113 
References ............................................................................................................. 115 

  



 vi 

List of Symbols 

A vector potential 

A term of ABCD-transfer matrix 

A1 coefficient in the solution of the linear set of differential equations 

A2 coefficient in the solution of the linear set of differential equations 

Ae beam effective cross section 

Aem  electromagnetic wave effective cross section 

Ax x-component of the vector potential 

Ay y-component of the vector potential 

aw wiggler’s normalized transverse momentum amplitude 

a  normalized transverse momentum parameter 

B external magnetic field 

B term of ABCD-transfer matrix 

B
~

 magnetic field in phasor relation 

B1 coefficient in the solution of the linear set of differential equations 

B2 coefficient in the solution of the linear set of differential equations 

Bself self magnetic field of the beam 

Btot total magnetic field 

Bw  amplitude of the wiggler magnetic field 

C term of ABCD-transfer matrix 

qC
~

  slow-varying amplitude of the electromagnetic mode q in phasor relation 

c  speed of light in vacuum 

D term of ABCD-transfer matrix 

E0 time-averaged (DC) electric field 

E1 time- varying electric field 

E
~

 electric field in phasor relation 

E


  Fourier transform of the electric field 

Ekin kinetic energy of electron beam 

pmE
~

  ponderomotive field in the phasor relation 

pmE
~̂

  Laplace transform of phasor relation of ponderomotive force 

qE
~

  transversal profile of the electromagnetic mode q 

Erad  traveling wave spectral radiation fields 

scE
~

 space charge field in phasor relation 

scE
~̂

  Laplace transform of phasor relation of space charge field 

Etot total electric field 

e  elementary charge 
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1 Introduction 

Free Electron Laser (FEL) is a source of high power coherent radiation. 

The FEL operates as a converter of the kinetic energy of accelerated electrons to 

radiation. The free electrons (emitted from a thermionic or photo-cathode electron 

gun) are accelerated in an accelerator up to a relativistic energy. It is well known 

that an electron which moves uniformly in a free space does not radiate, because 

frequency () and wavenumber (k) of any electromagnetic wave are not 

synchronous to the electron. The synchronism is done by different mechanisms of 

interaction between electromagnetic fields and high energy accelerated electron 

beams in electron tubes, synchrotrons, and Free Electron Lasers (FELs).  

In the case of FEL, the electrons are passed through a periodical external 

field (magnetic, electric or electromagnetic) and efficiently radiate electromagnetic 

waves (Figure 1-1). The FEL is a coherent radiation device in which the energy of 

a relativistic electron beam is partially converted to electromagnetic wave energy. 

The radiation is emitted at a wavelength (), specified by a synchronism condition 

between the electromagnetic wave, the electron beam energy and the parameters of 

a periodic magnetic field structure (wiggler or undulator) in which it propagates: 

the period of the wiggler w and the wiggler strength aw (see Figure 1-2). The 

wiggler strength parameter aw will be defined in Chapter 3. 

Comprehensive reviews of the physics and technology of FELs can be 

found in [1, 2, 3, 4, 5, 6]. Figure 1-2 shows the worldwide radiation achievements 

based on FEL technologies as of 2002 [7, 8]. The figure shows the radiation 

wavelength as a function of accelerating energy. The experimental data in this 

figure shows the inverse proportion dependence of the radiation wavelength on the 

square of the acceleration energy. The wide spectral range (six orders of 

magnitude) of FEL devices and the wide tuning range of some of them are 

remarkable. Accelerators with energies of several megavolts can be used as 

coherent radiation source in the microwave range, millimeter wave, and sub-

millimeter (THz) wavelengths. Accelerators providing e-beams of tens of mega 

electron volts enable operation in the visible and infrared range. Use of 

accelerators in the range of Giga electron volts enables achievement of X- and UV- 

radiation in the front-line range up to 1 Å = 100 pm and beyond. Today there are 

no other useful coherent lasers in this range; FELs, developed in big research 

laboratories in the USA (LSLS-SLAC, Stanford), in Germany (DESY-Hamburg, 

BESSY-Berlin), and in Japan (SCSS, Spring 4), have already demonstrated 

radiation sources in the X-ray range with a brightness at least 6 orders of 

magnitude higher than the synchrotron radiation sources seen in Figure 1-3. 
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Figure 1-1 Scheme of Free Electron Laser (picture used from [9]). 

 

 

Figure 1-2 A graph of FEL radiation devices (world wide): radiation wavelength () vs. 

accelerator energy (Ekin). Taken from [1]. 
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Figure 1-3 A comparison of Synchrotron sources of X and UV radiation with 

FELs.  Brightness of FEL sources is 6 orders of magnitude greater. 
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The most impressive achievement so far in the field of FELs is the 

demonstration of a first X-ray laser ( = 1.5 Å) in LCLS in 2011 [10]. This 

achievement is expected to lead to most important scientific applications in 

biological and other sciences and fields [11, 12, 13, 14, 15]. In this dissertation, I 

develop the linear theory of coherent and incoherent radiation emission of FEL 

starting from first principles. The analysis is then used to study the dynamics of 

noise evolution in electron beams and its implication to the generation of 

incoherent radiation in FELs. This radiation noise sets limits on the coherence of 

FEL, if operated as a coherent laser. My analysis and study led to new 

understanding of the coherence limits of FEL devices, and to discovery of new 

ways for controlling the FEL noise and arriving to its fundamental coherence 

limits. 

The coherence of the radiation beam is one of the important parameters of 

any laser, and we expect that it would be important for FELs as well. Some early 

work has been done on the coherence of FEL oscillators [16], where coherence 

limits, similar to the Schawlow-Townes limit of conventional atomic lasers [17], 

were identified. However, the main interest in the FEL scientific field is currently 

in high gain FEL amplifiers, because they can operate at short wavelengths, down 

to X-rays. Most of these FELs have been operated in a Self Amplified Spontaneous 

Emission (SASE) mode [18, 19, 20]. Namely, they amplify the incoherent 

radiation noise generated by the e-beam noise. The reason has been the absence of 

coherent radiation X-ray sources to be amplified. On the other hand, construction 

of FEL oscillators in the X-ray regime has been difficult because of the lack of 

appropriate mirrors. Consequently, most of the present FELs in the X-UV and X-

ray regime are temporally incoherent. They are very bright because of their very 

high power and an effect of optical guiding [21, 22] that maintains high spatial 

coherence of the radiation beam (Figure 1-3). However, now there is also great 

interest in turning these exceptional X-UV FEL radiation sources into temporally 

coherent sources with unprecedented spectral brightness. 

With the recent striking development of high power ultra-short pulsed 

solid-state lasers, new schemes for coherent radiation sources in the X-UV regime 

have emerged. These can now be used as coherent signal sources (seed) in high 

gain FEL amplifiers. In recent years, a number of coherent seeding schemes have 

been developed in order to overcome the shot-noise (SASE) coherence limitation 

of FELs in the X-UV regime. These include a scheme of injection of X-UV seed 

radiation, produced by High Harmonic Generation (HHG) in gas, using an intense 

femtoSecond laser beam [23, 24]; and a scheme for pre-bunching the e-beam by 

consecutive Harmonic Generation and High Gain amplification (HGHG) [25] in 

wiggler structures. In these schemes, coherence is expected to be achieved if the 

injected coherent harmonic signal (of radiation or current modulation) is strong 

enough to significantly exceed the shot-noise equivalent-input-radiation power 

(SASE) [26]. 

HGHG pre-bunching has been demonstrated in the visible wavelength 

regime [24]. HHG coherent radiation injection into an FEL was demonstrated at a 
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wavelength of  = 49 nm in the Spring-8 FEL facility in Japan [23] and at 

 = 133 nm in SPARC, Italy [27]. In both of these coherent signal-injection 

schemes, it is difficult to produce an intense coherent injection signal which 

dominates the SASE radiation. This becomes harder at short wavelengths, as one 

gets closer to the desirable X-UV regime. 

In this dissertation, an extensive linear formulation for analyzing both 

coherent and incoherent radiation in FEL is developed. A large section of the work 

is dedicated to the dynamics of incoherent current fluctuations (noise) in the 

electron beam prior to injection into the FEL wiggler. This is important because 

the main source of radiation noise in FELs (SASE) is the e-beam shot-noise 

(Figure 1-4). The study of the collective interaction noise dynamics in electron 

beam transport enabled me, as part of our FEL research group, to propose in this 

dissertation new concepts for controlling and suppressing electron beam noise [28, 

29, 30, 31], as well as radiation noise [32, 33]. 

In this work I was highly inspired by the earlier work and theoretical 

formulation that was developed in the middle of the 20
th

 century in connection 

with microwave tubes (with non-relativistic beams) and is well presented in the 

books of J.R.Pierce and H.Haus [34, 35, 36], two of the a-vanguard leaders of this 

field. 

The formulation of signal propagation on an electron beam in microwave 

vacuum tubes was expressed in terms of an equivalent analog transmission line 

[37, 38]. Thus, the propagation of signals – either coherent or stochastic - on 

electron beam flow was described in terms of propagation of “current modulation” 

and “kinetic voltage modulation” waves in analogy to current and voltage signal 

propagation on electric transmission lines. As a result of such formulation, the 

transmission of the signals (current modulation and kinetic voltage modulation) on 

the e-beam can be presented on a Smith-chart [39] and be described in terms of 

“wave impedance”, “wave transducer”, etc.  

Using the transmission line model, an elegant mathematical formalism was 

developed by Haus and others to describe the propagation of coherent current and 

velocity (kinetic voltage) waves, and was then further extended by them to the case 

of stochastic wave propagation. This extension made it possible to understand the 

sources of noise in microwave tubes (TWT, klystron, etc.) and eventually to find 

ways to minimize them [40, 41]. 

The intrinsic limit of an electronic amplifier of gain G in the microwave 

regime has been considered to be the Nyquist noise [42] 

fTGkP ABout          1-1 

where kB is the Boltzmann constant, f the amplifier frequency bandwidth, and 

TA = 290
o
K is the ambient room temperature. This corresponds to a model in which 

the black-body radiation per a single transverse radiation mode:  
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Figure 1-4 Scheme of diferent sources of coherent and incoherent radiation in Free Electron 

Laser: beam current prebunching and beam noise (green); coherent seed signal and 

incoherent thermal radiation (red). The partially coherent output radiation signal is shown in 

blue. 
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fTkP ABin           1-2 

is injected into the RF-input of the amplifier. 

In practice, the output power of microwave tube amplifiers was always 

higher than the Nyquist limit, because the electron beam, which is injected into the 

tube, generates noise by itself. This noise originated from fluctuation in the beam 

current due to two random processes: the random timing of electrons emission 

from the cathode and the random velocity in which they are emitted from the hot 

cathode with kinetic energy spread cBc TkE   (where Tc is the hot cathode 

temperature). 

The noise of a practical amplifier is often characterized by the Noise 

Equivalent Power (PNEP) parameter, which is the equivalent input radiation noise 

power that would produce at the amplifier output the actual measured incoherent 

output radiation power (noise).  

 
G

P
P

noise

out
NEP          1-3 

Further, the quality of the amplifier as a low noise device was characterized 

in terms of the noise figure parameter F, which is the ratio between the total 

measured output power noise of the practical amplifier to the output of this same 

amplifier if it had no internal noise (e-beam related) contribution (except for the 

intrinsic Nyquist Radiation noise). In terms of the input noise equivalent power, 

this parameter is defined as [43] 

fTk

P

P

P
F

AB

NEP

in

NEP


         1-4 

This noise figure of merit always satisfies F > 1, where F = 1 corresponds to an 

ideal amplifier with no excess noise besides the intrinsic Nyquist noise. 

In the microwave tube art, it was found that usually F >> 1 and the major 

source of the excess amplifier noise is the shot-noise in the electron beam 

originating from current (or charge density) fluctuations due to random arrival of 

electrons into the amplifier tube. This noise is normally much larger than the 

velocity that originates from the random velocity of electrons emitted from a 

thermionic cathode with a finite energy spread Ec. 

Learning the dynamics of collective space charge interaction of current 

fluctuations in an electron beam that involve transfer of energy and development of 

statistical correlation between current noise and velocity noise, the microwave tube 

engineers and scientists found schemes to reduce the shot noise of the beam to a 

level in which the beam noise would be limited by the initially smaller velocity 

noise [44, 45]. Indeed, low noise microwave amplifiers were shown to be limited 

only by the cathode temperature with minimum noise figure as low a F ~ 6 dB.  

With the development of accelerator technology, a variety of radiation 

sources have been discovered and developed. These include synchrotron sources, 

Cerenkov radiation sources, Optical Transition Radiation, undulator radiation and 
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more. Some of these sources that are primarily spontaneous emission radiation 

sources, were also developed into stimulated emission devices – amplifiers and 

oscillators [46, 47, 48]. Because accelerator energies can be considerably higher 

(MeVs to tens of GeV) than the electron guns used in microwave tubes (keV to 

tens of keV), the spectral radiation range of these relativistic e-beam radiation 

sources is at much shorter wavelengths - from optical to X-Ray (see Figure 1-2). 

Consequently, the development of the technology and the theory of these devices 

were historically quite divorced from the earlier development of electron tubes, 

which were originally derived only for non-relativistic electron beams and for 

radiation in the microwave frequencies.  

The first works on undulator radiation using accelerator beams were based 

on spontaneous emission [49, 50, 51]. They were carried out without reference to 

the prior microwave tube discipline [52]. The first modern time optical frequency 

experiments of FEL stimulated emission devices, both amplifier [53] and oscillator 

[48], were operated in the low gain regime, and therefore their connection to the 

high gain microwave tube field was overseen. They were interpreted and analyzed 

in terms of laser physics theory [47]. In fact, the connection of FEL theory has 

become apparent as soon as it was recognized that the linear dynamics of all of 

these devices is described by the “Pierce cubic equation” [54, 55]. 

Just as in the theoretical treatment of coherent signal amplification in FELs, 

there is much to learn and benefit from the early theoretical formulation and 

analysis of noise processes in non-relativistic electron guns and electronic 

microwave tubes. Effects of optical frequency current fluctuation dynamics in 

transport of high quality (small energy spread and emittance) e-beams are now 

understood to be related to the corresponding e-beam noise processes in electron 

tubes. Processes, such as “Microbunching instabilities”, were discovered in 

transport of such high energy beams upon passage through energy-dispersive 

insertion devices (bending magnet, chicane). These turn out to be important issues 

affecting efficiency of beam transport and functionality of beam diagnostics. 

Substantial research is invested in this effect and a series of symposia is currently 

dedicated to it [56]. 

Accelerator physics linear transport formulation of single electron 

dynamics in magnetic elements has been used to describe the “microbunching 

instability” effect [24, 57, 58]. Its emergence has been related to a number of 

processes including Coherent Synchrotron Radiation (CSR) and wake-field 

interaction. The dominant contribution to this instability is related to a collective 

microdynamic process of Coulomb interaction between the electrons in the beam, 

exacerbated by the dispersion in the magnetic structures [59].  

While the common analytical approach to the microbunching dynamics is 

perturbative (assuming small space-charge microdynamic effect in the drift 

section), I analyze in this work the collective interaction process, using the 

microwave tube noise formulation of coupling between stochastic current 

modulation, and velocity modulation (longitudinal plasma oscillation) along the 

beam transport line. In this work I have extended some of the earlier formulation of 
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Haus, and employed it to transport and development of coherent and incoherent 

stochastic beam modulation and radiation processes in various relativistic beam 

transport lines (drift, acceleration, dispersive magnet sections), and in FEL. The 

extended formulation makes it possible to present in a unified model coherent 

radiation emission processes in FEL (low and high gain FELs, prebunched beam 

and superradiant FELs), as well as incoherent electron-beam noise processes 

(stochastic microbunching), and radiation noise processes (SASE). 

The main innovative contribution of this work is the discovery that 

collective interaction noise suppression processes can be employed, even at optical 

frequencies and in a relativistic electron beam, and consequently suggesting 

schemes for control and suppression of radiation noise (SASE) in FEL. These 

concepts were inspired by the earlier concepts of current noise and radiation noise 

suppression in microwave tubes, and I employed the extended microwave-tube 

formulation to analyze these processes and to determine the fundamental 

coherence limits of FELs. 

The hypothesis that noise control and suppression is possible in relativistic 

electron beams, more than four orders of magnitude energy than the beams in 

electronic tube guns, and at optical frequencies – seven orders of magnitude 

higher than the earlier microwave tube art - is not straightforward and it required 

derivation from first principles of a new formulation that is given in Chapter 2 of 

this dissertation. Also the further extension of the low noise microwave tubes 

concept to the idea of suppression of FEL radiation noise (SASE), at optical 

frequencies by controlling the e-beam noise, required a new detailed theoretical 

analysis corresponding to the very different operating regime of FELs, and it is 

presented in Chapter4. Indeed, the first theoretical claims of our group [28 - 33], 

faced some objections and controversy. However, most recently my theory for 

electron beam current noise suppression has received experimental confirmation 

in two independent experiments performed at optical frequencies: in an experiment 

of our group conducted by transport of an e-beam in a drift section [63], and an 

experiment in LCLS, conducted by transport of an e-beam in a dispersive section 

[64]. 

The relativistic formulation development in the present dissertation is based 

on analytical solution of the linearized fluid plasma equations (including space-

charge effect) for the electron beam, and on a modal expansion solution of 

Maxwell’s equations for the generation of radiation in the FEL wiggler. This 

provides a rigorous basis for the analysis of the problem of e-beam current and 

FEL radiation noise control and suppression.  

Our analysis of radiation noise (SASE) control and suppression [28, 29, 32, 

33], which is detailed in Chapters 3 and 4, is in current research interest in the field 

in connection to seed injection FELs, and in connection to determining the 

coherence limits of FEL. This radiation noise suppression process (suppression of 

spontaneous synchrotron undulator radiation or SASE emission from an undulator) 

has not yet been demonstrated experimentally in a FEL. Hopefully, the better 

understanding of the processes we helped to provide, and the recent demonstration 
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of optical frequency beam current noise suppression, will spur further research 

with the goal of demonstrating and controlling this SASE suppression effect, and 

determining its short wavelength limits of applicability. 

Putting the subject of radiation noise suppression in a wider scientific 

context, we point out that the somewhat unexpected effect of current noise 

suppression, which takes place due to collective interaction, is the demonstration of 

Sub-Poissonian particle number statistics, which is well known in the context of 

“photon squeezing” [60].  

Normally, the squared average of the current fluctuations of an electron 

beam, (
2

i


), with average current I0 is believed to be given by the classical shot-

noise formula (see Chapter 2.3.1., Eq. 2-113): 

feIi  0

2
 1-5 

This is often believed to be a fundamental limit, because it is a direct consequence 

of the Poisson statistics that governs the density distribution of a random ensemble 

of particles. However, as we show in this work, this limit can be surpassed if the 

particles are charged. In this case, their collective Coulomb interaction makes it 

possible to homogenize the beam charge density [29], and exhibit sub-Poisson 

density distribution and a consequent excision of the shot-noise limit (Eq. 1-5).  

The effect of radiation noise suppression can be related to the fundamental 

effect of Dicke’s sub-radiance [61], which corresponds to a process of suppression 

of spontaneous emission in an ensemble of atomic dipoles. The SASE radiation 

noise limits the coherence of FEL amplifiers, and its suppression may help 

approach the fundamental coherence limits of FELs as a laser [33, 26], similarly to 

the Schalow-Townes limit for the coherence of conventional lasers [17]. 

The electron beam noise suppression problem has received theoretical 

attention and analysis in parallel and follows our work and publications on the 

subject. Rosenzweig et al have referred to the possibility of noise suppression and 

charge homogenization in the context of a “crystalline beam” [62]. Ratner and 

Stupakov have presented a 1-D analysis of beam current suppression by means of a 

dispersive section using a disk-charge model of single particle interaction [29]. 

This follows a similar modeling of another proposed concept of narrow band e-

beam noise suppression effect using an FEL [63]. A more advanced 3-D 

formulation of microbunching analysis was introduced by Marinelli et al [64], 

using Vlasov equations (see Appendix 1) to extend and determine the limits of the 

cold beam microdynamic analysis due to Landau damping (in the transverse [65] 

and longitudinal [66] dimensions). The Landau damping effect, due to finite 

energy spread and emittance of the beam, would limit the validity of the fluid 

plasma analysis and the frequency range of the beam noise suppression process 

(see discussion in Appendix 8). 

In comparing this work to other formulations, I point out that the 

microwave tube terminology and parameterization that we use are somewhat 
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different from the accelerator physics terminology. In this connection, we point out 

that what is termed in accelerator physics, “energy or velocity microbunching 

modulation”, is equivalent to kinetic voltage modulation and kinetic voltage noise 

in microwave tube terminology. The concepts of “kinetic voltage” modulation and 

noise, that were defined by Chu in the nonrelativistic limit [67], is identical in the 

case of laminar flow to energy modulation and energy microbunching, normalized 

to voltage units (see discussion in Chapter 2). Our formulation extends the concept 

of kinetic voltage to describe relativistic longitudinal voltage modulation and 

fluctuations, so that it includes the contribution to the velocity noise (or the kinetic 

voltage noise) due to both energy spread and angular spread of the beam. 

Another distinction between the accelerator physics terminology and the 

microwave tube terminology that we use is in the definition of beam longitudinal 

space-charge (LSC) beam impedance [see for example 68]. This difference, which 

is discussed in Chapter 2, originates from the difference between the approximate 

“lumped circuit” approach, which is currently commonly used in connection to 

analysis of “microbunching instability”, as opposed to the more general 

“transmission line” model of longitudinal plasma wave interaction dynamics, that I 

use in the present formulation.  

This different approach and the natural extension of the transmission line 

analysis to stochastic signals lead also to another distinction between the current 

work and other noise suppression analyses. In the noise suppression analysis of 

Ratner et al [69, 70], the total current noise of the beam is presented as a sum of 

unperturbed (incoherent) random electron position modulation (neglecting the 

effect of inter-particle interaction), and a “coherent” position perturbation due to 

the inter-particle Coulomb interaction, which in the case of noise suppression 

conspire to reduce the radiation noise. In the stochastic wave propagation 

formulation in the microwave tube transmission line model used, the current and 

velocity noise parameters in the context of single transverse mode analysis 

represent both terms in a unified manner, and represent the evolution of the total 

noise parameters due to the inter-particle interaction along the beam transport line, 

including the case of transport through a dispersive magnetic section. 

The dissertation is organized as follows: In Chapter 2 I present the general 

formalism of signal propagation in non-dissipative electron transport beam 

sections. In such transport sections the stored energy in the electron beam waves is 

conserved – no interaction with radiation. The formulation is derived in terms of 

the electron fluid plasma parameters (moments of the distribution function): 

current modulation and kinetic voltage modulation. The solution of the wave 

propagation in the small-signal linear regime is presented in terms of 2D transfer 

matrices for different sections: free drift, acceleration section and dispersive 

magnetic section (neglecting synchrotron radiation effect). 

The linear signal transfer formulation is subsequently extended to include 

stochastic modulation and is used for description of noise propagation on a general 

e-beam. I demonstrate the use of this formulation by employing it for interpreting 

the Coherent Optical Transition Radiation (COTR) effect (coherent in the 
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transverse dimensions) observed in LCLS [71]. The effect of amplification of the 

current noise, due to transfer of the velocity fluctuation to current fluctuation in a 

dispersive bend magnet, is described in terms of my theoretical model. The validity 

conditions of the presented single-mode linear theory are discussed at the end of 

the chapter. 

In Chapter 3, the fluid plasma formulation is extended to include a radiative 

section (FEL) using modal expansion formulation of Maxwell’s equations and the 

coupled system is solved within a single transverse mode model. The formalism is 

applied for two different schemes of FEL operation:  

 coherent operation mode, namely FEL radiation by stimulated emission 

(laser amplification or seed-injection) and by superradiance (pre-bunched 

beam)  

 incoherent radiation schemes, including spontaneous emission of radiation 

and Self Amplified Spontaneous Emission (SASE).  

I then compare the stimulated and spontaneous emission levels in a conventional 

FEL amplifier (seed-injected FEL), and derive the coherence conditions (the 

condition on the seeding power level) for conventional seeded FELs. 

In Chapter 4, the system of an FEL and an electron beam drift section 

preceding the FEL wiggler is analyzed in a unified formulation that combines the 

e-beam stochastic microdynamic formulation of Chapter 2, and the radiation 

emission formulation of Chapter 3. The conditions for minimizing radiation noise 

in such a combined system are derived, and consequently, the fundamental 

coherence limits of FEL at different wavelength regimes are derived. These limits 

would be theoretically attainable if the e-beam noise contribution to radiation noise 

is minimized by the proposed collective interaction electron beam noise 

suppression process. 

Some important derivations and calculations are presented in the 

Appendices. 
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2  Small signal propagation of space-charge wave 

on an electron beam in a non-dissipative 

transport section 

2.1 General formulation 

In this work we shall analyze the dynamics of the electron charge 

distribution in an electron beam using plasma fluid (moment) equations: the force 

equation, the continuity equation, Gauss's law: 
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where p is the momentum of an electron, (-e) is the charge of an electron, Etot and 

Btot are the total electric and magnetic fields respectively, n is the density of 

electrons in the beam, u is the beam velocity, 0 is the dielectric permittivity of 

vacuum. In this work, we neglect the self magnetic field (Bself) when we discuss 

about signal propagation, but save it when we discuss a beam envelop evolution (in 

Chapter 2.4 and Appendix 5). 

The momentum of an electron is: 

),(),(),( 0 tmtt rurrp         2-4 

where m0 is the electron rest mass,  is the relativistic Lorentz factor: 
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Here c is the speed of light in a vacuum. 

In the small-signal approximation, we can express all parameters in the 

fluid equations as the sum of two terms: a time-averaged term and a time-varying 

term whose amplitude is much smaller than the time-averaged one. Moreover, 

cross products of two “small signal” time-varying parts are neglected. As a result 

of these assumptions, we can write a linear expansion of all quantities (electron 

density n, beam velocity u, beam current density j, relativistic Lorentz factor  and 

electric field Etot respectively): 

),()(),( 10 tnntn rrr 
 2-6 
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We insert these expressions in the continuity equation (Eq. 2-2): 
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The time-independent term of the current is the steady state DC beam 

current distribution (invariant with time if the transport of the electron beam is free 

of leakage current and gas ionization),: 

)()()()( 000 tconsten  rurrJ
 2-12 

The small-signal time-varying continuity equation is: 
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Gauss's law (Eq. 2-3) is separable into two equations: 
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For a volume free of magnetic fields, the force equation (Eq. 2-1) is 

transformed to: 
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where 0 is the DC part of the relativistic Lorentz factor: 
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Multiplying the continuity equation (Eq. 2-13) by the average beam 

velocity (u0(r)), and using the time-varying current definition (Eq. 2-8), we obtain 

a modified small-signal continuity equation: 

The set of equations (Eqs. 2-12, 2-14, 2-16) for the time-independent (DC) 

variables (J0(r), n0(r), u0(r), E0(r)), and a linear set of equations (Eqs. 2-15, 2-17, 

2-19) for the small signal time-dependent variables (J1(r,t), n1(r,t), u1(r,t), E1(r,t)), 

will be employed in our analysis.  

 

2.1.1 One dimensional model 

The time-independent set of equations (Eqs. 2-12, 2-14, and 2-16) describes 

the global transport of an electron beam in a transport line that can include also 

acceleration or deceleration. Assuming that the electric field in an accelerator is 

known and that the potential distribution ((z)) along the beam propagation is 

described by: 
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where zê  is the unit vector parallel with the z-axes, we can integrate the force 

equation (Eq. 2-16) and obtain: 
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Based on the definition of the relativistic Lorentz factor (Eq. 2-18) and the DC 

beam current distribution (Eq. 2-12), we obtain respectively: 
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In this derivation, we assumed that the electron beam is transported in the 

“+z” direction ( ztzut eru ˆ),(),(  , u(z,t) > 0). In this case, the full differential with 

respect to time can be written as: 
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We assume that the time-independent variables (n0, u0) are known 

functions. Therefore, we substitute them into the small-signal force equation (Eq. 

2-17): 

),()()( 110

3
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0
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0

0

2

0 tzE
ze

cm
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cm
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
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
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where 0 = u0/c, 1 = u1/c. Note:  

)()()()( 323 
dt

d

dt

d

dt

d
 . 

We introduce a relativistic definition of Chu’s small signal kinetic voltage 

V1 [67]:  
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0
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e
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V    2-25 

This useful parameter can also be interpreted as small signal kinetic energy 

modulation expressed in units of voltage: 
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Representation in terms of this parameter makes it possible to write the 

modified small-signal continuity equation (Eq. 2-19) and the force equation (Eq. 

2-24) in a compact way: 

t
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We introduce the longitudinal plasma oscillation wavenumber: 
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and consequently obtain a simple set of coupled differential equations for the 

small-signal electron beam amplitudes in the time domain: 
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In the linear analysis for the steady state single-frequency case, we shall use 

a phasor relation. Each variable X1 is given as a function of time by: 

 )exp(),(
~

Re),(1 tizXtzX     2-32 

where  is an angular frequency and i is an imaginary unit ( 1i ). Therefore, 

partial time differentiation is equivalent to multiplication by -i: 

)(
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)( XitX
t





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and partial space differentiation is equivalent to full space differentiation: 

dz

d

z




  

From Gauss's law (Eq. 2-15), and from the continuity equation (Eq. 2-13), 

we obtain: 

constzJ
i

E z  )(
~~

0
  2-34 

Using the Maxwell equation EJB
~~~

000  i  and the one-dimensional 

approximation (d/dx=d/dy=0), there is no z-component of B
~

 ; we define the 

constant to be equal to zero. Thus, we get a set of differential equations for the 

small-signal current density modulation and the kinetic voltage parameter: 
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The solution of the small signal set of equations may be presented in terms 

of slow amplitude variables: 
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Therefore, we get: 
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),(
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2.1.2 Relativistic extension of Chu’s theorem 

Let us define the multiplication of the kinetic voltage (V
~

) with the complex 

conjugate of the current density modulation ( *~
J ) as the kinetic power density. It 

was shown by Chu [72] that the real part of kinetic power density ( *~~
JV ) in a non-

relativistic e-beam is a motion conserved parameter (independent of “z”). Using 

the definition of kinetic voltage (Eq. 2-25), and plasma wave number (Eq. 2-29) 

for relativistic beams, we can obtain Chu’s conservation theorem for relativistic 

beams as well.  

We take the complex conjugate of the small-signal current modulation 

equation (Eq. 2-35), and multiply it by the kinetic voltage parameter (V
~

). We 

multiply the small-signal kinetic voltage parameter equation (Eq. 2-36) by the 

complex conjugate of the current modulation (
J

~
) and sum-up the two equations. 

We obtain: 
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JVd
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
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The real part of this equation results in a conservation theorem defined for 

the small signal kinetic power density: 

constJVSk   )
~~

Re(
2
1

 
 2-42 

 

2.1.3 Small signal space-charge wave propagation on a finite 

cross section beam 

We extend our analysis to the case of a beam of finite cross section. We 

take a model of constant density and velocity distribution across the beam cross 

section:  

 (n0(r) = const(r) and u0(r) = const(r) for |r| ≤ rb, where rb is the beam radius).  

We expect that the small signal space-charge field will be, however, 

modified due to fringing of the field lines. Let  be the angular frequency of 

electron density modulation n~ , and  =2c/ - the free space optical wavelength 

corresponding to this frequency. If the beam drifts at velocity u0, then in addition 

to time modulation, the beam has spatial modulation with an axial wavenumber kb 

= /u0. Therefore, the beam modulation wavelength is b = . Using the Lorentz 

transformation, we obtain that the beam modulation wavelength b’ in the moving-

frame (where the beam average velocity is zero) (see Figure 2-1a) is: 
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00

'  b   

If the beam moving-frame wavelength b’ is smaller than the beam radius rb, (see 

Figure 2-1b), the space charge field is uniform and axially oriented across the 

beam and the situation is nearly the 1D case. However, if the beam radius is small 

(Figure 2-1c), or the conductive walls are near to the beam (Figure 2-1d), the space 

charge fringes and consequently the effective average longitudinal field is smaller 

than that predicted by the 1D model. 

A detailed solution of this problem would result in a solution of Langmuir 

plasma-wave eigenmodes of specific transverse profiles and specific plasma 

wavenumbers [73, 74]. In an approximate model, one may keep the one 

dimensional model of the previous section and neglect derivatives in terms of the 

transverse coordinates. In a single transverse mode approximation, the reduction of 

the space charge force due to fringing of the electric field is taken into account by 

means of a plasma reduction factor 12 pr . This means that the longitudinal plasma 

wavenumber is essentially reduced by the plasma reduction factor rp: 

pppr r  
  2-43 

The plasma reduction factor was calculated by various workers for 

Langmuir waves in different configurations (uniform and non-uniform current 

distributions, propagation in conductive enclosure or in open space, etc.) [74]. In 

the case of a relativistic pencil beam of transverse uniform distribution and radius 

rb, propagating in free space (without outer wall), the reduction factor of the 

fundamental Langmuir mode is given by [75, 29]: 





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
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00
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2 1
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p
kr

K
kr

r        2-44 

where K1(x) is the modified Bessel function of the second kind and k is the optical 

wave-number (k = 2/) (see Figure 2-2, blue curve). 

Recently, the plasma correction factor of the fundamental Langmuir mode 

was calculated by Marinelli et al [64] for a Gaussian beam distribution (with a 

transverse size variance x) using the variation method [76, 77, 18] (see Figure 

2-2, green curve): 

x

x
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k
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00 
         2-45 
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Figure 2-1  Small amplitude density modulation (a) and illustrations of the space charge field 

distribution in different finite cross section geometries: (b) approximately 1D case 

corresponding to a beam radius bigger than the moving frame modulation wavelength ’b, (c) 

significantly fringing field in the case that the beam radius is smaller than the moving frame 

modulation wavelength, (d) fringing due to proximity of a conductive wall.  

 

Figure 2-2 Longitudinal plasma reduction factor as a function of the beam 

parameters and modulation frequency for a flat-top distribution (blue curve, see Eq. 2-44) 

and for a Gaussian distribution (green curve, Eq. 2-45). 
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 In the present work, we assume a known plasma reduction factor rp, and 

we assume excitation of a single (fundamental) Langmuir mode in the beam. From 

the calculation of the plasma reduction factor (Eq. 2-44), it is seen (Figure 2-2) that 

in the limit where the beam radius is large relative to the beam bunching period in 

the beam rest frame (’): 

00

2
2 



c
rb 

        2-46 

rp tends to a value of 1. This obviously is consistent with the fringing field effect 

being negligible in the 1D limit. 

Based on these observations, we generalize the 1-D equations of the 

previous section to a finite beam case. We integrate all equations over the 

transverse coordinates, which corresponds to a multiplying of all equations by the 

beam effective cross section Ae: 

2

be rA 
 

We define a small signal current modulation parameter as: 
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~
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zJAdxdyzyxJzI e 
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Using the definitions above (Eq. 2-47), the equation for the evolution of the small-

signal current density (Eq. 2-35) turns into an expression for the small-signal 

current: 
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We now assert that Gauss's law (Eq. 2-34) in the finite cross-section beam 

case is modified into:  
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and the r.h.s. of the small signal kinetic voltage equation (Eq. 2-36) is also 

modified correspondingly: 
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In terms of slow varying amplitude parameters: 
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we obtain (compare to Eqs.  2-39, 2-40, 2-42): 
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where Pk = AeSk  
is the small signal kinetic power. 

Notes: 

We can still permit, within our approximations, situations in which the 

current density is not necessarily transversely uniform and the beam cross section 

Ae varies slowly in the propagation direction z. We may generalize the definition of 

the beam cross section Ae for the case of general transverse current distribution as  

),0,0(
)(

0

0

zJ

I
zAe  .        2-56 

For example, for a transverse profile with a round Gaussian shape of the beam with 

standard deviation , we obtain the beam cross section area eA  is: 

22eA
         

 2-57 

This procedure of defining the beam cross section area (Eq. 2-56) makes it 

possible to use the same 1D model equations (Eqs. 2-53 and 2-54) for various 

transverse current density profiles. However, the plasma reduction factor rp must 

be a given parameter for any current transverse distribution (J(r)). 

The 1D finite cross section beam model and equations 2-53 and 2-54 can be 

employed also in transport cases in which the beam cross section dimensions vary 

slowly as a function of z, conditioned stipulated that the parameter dependences 

Ae(z), rp(z) are known. 
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2.2 The transfer matrix for a non-dissipative e-beam 

transport section 

2.2.1  Properties of the general transfer matrix of a non-

dissipative transport section 

Since the set of single mode small-signal differential equations (Eqs. 2-53 

and 2-54) is linear, it is possible to write the parameters )(
~

zi  and )(~ zv  in terms of 

their initial values and a general 2 x 2 ABCD-transfer matrix: 
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The matrix must satisfy some symmetry conditions which can be derived 

directly from the generalized theorem (Eq. 2-55). In Appendix 3 we derive the 

symmetry form of the transfer matrix for a general non-dissipative system: 
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where K(z), W(z) and (z) are real functions. Note, that the determinant of the 

general transfer matrix is equal to 1: 

1))(det( zM           2-60 

In the following sections we shall find the specific transfer matrices for the 

useful cases of a free drift region, an acceleration section and a magnetic dispersive 

beam transport section. 

 

2.2.2 Uniform drift section 

We assume that in a drifting beam transport section, the DC beam 

parameters are constant. Therefore, the single mode slow varying small-signal 

differential equations (Eqs. 2-53 and 2-54) reduce into simple constant coefficient 

2
nd

 order ordinary differential equations: 

0),(
~

)(
),(

~
2

2

2

 


ziz
dz

zid
pr   2-61 

0),(~)(
),(~

2

2

2

 


zvz
dz

zvd
pr

 

 2-62 

and their solutions are: 
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)cos()sin(),(~
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Using Eqs. 2-53, 2-54 and expressing A1, A2, B1, B2 in terms of the initial 

conditions, the solution for the slow varying parameters is [32]: 
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is the e-beam modulation impedance in a uniform section, 0 is the magnetic 

permeability of vacuum. In matrix form the solution is: 
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There is full consistency with the symmetry properties of the general 

transfer matrix (Eq. 2-59) with K(z) = 1, W(z) = Wd, (z) = prz. 

 

2.2.3  Space charge interaction in an e-beam acceleration 

section 

When the beam is transported in an axial acceleration or deceleration 

section, the time-independent beam parameters (n0, u0z) vary as a function of z 

(Eqs. 2-21 and 2-22). Therefore, the slow-amplitude small-signal set of differential 

equations (Eqs. 2-53 and 2-54) have z dependent coefficients. Substitution of these 

equations results in general 2
nd

 order differential equations for ),(~ zv  and ),(
~

zi  

for the case of z-dependent coefficients:  

0),(~)(
),(~

2

2

2

 


zvz
dz

zvd
pr   2-69 

),(
~

)(
),(

~

)(

1
ln

),(
~

2

2

2







ziz

dz

zid

zdz

d

dz

zid
pr

p

















 

 2-70 



 25 

The coupled slow varying amplitude first order differential equations, Eqs. 

2-53, 2-54, can be written in an integrated form: 
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This presentation invites a general solution by an iterative process of 

substituting one equation into the other. This process converges well if the slow 

varying optical frequency components ),(~ zv  and ),(
~

zi  do not change much 

during transport through the transport section (e.g. for fast acceleration through a 

short length or small collective interaction effects).  

We perform here a first order iteration by substituting ),0(
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)0(~')'()'()0(
~

'''
)''(

)''(
)'()'(1)(

~

0

2

0

0

'

0

2

2 vdzzzAiidzdz
zA

zr
zzAzi

z

pe

z z

e

p

pe 









































      2-73 

)0(~''')''()''(
)'(

)'(
1)0(

~
'

)'(

)'(
)(~

0

'

0

2

2

0 0

2

vdzdzzzA
zA

zr
idz

zA

zir
zv

z z

pe

e

p
z

e

p











































   


  2-74 

Assuming that the plasma reduction factor rp and the e-beam cross section 

area Ae do not change significantly along the acceleration section, the transfer 

matrix for “fast acceleration” in the 1
st
 iteration step is: 
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where Lacc is the accelerator length, OhmZ 



120

0

0
0   is the characteristic 

impedance of free space.  

We further note that because of the kinetic power conservation theorem 

(Chu’s theorem), the determinant of the transfer matrix is equal to 1. Thus we can 

provide a criterion for the validity of the first order iterative expression (Eq. 2-75): 
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then each integral in Eq. 2-76 is small than 1: 
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For the case of axial linear acceleration, based on Eq. 2-20, we can rewrite the 

plasma wave number (Eq. 2-29) as: 
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where ’ is the acceleration gradient [78]. From this relation, it is evident that the 

plasma wave number (p) achieves the maximum value at the lowest energy. In 

Appendix 4 we evaluate explicitly the 1
st
 order transfer matrix expression (Eq. 

2-75) for the case of linear acceleration and negligible dependence of the plasma 

reduction factor (rp), and the e-beam cross section area (Ae) on beam energy (). 

The result is (see Eqs. A0-21 – 23 in Appendix 4), note 12   : 
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Using the e-beam wave impedance Wd, in terms of the plasma wave 

number at the entrance to the accelerator (pr(0)), for the case when the e-beam is 

relativistic before and after an accelerator (0(0) >> 1 and 0(Lacc) >> 1), keeping 

the second order term (1/2
) only, we obtain: 
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The same result in terms of the plasma wave number at the end of the accelerator 

(pr(Lacc)) is given by: 
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2.2.4 Dispersive section without space charge effects 

Electron-optical elements can be dispersive. Dispersive sections (like 

chicanes, bending magnets, etc.) are characterized by dependence of the particle 

transit time on its energy. Conventional theory often describes such devices by 

means of a “6D particle transport matrix” R. This matrix describes the 

transformation between the differential positions and angles (in 6D-phase space) of 

the single particle at the entrance and at the exit of the section [78]. Our most 

relevant term is  R56. The term R56 gives the difference in the spatial position along 

the z-axis between two particles at the system exit entering it with different energy. 

In our model, the kinetic voltage wave (or, in other words, velocity 

modulation) propagates in (and with) the e-beam, the electrons have different 

energies at the maximum and minimum of this wave. Therefore, a dispersive 

section is an effective transformer of the kinetic voltage wave into a current 

modulation. 

In this section we match our plasma parameterization to the conventional 

single particle parameterization in the case of the absence of space-charge effects. 

If we examine two electrons arriving to the entrance of a dispersive section (zin) at 

different times (t1 and t2), with different velocities (energies), then at the exit (at 

zout), each of them arrives at time t1+(u01) and t2+(u02) respectively, where (u) is 

a transit time and defined by the dispersive properties of the section. 

Therefore, the output current (defined as charge per unit time) relative to 

the input current is given as: 
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where t=t2-t1 and =(u02)-(u01). 

For the case of small spread of electron velocities (energies), we obtain: 
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On the other hand, the dispersive term of the “particle transport matrix” R56 

is defined [78]: 
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where p0 is the momentum of the design particle (a particle with average 

parameters of the trajectories), p is the difference in momentum between the 

examined particle and the design one.  

Using this definition to Eq. 2-81, we obtain: 
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In the small signal limit, we obtain: 
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 Thus, using the single frequency expansion (Eq. 2-33), we receive: 
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Therefore, using the kinetic voltage definition (Eq. 2-25), we obtain the transfer 

matrix for a short dispersive section (if the space charge effects do not change the 

particle trajectories): 
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Taking into account definitions of plasma wavenumber (p) (Eq. 2-78) and 

e-beam wave impedance in drift section (Wd) (Eq. 2-67), we obtain: 


















10

)(

)(
1

56
2
0

ind

inpr

shortdisp zW

Rz
i


M       2-87 

 



 29 

2.2.5 Analysis of a dispersive section with space charge 

In the previous section, the common case of a short dispersive section with 

negligible space charge microdynamics effects was discussed. With recent 

technological availability of high quality high current e-beams (based on 

photocathode injectors), it is conceivable that collective microdynamics can take 

place throughout a long dispersive section (e.g. a chicane). For this reason, we 

extend our collective microdynamics analysis in this section to the case of a long 

dispersive section.  

We start again from the 3D Lorentz equation (Eq. 2-1), but this time permit 

the presence of a magnetic field, and express the beam parameters as a sum of 

time-independent and time dependent (small signal parts):  
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where B(r) is the external magnetic field. Taking into account the time differential 

presentation (Eq. 2-23)), the time independent and time-varying parts of the 

Lorentz equation (Eq. 2-88) are: 
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The first equation (Eq. 2-89) shows the general particle trajectory in an external 

magnetic field, the second equation (Eq. 2-90) expresses the wave interaction 

dynamics along the beam in the presence of a time dependent space-charge field 

(E1(r,t)). 

We may represent the external magnetic field (B) in terms of the vector 

potential A: 

ArB )( . 

and assume that the external magnetic field has a transverse (x-y) component only. 

We also assume that the magnetic field is uniform across the beam, namely: 

yyxx AAz eeA ˆˆ)(           2-91 

where xê  and yê  are the unit vectors parallel with the x- and y-axes respectively.  

Neglecting the synchrotron radiation emission in the dispersive element, 

the motion of the electron is derived from the Hamiltonian: 

2222 mcecmc  AP
       2-92 

where zzyyxx PPP eeeP ˆˆˆ   is the canonical momentum of the electron: 

xxx eAmcP  
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yyy eAmcP  
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zz mcP       

Assuming that the amplitude of the magnetic field is small and the electron 

beam transits in the “+z” direction (the electron beam does not turn back), the axial 

Lorentz factor, defined as: 

21

1

z

z







 
2-94

 

is found to be: 
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 The transverse canonical momentum is conserved. If a vector potential 

field, with no transverse coordinates dependence (Eq. 2-91), and a beam angular 

spread is negligible, we may set the canonical momentum to be zero (P = 0). 

Therefore, the axial Lorentz factor may be written as: 
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where  
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is the normalized transverse momentum parameter, zin is the entrance point to the 

dispersive section in which the transverse magnetic field and the electron canonical 

momentum are equal to zero.  

The complete time-differential representation (Eq. 2-23) can now be 

written in the form: 
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For this case, we redefine the small signal kinetic voltage parameter (Eq. 

2-26) and plasma wavenumber parameter (Eq. 2-29) as: 
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With these definitions we get a set of differential equations for the small-signal 

current modulation and the kinetic voltage parameter, which is a generalized form 

of (Eqs. 2-37, 2-38): 
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Continuing now with the same procedure of Chapter 2.1.3, to extend the 

1D-model to the case of finite cross section beam with a single Langmuir plasma 

wave mode, it is found that the same coupled small signal equations (Eqs. 2-35, 

2-36) are applicable for the dispersive transport case with appropriate substitutions 

of z and z instead  and . 

For the slow varying beam dynamic variable ),(
~
1 zi
disp  and ),(~ zv disp : 
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the coupled equations (Eqs. 2-98, 2-99) turn into: 
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Thus, with these definitions of the plasma wave number ( disp
p ,Eq. 2-97), and the 

kinetic voltage slow amplitude of ( disp
pv~ ,Eqs. 2-96, 2-101), also the first order 

iteration expression for the transfer matrix (M
(1)

, Eq. 2-75) applies without change 

(except the definitions Eqs. 2-97, 2-96) for the case of small collective interaction 

dynamics (short dispersive section length Ldisp).  
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2.3 Collective microdynamics of noise in electron beams 

The e-beam transfer matrix formulation was derived in the previous section 

for a coherent single frequency signal as a phasor relation. But as is well known in 

linear systems analysis, it can also be employed for the analysis of incoherent 

signals composed of random fluctuations and a wide frequency spectrum. In the 

present context it describes the transport of noise on electron beams. 

 

2.3.1  Noise parameters at the cathode 

Small signal wave propagation in an electron beam was presented in 

previous sections in terms of a phasor formalism (Eq. 2-32) for a single frequency. 

An alternative presentation of signals in the frequency domain is the Fourier 

transform presentation, which is useful for multi-frequency signals. In the small 

signal linear regime, the frequency domain solutions of the plasma moment 

equations in the Fourier transform formalism are identical to the solution in the 

phasor formalism. The expressions for the Fourier components of the small signal 

parameters: 


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are the same as the solution expressions of the phasor components (Eq. 2-32), but 

their units differ by a time unit factor. We can therefore use the same transfer 

matrix that we derived for the single frequency coherent signal to describe also 

multiple frequency and incoherent signals. This applies, however, only in the linear 

interaction regime. 

We calculate now the amplitudes of the current modulation and kinetic 

voltage as a function of frequency starting from a model of single particles. The 

actual e-beam current flow is not continuous. It consists of discrete particles (here 

we do not take into account any quantum effects). Therefore, we define the current 

density as a function of time (t) and position (r) by:  

 
j
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where  is the Dirac delta function, uj is the velocity of the j
th

 particle and rj(t) is its 

trajectory. Integrating the axial component of this expression over the cross section 

(dxdy), we obtain the beam current as a function of axial coordinate (z) and time 

(t): 
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If zj(t) is a single valued function of t, then it can be inverted. Therefore, 

tj(z) is the moment when the j
th

 electron cross the plane “z”. Then, using the 

identity: 
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Following the Fourier transform definition (Eq. 2-104), we obtain the current 

spectrum: 
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Using the small signal current definition (Eq. 2-8), we derive an expression 

for the small signal velocity in the frequency domain as: 
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We represent the velocity of each particle (uj) as the sum of the average 

velocity (u0), and the particular particle deviation velocity (uj, <uj>=0) from the 

ensemble average: 

jj uuu  0           2-110 

Substituting this into our previous result (Eq. 2-109.), assuming that the 

particular particle deviation velocity is small compared to the average velocity 

(|uj| << u0), we can write: 
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Here we kept the second order term and neglected higher order terms. 

The spectral density of the product of two random signal parameters 

( )(X


 and )(Y


) is defined as the average over an ensemble of the product 

)()( *  YX


. For an ergodic stationary system, the average of the ensemble may be 

replaced by an average over time (T): 
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where T is larger than the coherence time of the signal.  

At a plane z, where the crossing times of electrons (tj(z)) are statistically 

independent random variables, or in other words, are completely uncorrelated (for 

example – at the cathode plane), we obtain the spectral density of the current for 

shot noise (based on Eqs. 2-108 and 2-112): 
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where NT is the total number of electrons crossing the plane z within time T. The 

conventional definition of shot-noise relates to positive frequencies only, and 

therefore is twice as large (-2eI0). The sign “minus” here demonstrates that if an 

electron moves to “+z” direction, then the current I0 is negative. 

The same procedure is applied to the velocity spectrum (using Eqs. 2-110 

and 2-111) assuming that the electron velocity deviations uj are statistically 

independent random variables (uncorrelated), and also are independent of their 

crossing times tj. Keeping only second order terms in uj this results in: 
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where uth is the velocity spread defined from the beam distribution function: 
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Using this result, we define the spectral density of the kinetic voltage in the 

frequency range -∞ < ω < ∞ for an e-beam with an energy spread as:  
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It is usually assumed that the electron emission from the cathode produces 

a beam with stochastic uncorrelated distribution of emission times tj and initial 

velocities uj. In this case, one may substitute the relation Eth = kBTc, where Tc is 

the cathode temperature. We call any plane, where the crossing times tj and the 

crossing velocities uj are independent, as an “I-V-independence plane”. It is 

important to note that the thermal energy distribution (Eth) defines the kinetic 

voltage noise only at an I-V-independence plane. Note that spectral kinetic voltage 

noise (Eq. 2-114), as well as spectral energy noise (
2

)(


), are not identical with 

the parameter of beam thermal energy spread. Equation 2-114 gives the value of 
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the noise in terms of the beam energy spread Eth only at the I-V-independence 

plane.  

The product of the kinetic voltage noise and the complex conjugate of the 

current noise is the kinetic power noise of the signal:  
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As was mentioned above, the electron crossing times tj and their velocities 

deviations uj are independent at any I-V-independence plane. Because of this 

reason, the inter-particle summation (second term) vanishes upon averaging and 

also <uj> = 0. Therefore the kinetic voltage spectral noise is non-zero upon 

emission from the cathode:  
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where th = uthc. However, its imaginary part is identically zero at this plane. 
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 Note also that according to Chu’s theorem (Eq. 2-55), the real part of 

kinetic power remains constant along the entire non-dissipative transport section, 

but its imaginary part may vary.  

 

2.3.2 Collective microdynamics of e-beam noise in a non-

dissipative free drift section 

With the Fourier spectrum definition, (Eq. 2-104), we may replace (Eq. 

2-68) with an analogous expression presenting the evolution of the spectral current 

( )(1 i


) and the spectral kinetic voltage ( )(v


) in a non-dissipative free drift 

section of length Ld:  
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where dprp L   is the phase shift of the plasma wave in the free drift section.  

This relation can be used to describe the transport for free drift of each 

Fourier component of the finite duration beam modulation signal. It can also be 

used for describing the propagation of a random signal (noise) during some period 

of time T, within which the beam noise can be considered stationary and ergodic, 
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and is long enough to correspond to a large number of electrons (NT). The phases 

of the random parameters )(1 i


 and )(v


 are not known then, but one can derive 

(from Eq. 2-117) expressions for the development of the spectral parameters of the 

absolute value squared current ( i


), kinetic voltage ( v


) and kinetic power ( kP


) 

(Eq. 2-112). 

We find then the spectral power of the current noise is: 
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and the spectral power of the kinetic voltage noise is: 
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The real part of the spectral beam kinetic power at any point is: 
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and it is constant because of Chu’s relativistic conservation theorem (Eq. 2-42). 

The imaginary part of the kinetic power (the reactive kinetic power) is: 
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If we take an I-V-independence plane as the starting point (z = 0), the 

spectral powers of the noise parameters are given by: 
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Here we introduce the noise dominance factor at the initial conditions N as 

the impedance-weighed ratio between the averaged of squares of the amplitudes of 

the kinetic voltage noise and current noise at z = 0. Namely: 
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Using the noise dominance factor, we can rewrite the equation for the noise 

intensities (Eqs. 2-119, 2-120 and 2-121) as: 
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The noise intensities in a free drift section with constant parameters vary 

periodically with the p period . When the current noise source, defined at I-V-

independence plane, is dominant:  

N
2
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 then the current noise spectral density decreases and the kinetic voltage noise 

spectral density increases until the next I-V-independence plane at the quarter 

plasma oscillation period point p = /2.  
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Note, that in this new I-V-independence plane, the impedance-weighed 

ratio between the averaged of squares of the amplitudes of the kinetic voltage noise 

and current noise is larger than 1: 
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If we measure the kinetic voltage intensity with the unit of current noise 

intensity using the e-beam wave impedance, then the maximum of the kinetic 

voltage intensity is equal to the current noise intensity at the starting point (see 

Figure 2-3).  

 

2.3.3 Interpreting the Coherent Optical Transition Radiation 

effect observed in LCLS 

Based on the formulation presented in the previous section, we can explain 

quantitatively the phenomenon of current noise amplification that has been 

observed recently in several laboratories, where an intense e-beam was transported 
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though a dispersive section after a free space drift section. In particular, we will 

provide a description of an effect of Coherent Optical Transition Radiation 

(COTR) that was observed in the LCLS injector and was referred to at the time as 

“unexpected physics” (now understood to be a result of a collective interaction of 

spatially coherent random energy modulation in the drift section, which turned into 

enhanced coherent current noise in a dispersive section [71]). 

The LCLS injector (Figure 2-4) is composed of a photocathode rf-gun (the 

output electron energy of which is 6 MeV) followed by two linac sections (L0a and 

L0b). The injector produces a single electron bunch (1 nC charge bunch, with 

duration of 10 ps) with energy of 135 MeV. The 135 MeV beam is deflected onto 

the main linac axis by a two-dipole 35-degree achromatic bend. After the bend, the 

electrons are accelerated to 250 MeV in three 3-m long S-band accelerating 

structures (L1S) before entering the first bunch compressor chicane (BC1).  

Figure 2-5 describes the “unexpected physics” observation of LCLS [71]. 

In conditions of a balanced achromatic magnetic bend (the quad in the bend 

centered tuned properly), the integrated optical power measured from the OTR 

screen varied nonlinearly with the bunch charge, while in the off-balance 

condition, it grows linearly (Figure 2-6). 

To demonstrate the use of the noise transfer formalism of Section 2.2, we 

now apply it to the example of the LCLS experiment. We take the output point of 

the injector (end of the linac L0b) as a starting point for our analysis. The e-beam 

parameters at this point are: the e-beam energy (Ek1) is 135 MeV, the bunch charge 

(Qb) and the bunch duration (tp) are 1 nC and 10 ps respectively, beam normalized 

slice emittance (n) is 1 m, the e-beam has a Gaussian shape for its transverse 

profile with radius at FWHM (rb) 82.5 m ( = 70 m), the slice energy spread 

(Ek) is 3 keV [71]. 

After a short free drift section (Ld1 =2.5 m) where a beam is focused to a 

waist, electrons are transported through a bending section containing two bending 

magnets and one quadrupole between them. The control over the strength of the 

magnetic field gradient into this quadrupole makes it possible to achieve a perfect 

linear achromatic section, which means that the transverse position of an electron 

does not depend on its energy. In other words, if the bending section is perfectly 

linearly achromatic, then this section conserves the transverse coherence of any 

modulation on the e-beam. The dispersive properties of the bending section are 

defined by R56 = 6.3 mm, and a trajectory length of Ldisp = 1.7 m. 

The bent e-beam is passed through the linear accelerator L1S (Lacc = 9 m) 

and accelerated to an energy (Ek) of 250 MeV. The free drift length between the 

linear accelerator L1S and the OTR screen is Ld2 = 6 m. A CCD camera detects 

the signal (see Figure 2 6a) radiated from the OTR screen at an optical wavelength 

compression system (BC1) was turned off. 
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Figure 2-3 The noise intensities (current noise – blue curve, kinetic voltage noise – red curve) 

in a free drift section with constant impedance in a case of a current noise dominated beam 

(N
2
 = 0.1).  

 

Figure 2-4 Scheme of the LCLS injector 

 

Figure 2-5 The integrated optical transition radiation signal as a function of the single 

quadrupole between the 17.5 degree bends. The optical signal is a maximum at the 

quadrupole setting which makes the DL1 bend doubly achromatic. 

(a) (b) 

Figure 2-6 An image of the COTR radiation obtained by careful adjustment of the 

quadrupoles after the bunch compressor (a) and dependence the CCD counts on the e-beam 

current for different quadrupole strength (b) . 
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 Thus, the electron transport line from the L0b accelerator end to the OTR 

screen (marked ”out” in Figure 2-4) consists of four sections that can be modeled 

by our theory:  

(A) a “drift section (Ld1 = 2.5 m)” with starting point (z = 0)”-  

(B) – a “short dispersive section (R56 = 6.3 mm)” –  

(C)  an “acceleration section (Lacc = 9 m)” –  

(D) a “drift section (Ld2 = 6 m)” – ends at the “OTR screen point (z = 

zOTR)”.  

Based on this description, we calculate the plasma wavenumber p (Eq. 

2-29) and the e-beam modulation impedance Wd (Eq. 2-67) for the first and the 

second free drift sections: p1 = 0.358 rad/m, Wd1 = 4.293 kOhm, p2 = 0.143 

rad/m, Wd2 = 6.891 kOhm respectively. Note that we used the beam cross section 

area defined for a Gaussian beam (Eq. 2-57) and assume that the beam cross 

section area is approximately constant along the transport line. The plasma 

reduction factor for the first and the second free drift sections are found to be rp1 = 

0.889 and rp2 = 0.71 respectively. The transfer matrices of the free drift sections 

are calculated from (Eq. 2-117): 
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For the dispersive section, we obtain (based on Eq. 2-86): 
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For the acceleration section, we obtain (based on Eqs. 2-72, 2-73): 
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Multiplying these transfer matrices, we obtain the total transfer matrix of 

the LCLS injector up to the OTR screen: 
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The complex initial amplitudes of the current and kinetic-voltage spectral 

densities are not known. We derive the root mean square of their averaged squared 

values (Eqs. 2-113 and 2-114): 
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Based on this, we can calculate the noise dominance factor N (Eq. 2-122) and 

determine that the LCLS injector operates in the current noise dominance regime:  

N(z = 0) = 7*10
-3

 << 1        2-137 

From the general relation (Eq. 2-58) employed for random signals: 
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It is evident from Eqs. 2-134 to 2-136 that the contribution of kinetic 

voltage noise is small compared to the current noise contribution 
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approximately: 
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Thus, the 1D linear small signal theory of noise propagation for a 

relativistic e-beam predicts that for the LSLC injector experiment, the current noise 

spectral density amplitude at the OTR screen plane should grow about 14 times, 

compared to the initial value (Eq. 2-122), assuming ideal electron optic elements 

are used.  

The OTR experiment on the LCLS injector demonstrated that in the case of 

the linear achromatic bend structure, the integrated OTR signal grows 4 times 

compared to the incoherent level. The reasons for the deviation from the theoretical 

estimate are the degrading effects due to finite energy spread and emittance of the 

beam combined with non-vanishing of the Ri≠j coefficients [70]. Some additional 

degradation of the coherent microdynamics processes may be attributed to other 

electron-optic elements (quads, etc.) that may partially break the transverse 

coherence of the single plasma mode and reduce the gain of the microbunching 

instability.  
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2.4 Validity of the single Langmuir mode fluid plasma linear 
theory  

Our single Langmuir plasma wave linear model is essentially a 1D coasting 

beam longitudinal interaction model. It includes, however, some 3D aspects of a 

finite cross section beam. In the following we analyze limitations of the validity of 

our fluid plasma model in the optical frequency range.  

An obvious condition for the validity of the fluid plasma formulation and 

the longitudinal charge bunching model is multiplicity of particles per bunching 

wavelength 0: 

100 eAn         2-138 

 

2.4.1 Ballistic electron phase spread condition 

Another restriction to our model is a requirement that the beam is cold 

enough so that bunch smearing, due to electrons axial velocity spread (th), does 

not wash away space-charge wave bunching components at frequency  (and 

wavenumber k/) that were found to propagate on the beam (under a model of a 

cold beam) using the moment (fluid) equations. This condition can be expressed in 

terms of the optical phase spread b of the electrons along the interaction length 

Ld:  

b = kLd(1/z)= kLdz/z
2
= <<      

This is a “ballistic-electron phase spread condition”, in which one assumes that for 

the relevant drift length, each electron retains its velocity determined by the initial 

axial velocity distribution. The axial velocity spread of the beam may be owing to 

the beam energy spread, in which case the ballistic electron phase spread condition 

sets a limit on the beam energy spread: 

dL22
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or owing to the angular spread of the beam x’ , that for a given beam width, x 

sets a limit on the emittance n = x*x’:  
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1

00

2

0 dxn L  .        2-141 

Note: the conditions above refer to beam propagation in a drift section. In 

the case of beam propagation through a magnetic dispersive section (such chicane, 

bend magnet, etc.) one should consider possible balistic electron phase spread due 

to the matrix parameter R56 [69]. Similarly to equation 2-139, one needs to inquire 









0

56kR  in order to keep the validity of the fluid model. This corresponds to:  
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2.4.2 Landau damping condition 

The “ballistic-electron phase spread condition” (Eq. 2-139) is a plausible 

assumption for the validity of our electron-beam plasma wave solution in a long 

uniform drift section (Eqs. 2-65 and 2-66). Whereas we consider plasma wave 

dynamics in a short length (less than one plasma oscillation, which is the case of 

interest in the present work), we are mostly interested only in quarter plasma 

oscillation. There is, however, another well-known condition for the validity of the 

fluid plasma model derivation of the e-beam plasma wave solution (Eqs. 2-65 and 

2-66) – “the Landau damping condition” [65, 66, 79]. 

The Landau damping effect, in the context of electron-beam plasma waves, 

and its neglected condition, are explained in Appendix 8. For its definition, one 

needs to assume that the plasma wave extends over at least a number of 

oscillations, so that its wavenumber is properly defined. The wavenumbers of the 

excited plasma waves can be identified when the solution (Eqs. 2-65 and 2-66) is 

expressed in terms of the fast varying parameters ( 

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If the electron beam is not monoenergetic and has an axial velocity distribution of 

standard deviation uth, there may be synchronism between the plasma wave and 

electrons of velocity u0±uth, and then energy transfer from the plasma wave to the 

individual electrons would lead to damping of the plasma wave. This synchronism 

condition is depicted in Figure A0-5 and the condition for avoiding it found in 

Appendix 8: 

pr
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where k = /c.  

Using the definition for the Debye wavenumber: 
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and defining the Landau damping parameter:  

D

D
k

k
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the Landau damping neglect condition is: 

1DN          2-146 
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Note, that the Landau damping argument is valid with reference to the 

validity of the cold beam plasma wave solution (Eqs. 2-65, 2-66) for a length of 

several plasma oscillations. It is not necessarily required when the interaction 

length is less than a plasma wavelength. The connection between the ballistic 

electron phase spread condition and the Landau damping condition is discussed in 

the next section in the context of noise suppression.  

 

2.4.3 Space-charge dominated beam transport condition 

In our analysis of beam microdynamics in free drift, we have assumed 

uniform beam cross-section and therefore constant plasma frequency along the 

drift length. This may be possible by imposing focusing (guiding) along the beam 

transport line. Of special interest is the case of free space drift in the absence of 

such continuous focusing. In this case, the beam envelope expands either due to its 

finite emittance or because of an average space charge repulsion force. 

Nevertheless, nearly uniform flow is possible if the beam is focused by electron 

optical elements, so that in its subsequent free space proportion, it converges to a 

waist of nearly uniform cross-section along its length 2zwaist (see Figure 2-7, Figure 

2-8). The practical question that one may ask is whether the noise suppression 

effect that requires plasma phase accumulation p = /2 (quarter plasma wave 

oscillation) can take place within the waist length, before the beam starts 

expanding, namely if one can satisfy 

waistpr zL 222            2-147 

In Appendix 4, we prove a new theorem that states that this condition is 

always satisfied if one forms a waist and if the beam envelope expansion is space 

charge dominated (namely the expansion effect of the emittance is negligible). It is 

also shown there that the plasma phase accumulation along the waist length is for 

rp = 1 exactly 2 : 
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Considering that some plasma phase accumulation can take place before and 

after the waist, we conclude that a sufficient condition for attaining quarter plasma 

oscillation by free drift along a beam waist is that the beam emittance is small 

enough to keep space charge dominated beam expansion along the waist. Using the 

K-V envelope equation [96], it is shown in Appendix 5 that this condition is  
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where rb(zin) is the initial beam radius after the focusing element. 

For a given initial beam radius rb(zin) and arbitrary focusing means, 

assuming condition (Eq. 2-149) is satisfied, one can always form a waist of radius 
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2/)(0 inb zrr   and length 2zwaist, if enough drift length Ld is available after 

focusing,  waistd zL 2 . Note that the parameters zwaist and r0 are related by (see 

Appendix 5, Eq. A0-30): 

   0

3

00

0

12 II
r

z
A

waist            2-150 

Often the limiting factor in the experiment is the available drift length, 

while we have the freedom to extend the initial beam radius using appropriate 

beam optics and then focus the beam tighter to a smaller radius r0 and shorter waist 

length zwaist (while keeping (Eq. 2-150)). In this case, the emittance condition (Eq. 

2-149) can be written in terms of the available drift length Ld: 
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Notes: 

(1) Condition (Eq. 2-149) or (Eq. 2-151) are sufficient conditions for attaining 

quarter plasma wave oscillation only if one takes advantage of them to 

form a waist in front of the focusing element and the emittance satisfies 

also condition (Eq. 2-141) (with Ld=2z0), which is an entirely independent 

additional condition. 

(2) In accelerator electron optics it is common to use the beta-function to 

describe the beam expansion instead of the radius. We avoided using this 

representation because it is limited to emittance dominated beam 

expansion. 

(3) When the beam transport is not space-charge dominated and conditions 

(Eq. 2-149), (Eq. 2-151) are not satisfied, it is not possible to get quarter 

plasma oscillation in free drift along a waist. It is possible though to obtain 

smaller plasma phase accumulation, as calculated in Appendix 5, Eq. 

A0-36 

(4) As was mentioned before, conditions Eq. 2-149 and Eq. 2-151 need to be 

satisfied only for a beam propagating in free space. It is not necessary if the 

beam is guided without expansion by means of focusing elements 

(solenoids or quads) or possibly by partial beam charge neutralization. 

Considering again the previous example of the LCLS parameters, and given 

t

inequalities (Eqs. 2 138 - 2 141) are satisfied except for Eq. 2 149. Therefore, if 

one would attempt to realize noise suppression with a beam of the same parameter 

values, it would require the use of a longer drift section Ld = 15m. Alternatively, a 

shorter drift section may be used if focusing quads can succeed to keep the beam 

from expanding. In this case, Eq. 2 149 is not relevant and not necessary for 

satisfying the quarter plasma oscillation condition. 
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Figure 2-7 Beam envelope in a space charge dominated case: numerical solution (red curve) 

and approximated analytical solution (blue curve). 
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Figure 2-8 Beam envelope in an emittance dominated case. Analytical solution. 
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Whether noise suppression is possible to attain at frequencies beyond the 

IR-UV is a question of great interest. The answer depends on technological 

development and proper electron-optical design procedures that take into account 

the theoretical restrictions derived above. It should be borne in mind that the 

collective beam-noise interaction region in the LCLS experiment is right after the 

RF-LINAC injector and the noise effects were measured in the visible-IR regime. 

In practical X-UV FEL designs, the beam is transported through bends, chicanes 

and other electron-optical elements that degrade the beam parameters, and may 

give rise to destructive microbunching instabilities (one may consider reduction of 

such effects by minimizing the energy noise entering the dispersive section). 

Further theoretical and experimental studies are needed in order to understand the 

noise dynamics in these elements and evaluate the feasibility of the proposed 

scheme at frequencies beyond the visible. Note that in seed-radiation injection X-

UV FEL schemes, one would need to diminish the beam-noise at X-UV 

frequencies in order to enhance the FEL radiation coherence. However in HGHG 

FELs, the noise reduction needs to be accomplished only at the frequency of the 

first laser buncher. 
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2.5 Landau damping and ballistic electron phase spread 
conditions in the context of noise suppression. 

The conditions for the validity of the cold beam plasma oscillation solution 

(Eqs. 2-65, 2-66) at least up to a distance of quarter plasma oscillation length, are 

best described in terms of the “noise dominance parameter” N (see Eq. 2-122): 
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This parameter is also useful for examining the connection of our velocity spread 

condition to the well-known Landau damping neglect condition (Eq. 2-146). Using 

the definitions of kinetic voltage noise (Eq. 2-114), current noise (Eq. 2-113), wave 

impedance (Eq. 2-67) and plasma wavenumber (Eq. 2-78), we obtain:  
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Therefore, 

D
D N

N
N 
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Thus, we showed that the current noise dominance parameter N (Eq. 2-122) 

is identical with the Landau parameter ND (Eq. 2-145). The current noise 

dominance condition (N
2
 < 1, see Eq. 2-126) is not only the condition for attaining 

current noise suppression (Eq. 2-127), but it is also identical with the Landau 

damping neglect condition (Eq. 2-146) for a relativistic electron beam (0 ~ 1)! 

This connection is not a priori obvious, considering that the noise 

dominance parameter N was defined only in the context of noise, while the Landau 

parameter ND is defined in the context of decay of plasma wave oscillation, 

possibly coherent, not necessarily stochastic. 

It is now interesting to reveal the connection between the different 

conditions for noise suppression that we discussed so far: 

1. The current shot-noise dominance condition: N ˂˂ 1. 

2. The Landau damping neglect condition: ND ˂˂ 1. 

3. The ballistic electron phase spread condition: b <<  

Following the discussion in Appendix 8 and Marinelli [65], we may write 

the Landau decay constant in the lab frame in the range N ˂ 0.5 (which is anyway 

the range of interest for noise suppression) as: 
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It is intuitively convenient to express this relation in terms of the Landau 

decay length LLandau (the e-folding decay length of the plasma wave amplitude). 
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The drift length range where Landau damping is negligible is  

Landaud LL   

or 
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The curve of Ld = LLandau  is shown in Figure 2-9 (red curve). The broken 

line part corresponds to the numerically computed solution of the Landau damping 

in the range ND > 0.5 [80]. Evidently in the range of interest for noise suppression 

N ˂˂ 1, 0 < prd < /2, the neglect of Landau damping is well satisfied under the 

condition N  Nd ˂˂ 1, which is fully consistent with the current shot noise 

dominance condition (Eq. 2-122). 

We now examine the ballistic electron phase spread condition b <<  

(Eq. 2-139) It is instructive to express also the phase spread parameter b in terms 

of the Landau parameter ND. Using the definition for the Debye wavenumber 

(Eq. 2-144) and relation for the noise dominance parameter (Eq. 2-152), we obtain:  
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Thus the ballistic electron phase spread condition (Eq. 2-139) can be 

written simply as:  

D

prd
NN


   

The curve 
D

prd
N


   is drawn in Figure 2-9 (blue curve). Again, it is evident that 

this condition is well satisfied in the range of interest 0 < prd < /2. For 

D

prd
N


  , it corresponds to requirement ND ˂˂ 2, which is automatically 

satisfied when the Landau damping condition ND ˂˂ 1 is satisfied, and for ND  N 

it is fully consistent with the current noise dominance condition N << 1, which 

satisfies all conditions for noise suppression. 
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Figure 2-9 The Landau damping neglect region (Ld < LLandau) and the ballistic electron optical 

phase spread region (b < ). Both conditions are automatically satisfied in the region of 

interest for noise suppression: prd < /2, N ≈ ND < 0.5 (current shot-noise dominance 

condition).  

  
  

0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1   
0   

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

  
    
  

ND 

L d   = L Landau   (numerical  
Jackson)   

prLd =   /N D 

L d   <   L Landau   

 b   <     

L d   = L Landau   (analytical  

Jackson)   

Noise Suppression   

Region 
  


p

rd



p
rL

d
 

/2 



 52 

3 Generation of coherent and incoherent radiation 

in FEL 

3.1 The general transfer matrix 

We examined above the propagation of waves on an e-beam for non-

dissipative sections (where there is no energy transfer from the e-beam to 

electromagnetic waves and back). E-beam transport has been considered in several 

passive (non-radiating) elements: the drift region, the accelerator region and the 

dispersive section. 

In this chapter we derive the relativistic transfer matrix for an active 

(radiating) e-beam transport element: the wiggler. For the synchronism condition 

between the e-beam and the electromagnetic wave, energy transfer takes place 

between e-beam waves and the radiated electromagnetic waves. We use the small-

signal expressions (similar to Eqs. 2-6 - 2-10) to find the stimulated radiation 

emission (or absorption) from e-beam radiation devices in the frequency domain 

(Eq. 2-32). We suppose here that the time-dependent part is a single-frequency 

signal: 
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As in Chapter 2, we again assume that the electron beam propagates 

generally in the “+z” direction, and that the electrons in the injected beam oscillate 

transversely to their propagation direction (z) because of the periodic transverse 

Lorenz force in the static transverse magnetic field: 


  Be

pp
zzz eu

dz

d
u

dt

d
ˆ

00
       3-4 

In a planar (linear) wiggler, the magnetic field on axis is approximately 

cosinusoidal: 

)cos(ˆ zkB wyweB   

In a helical wiggler: 

 )sin(ˆ)cos(ˆ zkzkB wxwyw eeB   

where Bw is the amplitude of the wiggler magnetic field, kw is the wiggler 

wavenumber. 

Direct integration of the force equation (Eq. 3-4) results in: 
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wz kzez /)(ˆ)(   Bep  

We introduce the wiggler parameter aw as the normalized transverse 

momentum amplitude: 
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Therefore, based on the relation 222   z , we obtain the average axial 

Lorentz factor (averaged over the wiggler period) along the z-axis: 
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for planar and helical wigglers respectively. 

We use a formulation of modal expansion [81], where the traveling wave 

spectral radiation fields are expanded in terms of a complete set of transverse 

modes q (the beam propagation is in the z-direction): 
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where qC
~

, kqz and qE
~

 are the slow-varying amplitude, the axial wavenumber, and 

the transversal profile of the electromagnetic mode q respectively. We shall 

examine the interaction between the e-beam and TE-TEM modes, because these 

modes are commonly used in wiggler-based FELs. 

The mode amplitude qC
~

 develops along the wiggler interaction length 

according to the mode excitation equation [81]: 
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where    dxdyP zqqq eHE ˆ
~

Re
2

1 *  is the q-mode’s normalized power. 

The full differential with respect to time can be presented as: 
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where uz is defined in Eq. 3-6 or Eq. 3-7. 
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In the linear model, we assume that the average e-beam kinetic energy does 

not change along the wiggler. Therefore, the force equation (Eq. 2-1) and the 

continuity equation (Eq. 2-2) have a time-dependent part only. This formulation 

results in the following expression for the longitudinal part of the force equation: 
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The synchronous longitudinal force component on the r.h.s. of Eq. 3-12 is 

composed of two parts: the ponderomotive field ( pmE
~

), which is due to the 

interaction of the electromagnetic wave and wiggler field) [21]  
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where )(  eq rE  is the mode profile field at the e-beam center ( er ). The second 

term in equation 3-12 ( scE
~

), is the self space-charge field, which is found from 

Gauss's law and the charge distribution along the e-beam .  
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where rp < 1 is the plasma reduction factor corresponding to a fundamental 

Langmuir plasma wave mode of the beam (see Chapter. 2). Using the same 

formalism, we obtain: 

)(
~~

0

2

zJ
eir

E z

p

sc


          3-15 

The force equation (Eq. 3-12), the excitation equation (Eq. 3-9), and the 

continuity equation (Eq. 3-11), with the definition of the field (Eqs. 3-13 and 3-15) 

form a set of linear differential equations, which should be solved self consistently. 

This set describes the coupling between three independent waves: electromagnetic 

wave ( qC
~

), current modulation ( J
~

) and kinetic voltage modulation ( ). 

The solution of this set may be found using the Laplace transform: 
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The continuity equation is transformed to: 
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The space-charge field is: 
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The current small signal amplitude is: 
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The force equation:  
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Again we recall the definition of the small signal relativistic kinetic voltage 

parameter in the presence of a transverse magnetic field (Eq. 2-96) with 0z given 

in the wiggler by equations 3-6, 3-7: 
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and rewrite the force equation as: 
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The ponderomotive force is: 
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The mode excitation equation (Eq. 3-9) is transformed to: 
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Here we assume that the EM-mode amplitude *~
qE  does not change significantly 

across the e-beam transverse cross-section. Therefore, the integral over the 

transverse coordinates (dxdy) (see Eq. 2-47) was replaced by multiplication of the 

e-beam cross sectional area Ae. 

In analogy with the e-beam one-dimensional model, definition (Eq. 2-47), 

we use the small signal current parameter instead of the small signal current 

density 
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zJAzI ze . 

Substituting the Laplace transformed equations, we obtain a linear set of 

three algebraic equations for the field amplitude )(
~̂

sCq
, the current )(

~̂
sI  and the 

kinetic voltage )(
~̂

sVz
, which are the Laplace transformed parameters. This set can 

be solved in terms of the initial conditions of these parameters at the entrance to 

the wiggler ( )0(
~
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zq
VIC ). These algebraic equations may be rewritten in 

matrix form as a transform of the input amplitudes ( )0(
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Laplace space )(
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 is the beam plasma wavenumber in the wiggler,  
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is the gain parameter 
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is the e-beam wave impedance in the wiggler.  

The detuning parameter  represents the deviation of the e-beam velocity 

from the synchronism condition for an electromagnetic wave at an angular 

frequency . The gain parameter  is related to the so called “Pierce parameter” 

[82] through 

wk2  

We now can obtain the solutions of the set of the differential equations 

(Eqs. 3-9, 3-12, 3-11) by applying the inverse Laplace transform to the matrix (Eq. 

3-21): 
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where  is a real number. The inverse Laplace transform can be calculated by the 

method of residues:  
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where Sj (j = 1, 2, 3) are the roots (assuming non-degenerative roots) of the FEL 

cubic dispersion equation also named the Pierce dispersion equation:  

0)(  s          3-27 

Each cubic polynomial has 3 roots in the complex plane of numbers 

(including degenerate roots). Replacing the Laplace variable “s” with the variable 

“i*k”, the dispersion equation is transformed to a cubic equation with real 

coefficients: 

0)(2 32223  kkk prw        3-28 

As is well known, such a third order polynomial equation with real 

coefficients has three roots – either all real or one real and two complex (which are 

complex conjugates of each other). In the second case, one of the roots has a 

negative imaginary part, and consequently, one of the parameters Sj (because Sj = 

i*kj) has a positive real part that corresponds to exponential growth. In this case, 

FEL operation is possible with high gain.  

 

3.2 The FEL transfer matrix 

The solutions of the Pierce cubic equation and their influence on the 

electromagnetic gain curve were investigated by [83, 84, 85]. The transfer matrix 

operating on the initial condition parameters can be expressed in real space as: 
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where operation “  ” is the Hadamard product (the element-by-element product) 

also known as the Schur product [86]. Matrix h
~

 includes all dimensional variables 

and matrix F
~

 is expressed in terms of normalized detuning functions (/, prw/, 

Sj/): 
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In Figure 3-1 we display the numerically computed normalized detuning 

function absolute value squared of the radiation matrix elements (|F
EE

()|
2
, 

|F
EI

()|
2
, |F

EV
()|

2
) in the low gain regime case (L = 0.6). The curves are drawn as 

a function of  for various values of plasma wavenumber parameters (prwL). 

In the low gain regime, the EM-wave source gain curve for an 

electromagnetic input (|F
EE

()|
2
, Figure 3-1a) is the well-known derivative of the 

sinc-function [83]. The gain curves for current modulation (|F
EI

()|
2
, Figure 3-1b) 

is square of the sinc-function [83].  

Note that in the general case, if different sources are used simultaneously (it 

will be discussed in the next sections), one must consider the phases of the input 

parameters and of the matrix elements, and consider cross-product terms in 

evaluating the output radiation power. 
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Figure 3-1 Absolute value square of the radiation terms of the transfer matrix in low gain 

regime for different plasma wave number: a) EM-wave source gain curve, b) current pre-

modulation gain curve, c) velocity pre-modulation gain curve   
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3.3 High gain regime 

The case of greatest interest in operating FELs is in the high gain 

(Lw >> 1) tenuous beam ( >> prw) regime. For the synchronism condition ( = 

0), and neglecting the space charge effect (prw = 0), the solutions of the Pierce 

equation are: 


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
2

3
01

i
S
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
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
2

3
02

i
S
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 iS
03          
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For a given gain (), the Pierce equation is an implicit function of residues 

(Sj), detuning parameter () and plasma wave number (prw). We can represent 

each residue in terms of a Taylor expansion: 
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Using the Implicit function theorem, we define: 

s
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Based on these results, higher order differentials are given as: 
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Thus, we obtain (see Appendix 9): 
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The Tailor expansion for the roots of the Pierce equation makes possible an 

approximation analysis of frequency dependence for the FEL general transfer 

matrix. We are focusing now on the exponential growth solution (
1

S ) in the high 

gain regime (|/ << 1, prw/ << 1, z >> 1). Because the general transfer matrix 

is written as inverse Laplace transform, each matrix element:  

 exponentially grows up with the rate 2/)
3

1(3
2

2

z
prw







,  

 has a phase shift (comparing to the synchronism frequency) z
prw







)
4

(
3

2
2

2
,  

 is limited far from the synchronism by a Gaussian shape with FWHM 

5.37(z)
1/2

, 

 has a frequency chirp (an imaginary part of the Gaussian shape term in the 

Fourier space corresponds to the frequency shift in the time-space along the 

pulse). 

For such a case, the FEL transfer matrix (Eq. 3-29) can be written as:  
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Here we neglect the frequency dependence of the fractional part in terms of matrix 

 and save the phase advance in synchronism (for  = 0). 
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3.4 Generation of coherent radiation 

From the first line of the general FEL transfer matrix (Eq. 3-29), one 

obtains a general expression for the amplitude of a radiation mode at the exit of the 

FEL (z = Lw) in terms of the initial conditions at the wiggler entrance (z = 0): 

       0
~

0
~

0
~~

VHIHCHLC EVEI

q

EE

q 
     3-41

 

Assuming operating in the linear regime with a single radiation mode, the 

FEL power output is given by:  

22
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q

EE

qqq
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For the general case, one must use the expressions of the general FEL 

matrix terms with all the initial amplitudes ( )0(
~

),0(
~

),0(
~

zq
VIC ) given both in 

amplitude and phase. However, for some special cases of interest, explicit 

expressions for the emitted power (Eq. 3-42) can be derived. 

In the case of a regular FEL amplifier (no current and kinetic voltage 

modulation at the entrance to the wiggler), we set 0)0(
~

)0(
~


z

VI , and we define 

the FEL gain parameter as the ratio between the output radiation power (P(Lw,)) 

and the input radiation power (P(0,)): 
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In the low gain (Lw << 1) tenuous beam ( > prw) regime, the FEL gain is 

given by the well know expression [83]: 
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In the high gain (Lw >> 1) tenuous beam ( > prw) regime (see Eqs. 3-39 

and 3-40): 
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where 0 is the synchronism frequency ( = 0) and 
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
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Another case of interest is the example of pure initial current prebunching 

( 0)0(
~

)0(
~

 zq VC ). In this case, the generated power is given by: 
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In the low gain regime (Lw << 1): 
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This case of e-beam prebunching is also referred to as superradiance, since 

the emitted radiation power is proportional to the current modulation amplitude 

squared (this is similar to the effect of atomic superradiance where the coherent 

spontaneous emission rate is proportional to the number of atoms squared [87, 

61]). 

In the high gain regime 
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Note that current prebunching often involves also energy prebunching. In 

this case, one must keep both )0(
~
I  and )0(

~
zV  and mind the phase between them: 
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An interesting special case is the case when the input includes both 

coherent radiation field and beam pre-bunching. This situation, referred to as 

"stimulated-superradiance" [87, 88], is actually the case of the radiation section of 

an optical-klystron [89]. It was studied experimentally in an FEM configuration by 

Arbel et al [90], and recently noted to have a significant effect on the gain of long 

wavelength FEL oscillators [91]. 

For the common case where the energy modulation is small relative to the 

current modulation, the stimulated superradiant power term may be expressed as: 
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Note that the relative phase between the input radiation field and current 

prebunching E
-I

 is important and determines if power is generated or absorbed 

(Pq < 0). 
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3.5 Generation of incoherent radiation 

The radiative spontaneous emission of FEL is synchrotron undulator 

radiation. This radiation has been well studied, and is usually described in the 

framework of single particle models. However, such an approach is not sufficient 

for analysis of high gain Self Amplified Spontaneous Emission FELs, where multi 

electron cooperative emission takes place, and in high current FELs, where 

collective interaction takes place. 

In systems with a linear response, it is possible to extend the single 

frequency coherent response formulation to a multi-frequency spectral response 

and also employ stochastic (incoherent) signal analysis. Following [72, 1] we 

extend the coherent linear response formulation and the FEL transfer matrix 

expression that we derived in the previous sections and employ them for 

calculating FEL spontaneous emission and self amplified spontaneous emission. 

These processes are described then as a linear transfer of stochastic input signals of 

the FEL parameters – current noise, energy noise and radiation noise. 

To account for the multi-frequency situation, the single frequency radiation 

mode excitation model (Eqs. 3-8 and 3-9), should be modified to correspond to 

Fourier components of the radiation field (Eq. 2-104), rather than to phasor 

notation: 
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Instead of equations 3-8 and 3-9 the radiation mode excitation equations are 

then: 
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Note that the units of the mode’s transverse profile ( qE
~

) are voltage per 

unit length (V/m) and the mode’s slow amplitude ( qC


) are time (s). 

To calculate the spectral power of a stochastic radiation signal in a single 

mode q, we use the following expression (see Appendix 7): 
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In this expression, which is analogous to Eq. 3-42 for a coherent single frequency 

mode, )(qC


 is the Fourier transform of the radiation mode amplitude, Pq is the 
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normalization power of the mode at the center frequency of the radiation spectrum 

and 
d

dP
 is the spectral power of positively-defined frequencies (in units of 

Watt/(rad/sec)).  

The linear transfer matrix relation (Eq. 3-29) can now be written in the 

spectral notation: 
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or, after opening the squared expression and specifying our analysis to a spectral 

stochastic signal (noise) formalism (Eq. 2-112): 
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Here we assumed no correlation between the input radiation field and the 

input beam modulation components (their products average to zero). Besides the 

input noise contributions of the beam current noise (Eq. 2-113), the beam energy 

noise (Eq. 2-114) and the beam kinetic power noise (Eq. 2-115), this expression 

includes also a radiation noise term. The input radiation noise can be interpreted to 

represent the ambient temperature black-body radiation coupling into a single 

transverse mode and quantum spontaneous emission. It is assumed to be given by 

the Bose-Einstein formula [92]:  
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In conventional SASE FEL theory, it is assumed that the current shot-noise 

is dominant over all other input noise sources [20] (this assumption is justified in 

the next section). Consequently, we can write a simple conventional general 

expression for the FEL spontaneous emission and SASE radiation power in terms 

of the input current shot-noise (Eq. 2-113) and the normalized detuning function 

F
EI

: 
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Here 
2

2





q

qq
em

E

ZP
A  is the effective cross-section area of the mode q and Zq is the 

radiation mode impedance (in free space Zq = Z0). 
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We can now write an explicit expression for the spectral power of 

synchrotron undulator radiation spontaneous emission per mode (see [1]) 

(spontaneous emission of FEL in the low gain limit) using equation 3-47: 
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and for the spectral power of SASE radiation (assuming single transverse mode 

operation [21]): 
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because SASE FEL is commonly operated in high gain regime. The spectral power 

expressions can be written in general in the form:  
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where G() is the regular coherent electromagnetic radiation gain (Eq. 3-43): 
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and the current shot-noise spectral density NEP (Noise Equivalent Power) is 

defined as: 
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Taking into account the high gain spectral
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3.6 Seed injected FEL 

A number of present day FELs are designed to operate at UV-X ray 

wavelengths. Because X-ray resonators are not available for use in FELs, the 

leading concept in current X-ray FELs is Self Amplified Spontaneous Emission 

(SASE). In SASE FELs, the amplified signal is the beam shot noise NEP that we 

calculated in the previous section (Eqs. 3-65 and 3-66). Naturally, the temporal 

coherence of such sources is limited (see Figure 3-2), but they are still extremely 

bright due to a significant feature of e-beam optical guiding, which makes it 

possible to establish transverse spatial coherence of the radiation wave in the high 

gain operating regime [93]. 

The possibility to use high gain FELs for amplification of a coherent input 

signal has been considered in recent years. A number of schemes were developed 

to overcome the coherence limitation of SASE FELs due to shot-noise. These 

include schemes of seed radiation injection, which were demonstrated first in the 

IR regime [94]. Such seed radiation injection has been demonstrated recently at 

UV wavelengths using High Harmonic Generation (HHG) by Lambert et al [23]. 

In this experiment, an intense laser pulse was focused on a xenon gas cell. The fifth 

harmonic at 160 nm generated in the gas cell was used as seed input signal for 

FEL.  

Another seeding scheme is based on prebunching the e-beam by 

consecutive Harmonic Generation and High Gain amplification (HGHG) in 

wiggler structures, which has been demonstrated experimentally in the visible [25]. 

In both of these schemes, coherence is achieved if the coherent harmonic signal (of 

radiation or current modulation) is strong enough to significantly exceed SASE 

NEP (Noise Equivalent Power) which originates from shot noise. 

Using the transfer matrix formulation (Eq. 3-39), it is possible to evaluate 

the coherent power generation in the high gain regime due to seed injection, and 

likewise evaluate the incoherent power generation due to noise (see equations 3-65 

or 3-66) The comparison makes it possible to derive criteria for domination of the 

coherent power in the FEL emission. 

Consider a general high gain FEL structure. Based on the coherent transfer 

matrix relation of an FEL in the linear regime (Eq. 3-39) and the FEL radiation 

power (Eq. 3-42), we obtain the solution of coherent radiation for radiation seed 

injection and for beam prebunching schemes respectively: 
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where z = 0 is the wiggler entrance plane and Lw is its length. 

We now turn to calculate the incoherent (radiation - noise) output power of 

the FEL. We evaluate the spectral power density of incoherent radiation power 

(Eq. 3-58). It is convenient to define an incoherent radiation input (noise) effective 
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(a) 

 

(b) 

 

(c) 

Figure 3-2 Simulation data of SASE radiative emission [95]: a) Single pulse spectral power, b) 

Spectral power averaged over many pulses , c) Time domain "Spiky" intensity distribution of 

a single pulse.  
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power (NEP), which lumps all effective incoherent input signal sources (the e-

beam noise contributions due to random current, kinetic voltage and kinetic power 

and the EM-radiation noise at the FEL entrance plane):  
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where the total incoherent spectral power at the FEL output is given in equation 

3-58.  

In conventional FEL theory, it is customary to ignore any beam micro-

dynamic process in the beam transport sections preceding the FEL, and assume 

that the velocity and current noises are not correlated. Therefore, for such a case, 

we apply marker “zero-length drift section before the wiggler” (Ld = 0). 

Substituting the classical expression for the uncorrelated spectral current shot noise 

(Eq. 2-113), velocity noise (Eq. 2-114) and kinetic power noise (Eq. 2-115), one 

obtains that the e-beam effective radiation input noise power is composed, in the 

conventional (uncorrelated) case, of four contributions: 
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 is the ambient temperature blackbody radiation feeding the FEL 

input radiation mode (Eq. 3-59),  
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If an FEL operates in the high gain cold tenuous beam regime (


prw
<<1) 

and the beam injected into the wiggler is shot-noise dominated: 
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(Eq. 3-68) dominants over that of the kinetic voltage noise (Eq. 3-69) and kinetic 
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which means that the SASE power is determined in the common case by the beam 

current shot noise only, as is usually assumed in the literature [20]. 

To obtain a coherent output signal in an FEL amplifier (seed injected FEL), 

the input coherent signal power should exceed a threshold higher than the current 

noise NEP. Thus, with the assumptions of conventional FEL 1-D linear theory (all 

noise contributions except for current shot-noise are negligible), the input signal 

threshold conditions for attaining FEL coherence are:  
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 0
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)0(
~
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for seed radiation injection and e-beam prebunching schemes respectively. Here 

 is the frequency bandwidth of the gain curve, (HG, see Eq. 3-46) if the 

entire spectral bandwidth of the SASE radiation is considered. If optical filtering 

can be employed to filter out the wideband without SASE radiation, then  is the 

filter bandwidth. In a pulse of duration tp , the bandwidth is Fourier transform 

limited: ω≈π/tp. The noise power is determined by the smallest of this bandwidth. 
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Figure 3-3 Comparing an FEL gain curve (blue curve) with the filtered seed injection signal 

(red curve). 
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4 The Coherence limits of FEL 

In the previous chapter we evaluated the radiant emission power of FEL – 

both coherent and incoherent. In the linear regime, the coherent output power of an 

FEL amplifier is proportional to the coherent input power. The incoherent output 

power is proportional to the beam and radiation noise sources, which can be 

conveniently defined at the FEL input point z = 0 in terms of equivalent incoherent 

input power parameters (NEP). In this approach, the determination of whether the 

FEL radiation output is coherent, or the degree of its coherence, is made at its 

input. In general, the dominant input noise source of FELs is the current shot-

noise. Therefore, according to conventional theory, the condition for FEL 

coherence is the requirement (in pre-bunched FELs) that the coherent beam 

prebunching current at the FEL input exceeds the classical current shot-noise 

(Eq. 3-73). In the case of seed radiation injection, the requirement is that the 

coherent radiation input power (seed injection) into the FEL exceeds the noise 

equivalent power (NEP) of the current shot-noise (Eq. 3-72). 

In Chapter 2 we showed that the dominance of the current shot-noise over 

all other sources of noise is not an absolute physical limitation, and that it is 

possible to suppress it by proper control of the beam micro-dynamics in the 

transport line preceding the FEL wiggler. This means that by taking advantage of 

this process, the conditions for coherent output of the conventional theory for the 

injected coherent seed signal (Eqs. 3-73 and 3-74) can be relaxed. Alternatively, 

the degree of coherence of a seed injected FEL can be enhanced by controlling and 

suppressing the beam noise NEP. 

Taking advantage of the formulations derived in Chapters 2 and 3, the goal 

in this chapter is to define the new limits of FEL coherence when the pre-injection 

microdynamics of the beam is controlled. 

 

4.1 Electron beam microdynamic and radiation noise 

development in a system consisting of a drift section 

followed by a wiggler 

We combine the analysis of the beam noise propagation from the cathode 

(or a general “I-V-independence plane” z = zc) up to the wiggler entrance z = 0, 

and through the wiggler up to its end (z = Lw), together with the analysis of the 

incoherent radiation noise generation and propagation along the wiggler from its 

entrance (z = 0) to its end (z = Lw). 

In our model, depicted in Figure 4-1, the system is composed of two 

sections: a drift section zc < z < 0 of length Ld and a wiggler section 0 < z < Lw of 

length Lw. In principle, the first section could be composed of any of the electron 

optical elements that were treated in Chapter 2 (free drift, accelerator, dispersive 

sections). However, for the sake of simplicity, we assume here that this section is 

only a free drift section, but we allow the beam to propagate at different energies in 

the drift section (0d) and the wiggler section (0). This means that fast acceleration 
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sections, in which the collective micro-dynamics is frozen, may be incorporated 

right at the entrance to the drift section and at its end.  

We define the electron beam parameters at the I-V no correlation point (zc) 

by:  

a) 0c - the start energy relativistic Lorenz factor,  

b) u0c - the velocity distribution spread, 

c) I0 - the beam current.  

d) Ae – the beam cross section area.  

After acceleration, the electrons enter the drift section with an energy 

corresponding to a relativistic factor 0d. At the end of the drift section, the 

electrons are (optionally) accelerated again and are injected into the wiggler with 

an energy corresponding to a longitudinal relativistic Lorenz factor 0z. We assume 

that all other parameters of the set-up (such as the wiggler magnetic field, wiggler 

period and e-beam radius) are known. 

Using these model definitions, all other parameters can be evaluated:  

 At the I-V-independence plane - the kinetic voltage noise (
2

)( czV


, see 

Eq. 2-114), the current noise (
2

)( czI


, see Eq. 2-113), (pr(zc), see Eqs. 2-29 and  

2-43),  

 In the drift section - (prd) and (Wd, see Eq. 2-67) 

 In the wiggler - the plasma wave number (prw, see Eq. 3-22), and the e-beam 

wave impedance (Ww, see Eq. 3-24).  

The conditions for neglecting collective interaction microdynamics in the 

acceleration sections are: 

Laccpr(zc) << 1 and Laccpr(Ld) << 1. 

pr(zc)Lacc < kAepr(zc) < 1/pr(zc)Lacc 

pr(Ld)Lacc < kAepr(Ld) < 1/pr(Ld)Lacc 

Under these conditions, the transfer matrices of the acceleration sections may be 

represented by a unit matrix: 


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






10

01
accM . 

In order to find the complete transfer matrix of the combined system, we 

multiply the transfer matrix of the wiggler (
FELH

~
) by that of the drift section (

TH
~

): 

TFELTOT HHH
~~~

         4-1 
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0c,  
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Figure 4-1 An FEL system composed of a free drift e-beam transport section and a radiating 

wiggler section. 
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where TH
~

 is the general 3x3-transfer matrix of a non-dissipative drift section 

defined by: 
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where 
T

M
~

 is the 2x2 transfer matrix of a non-dissipative section (Eq. 2-68). 

The total incoherent spectral power at the FEL output, described by equation 

3-58, now becomes: 
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In our previous analysis of noise dynamics in a drifting electron beam (see 

Sect. 2.3.2), we showed, based on equation 2-117, that for a drift distance 

prdL  2          4-4 

the initial beam velocity noise transforms into current noise and vice versa: 
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As indicated earlier, usually the noise of a high quality relativistic electron beam, 

used in FELs, is dominated by current shot-noise. Namely: 

N
2
 << 1         4-7 

where we defined the noise dominance parameter N: 
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For this case, the current shot noise in a uniformly transported beam, 

drifting a quarter plasma wavelength oscillation length (Eq. 4-4), is reduced by a 

factor N
2
. Since in a conventional SASE FEL, the radiation power is dominated by 

the input current shot-noise, a scheme such as in Figure 4-1 with quarter plasma 

oscillation drift length (Eq. 4-4) might have been expected to enable maximal 

suppression of the SASE radiation noise power. However, since there is continued 

beam noise evolution dynamics also within the FEL interaction region, it is 

necessary to solve the problem of noise evolution in the entire system consisting of 

the beam transport section and the wiggler. The combined system analysis should 
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result in a more accurate expression for radiation noise suppression and for the 

optimal drift length for SASE noise output minimization. 

As in Chapter 3-5, it is convenient to compare and analyze the noise level 

at the wiggler entrance point (z = 0) by defining a total beam-noise equivalent 

power (NEP) at the entrance to the wiggler as: 
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Using equation 4-3, this NEP is composed of all e-beam shot-noise contributions 

(current, velocity and kinetic power), to which we add radiation input noise that 

originates from quantum spontaneous emission, and the ambient temperature 

black-body radiation at the FEL entrance plane (similarly to previous Section 3.4). 

This modeling of the incoherent and coherent input power source of the FEL is 

illustrated by Figure 4-2  
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 4-9    

The explicit expressions of the last three (beam noise NEP) terms in the 

absence of a drift section were derived in the previous section (Eqs. 3-69 - 3-70). 

We now show that by proper control of the e-beam plasma dynamics in the non-

radiative (drift) section of the transport line, it is possible to control the 

contributions of the different beam noise sources to the NEP, and specifically to 

reduce the current noise contribution (normally dominant) so that the total 

incoherent SASE power of the FEL would be suppressed.  

Taking into account the drift section micro-dynamics by using Eqs. 4-3 and 

4-8, the drift section modified NEPs of the current noise, velocity noise and kinetic 

power noise at the wiggler input can be written then in terms of the corresponding 

conventional (no drift section) NEPs (Eqs. 3-69 - 3-71) in a compact way (see 

Appendix 5.10): 
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Here dprdprd L   is the plasma phase in the free drift section and the noise 

suppression parameter S is: 
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Figure 4-2 Scheme of different noise sources for radiation in Free Electron Laser.  

FEL Amplifier Accelerator 
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It can be seen that Eqs. 4-10 – 4-11 reduce to the original Eqs. 3-69 – 3-70 

in the limit prd = 0. 

Equations 4-10 and 4-11 are rewritten as: 
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where we defined S by 
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By inspection of 4-14, we observe that the current NEP obtains its 

minimum when the plasma phase accumulated in the drift section is: 
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Note that this is a different condition from the condition required to attain 

minimum current noise at the end of the drift section (prd = /2). However, in the 

most common case, we may assume that wd WW   and that the FEL operates in the 

high gain tenuous beam limit ( prw ). Consequently, the parameter S (Eq. 4-

13) satisfied the condition S << 1, and first order expansion of S results in that 

the plasma phase condition for minimum current NEP is: 
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Namely, this is slightly below the point of minimum current noise at the end of the 

drift section. 

Letting S still attain any value, substitution of the minimal NEP phase 

(Eq. 4-16) in equation 4–14 gives the expression for the minimum attainable 

current NEP: 
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However, note that at the same time the input radiation power originating from the 

velocity noise (the kinetic voltage NEP, see Eq. 4-15) attains a maximum value: 
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The interesting question is: What is the minimum of the total NEP 

attainable when one considers both current noise and velocity noise contributions? 

To answer this question, we look into the sum of these two contributions (Eq. 4-14 

and Eq. 4-15). Taking into account the relation 3-69, we obtain: 
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This can be rewritten as: 

     )2cos(1111
2

1 42222

0
















prd

I

L

NEPNEP SSNNS
d

dP

d

dP

d

 4-20 

Evidently, this result indicates that also the total NEP attains it minimum at 

the condition 4-16 and is given by: 
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In the case of interest of SASE noise suppression, one may always assume 

N, S << 1, and this expression simplifies to a very compact and useful expression 

for the minimum spectral NEP that can be attainable with our proposed scheme: 
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The first term in this equation is the contribution to the NEP due to the 

initial current shot-noise, as can be verified directly from Eq. 4-18 in the limit 

S << 1: 
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The second term in Eq. 4-21 is the contribution to NEP due to the initial velocity 

noise, as can be verified by taking Eq. 4-19 into the same limit: 

I

L

NEP

V

L

NEP

V

dNEP

dd
d

dP
N

d

dP

Sd

LdP

0

2

0

2

1)(































 4-23 

where the second part of the equation results from the relation 3-69: 
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Note that we have neglected the kinetic power NEP (Eq. 4-12 and 3-71) 

which is negligible for any practical case. The radiation NEP contribution will be 

considered in a subsequent subsection (4.1.3). 

4.1.1 Suppressed radiation power still limited by shot-noise 

Since both inequalities N << 1 and S << 1 are valid, we need to examine 

separately two cases. If N << S/2, we have from equation 4-21 that the total NEP 

is:  
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and it means that the total NEP is still limited by the current noise, but is 

suppressed by a factor (S/2)
2
 << 1. Its explicit expression (substituting Eqs. 2-122 

and 3-69) is: 
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Note that from 4-24, it seems that it is desirable to decrease the parameter S (for 

example by operating with small beam energy in the drift section). However, there 

is limit to the benefit of decreasing S when we exceed the condition N << S/2. At 

this point, the second term in equation 4-21 becomes dominant. 

4.1.2 Suppressed radiation power limited by velocity noise 

In the case N >> S/2, the contribution of the initial velocity noise becomes 

dominant over the current shot-noise contribution, because of the velocity noise 

taking place enhancement (gain) by dynamics in the drift section: 
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The total NEP is then (from Eq. 4-21) 
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Note that also in this case the total NEP is suppressed relative to the conventional 

SASE radiation power, but by a factor N
2
 << 1 (see Eq. 4-7). After substitutions, 

we find that the effective input radiation noise of the FEL in this case is determined 

by the initial beam axial velocity spread (and not by its shot-noise): 
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Note that the spread of the axial velocities z may be caused by energy spread 
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If conditions for this case are satisfied, the effective incoherent input power 

is limited by the beam longitudinal velocity noise (namely, by its energy spread 

and emittance). The suppressed noise level limited by axial velocity spread may be 

realized with present-day accelerator parameters at optical frequencies. Extension 

to the UV and soft X-ray regime is plausible, but may require further technological 

improvement of beam quality parameters.  

4.1.3 The radiation quantum noise limit of FEL  

The Bose-Einstein radiation input noise term (3-59) assumes the value kBTA 

at low frequencies, up to the THz regime (for an ambient temperature of 

TA = 300
o
K). At higher frequencies, it results in a radiation quantum noise limit 

expression: 
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In the high (X-UV) frequency regime, this term can be quite large. Yet it has never 

been expected that FEL coherence may be governed by this quantum limit, and the 

fundamental FEL coherence limit has been considered always to be the current 

shot-noise. Theoretically, at high enough frequencies, the quantum radiation input 

noise (4-29) can become dominant over the electron beam NEP terms (4-21):  
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and the FEL coherence becomes quantum-noise limited. With the present-day state 

of the art of accelerator technology, it is still early to predict if this limit can be 

attained.  

In all of these cases, the seed radiation coherence condition (Eq. 3-72) is 

relaxed: 
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where the suppressed NEP power on the right hand side is given by (4-21), (4-25), 

(4-27) or (4-28). The degree of temporal coherence of the FEL is then determined 

by the strength of the inequality. 
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4.2 Conclusions 

The conditions for coherent operation of seeded high gain FELs and for operation 

of FELs with coherence beyond the shot-noise limit were derived. The analysis is 

based on a single Langmuir mode fluid plasma linear response theory of the 

electron beam employed in the wiggler and in a drift section preceding the wiggler.  

We obtained a new expression for the low limit of the suppressed beam-

noise radiation equivalent input power (NEP) of FEL. The incoherent radiation 

(SASE power) can be reduced by the sum of two factors, both much smaller than 

one. One factor is (S/2)
2
 , which is always less than 1 for any high gain FEL 

operating in the tenuous beam regime. The other factor is N
2
 , which satisfied the 

condition N
2
 << 1 when the accelerated beam is cold enough and is shot-noise 

dominated (which is the case in most high quality accelerated beams used for 

FEL). If the first factor is dominant, the reduced SASE power is still limited by the 

residual suppressed current shot-noise contribution. In the opposite case, the 

reduced SASE power is limited by the beam initial energy spread.  

In practice, a variety of effects may limit the validity of our model and may 

impede the attainment of the theoretically predicted coherence limits. E-beam 

instabilities and aberrations in the accelerator and in electron-optical components, 

electron Coulomb collisions (at low energies - the Boersch effect [96]), and wake-

field interactions along the transport line, may increase the electron axial velocity 

spread, and may interfere with the plasma wave oscillation process. Excitation of 

multiple transverse (Langmuir) plasma waves may also make it difficult to control 

the SASE noise power with a single parameter p. As discussed in [28], a single 

transverse mode Langmuir plasma wave may be attained by proper design of the 

drift section parameters. Furthermore, a 3-D Vlasov equation analysis indicates 

that higher order transverse plasma waves may be damped due to transverse 

Landau damping [64]. However, in any practical operating regime, it is necessary 

to verify that electron-optical and beam transport imperfections do not corrupt the 

collective noise suppression process in the drift section, and that 3D effects do not 

overshadow the process [29]. 

At present, noise suppression has been demonstrated already at optical 

frequencies in two independent experiments by our group [31], and by 

LCLS/SLAC [97]. With the present state of the art, it may be difficult to attain 

optical current shot-noise suppression at short wavelength (X-UV), and to use it to 

enhance the coherence of seed radiation injected FELs at these frequencies. 

However, in prebunching schemes, such as HGHG, the noise suppression scheme 

may be effective even at such short wavelengths, since the main contribution to the 

high frequency shot-noise in this case is due to harmonic generation and high gain 

amplification of the shot-noise at the fundamental harmonic frequency in the 

optical regime, where shot-noise suppression seems feasible. 

We conclude that theoretical considerations predict the possibility of very 

high coherence and spectral brightness of FELs operating at optical frequencies. 

Coherence enhancement may possibly also be attained in the future in X-UV FELs, 
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though there is still controversy over the attainable short wavelength limit [98]. 

Appropriate design and technological improvements of the non-radiating sections 

of the FEL transport line can provide control and reduction of shot noise power in 

SASE. If coherence beyond the current shot-noise limit is attained, the FEL 

coherence will be limited by the beam velocity noise determined by its (slice) 

energy spread. The ultimate coherence limit of FELs is the quantum noise limit. It 

is theoretically attainable at X-UV frequencies, but its attainment is dependent on 

progress in the technological state of the art, which at present has not yet been 

reached. However, the identification of this limit will serve at present as a 

fundamental limit yard-stick of progress, similar to the Schawlow-Townes limit for 

atomic laser oscillators [17]. 
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Appendices 

1. Vlasov equation 

In this appendix we present a derivation of the Vlasov kinetic equation. It is 

well-known that the Vlasov equation describes a system's evolution based on a 

single particle distribution function. Here we demonstrate a procedure: how we can 

simplify a description of charged multi-particle systems and mention all 

assumptions which had been made. 

The kinetic description of a charged particle system is used for many areas 

of science. For example, the next formalism was presented in [99].    

A system of charged particles may be described in phase space by 

canonical space (r) and momentum (p) coordinates of the i particles (ri and pi 

correspondingly) with the help of the probability density function D(r1,…, rNe, 

p1,…, pNe, t) (Ne is the total number of particles in the system). Thus 

Ddr1,…,drNe,dp1,…, dpNe is a probability that at the time t the particles are in a 

volume element dV = dr1,…,drNe,dp1,…,dpNe 

Here we assume a statistical ensemble of identical systems (identical in the 

sense of dynamic characteristics). Of course, the probability density has been 

normalized: 
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Liouville’s theorem tells us that the probability density function satisfies a 

continuity equation in phase space: 
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Here it must be reminded that the phase space formulation is based on 

canonical coordinates and momentum of charged particles. Therefore, the motion 

of each particle may be described by the Hamilton equation: 
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where H is the Hamiltonian of the charged particle system and it takes into account 

both external electromagnetic fields and the fields of the charged particles in the 

system:  
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Based on this, the continuity equation A0-1 for the probability density 

function may be modified to: 
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 are the Poison brackets. 

Evidently, this is a full detailed microscopic description of a system with a 

large number of particles. In practice, the system may be described with fewer 

details. We can use information about the motion of one particle (or some number). 

It is given by a single particle distribution function f1: 
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or multi-particle distribution function:  
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Note: in these equations the subscript near the coordinate (r or p) shows the 

number of a particle in the system (particles in the system are numbered 

arbitrarily), the subscript near the particle distribution function (f) shows the total 

number of particles which we use for the system description. 

Now we can integrate the continuity equation (Eq. A0-2) with respect to 

variables rs+1,…,rNe,ps+1,…,pNe. Finally, according to the definition of the multi-

particle distribution function: 
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is the energy of interaction between i-th and i’-th particles in the system. Taking 

into account   0 ii dD r  and   0,,, ''', 




iiiiii ddddD pprr , we get: 
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It is a set of integral-differential equations which links the multi-particle 

distribution function fs to fs+1. This set is named BBGKY hierarchy (Bogolubov 

[100], Born [101], Green [101], Kirkwood [102], Yvon [103]).  

If the Coulomb interaction between any two particles has long range 

character (a free path length is larger than the distance between particles), then the 

two-particle distribution function can be represented as the product of two single-

particle distribution function: 

f2(r1,r2,p1,p2) = f1(r1,p1)*f1(r2,p2).  

Substituting this relation into the first equation of the BBGKY hierarchy gives us 

the kinetic Vlasov equation [104]: 
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where Eext and Bext are the external electric and the magnetic fields respectively 

(sources of these fields do not depend on the motion of the charged particles). 

We define a space charge density of the system self(r,t) and a charged 

particle current density Jself(r,t) as: 
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Thus, based on Gauss's law in integral form [105]: 
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the integral term in the Vlasov equation (A0-4) has a similar physical 

interpretation: this is an electric field which is produced by the system of charged 

particles. This field is named the self-field (or space-charge field). The evolution of 

the single particle distribution function depends on the electric field which is 

defined by this distribution function. Note, the interaction between particles is 

represented only by an electric reciprocity (A0-3), whilst the magnetic one is 

ignored, thus in the obtained form of the kinetic Vlasov equation (A0-4), only the 

self electric field is presented.  
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It means that the kinetic Vlasov equation and Maxwell’s equations are the 

full set of equations for a description of electron motion. In the case when the 

charged particles move in a space free from external charges and currents, we 

obtain: 
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  A0-7 

where Etot and Btot are the total (sum of the external and the self fields) electric and 

magnetic fields respectively and defined by: 
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2. Transformation from the kinetic equation to the moment 

equation 

Instead of a distribution function, the evolution of the system of charged 

particles may be described by the evolution of its moments: the current density 

Jself(r,t) (Eq. A0-6), the density of charged particles n(r,t) and the average velocity 

u: 
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It is evident that we may choose as independent functions only two out of the three 

moments of the distribution function. The third moment is defined from: 

),(),(),( ttqnt rurrJ   

Integrating the kinetic Vlasov equation (Eq. A0-7) with respect to 

momentum p, we obtain the zero-moment of the kinetic equation: 
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Or, using the definitions A0-8 and A0-9 and taking into account that: 
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because the distribution function f1 vanishes for infinite momentum, we obtain that 

the zero-moment of the kinetic Vlasov equation is the continuity equation: 
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Multiplying the kinetic Vlasov equation (Eq. A0-7) by the momentum  
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 and integrating with respect to p, we obtain: 
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Following the definitions A0-8 and 
 
A0-9, we obtain: 
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Now, using the zero-moment of the kinetic Vlasov equation (Eq. A0-11), 

we obtain: 
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Thus, the second moment of the kinetic Vlasov equation is the force 

equation for the average system momentum. 
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3. Symmetry properties of the transfer matrix 

Now, applying Chu’s theorem (Eq. 2-42) to a matrix representation of the 

solution (Eq. 2-58) we get that: 

       )0(~)0(
~

Re)0(~)0(
~

)0(~)0(
~

ReRe)0(~Re)0(
~ ******2*

2

viviDAviCBDBvCAi   

Since the ABCD-matrix elements are independent of the beam’s parameters ( v~ and 

i
~

), and Chu’s theorem is valid for arbitrary values of the current modulation and 

kinetic-voltage amplitudes (including zero), we get that the matrix terms must be 

satisfied for three conditions: 

0**  ACCA          A0-12 

0**  BDDB          A0-13 

1**  ADBC          A0-14 

If we express the ABCD-matrix elements in terms of an absolute value and 

phase: for example A = |A|exp(iA), then the first and the second conditions for the 

matrix terms give us: 

2
  AC

 

2
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Taking into account these phase-dependencies, we receive that the third 

condition is transformed to: 
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This may be satisfied only when A-B =  ±/2 : 

  C-A =  +/2  C-A =  -/2  

D-B =  +/2 

A-B =  +/2  |A||D|-|C||B|=1
 

1 BCDA  

A-B =  -/2 -|A||D|+|C||B|=1
 -|A||D|-|C||B|=1 

Not realizable 

D-B =  -/2 

A-B =  +/2 
-|A||D|-|C||B|=1 

Not realizable 
-|A||D|+|C||B|=1

 

A-B =  -/2 |A||D|+|C||B|=1|
 

|A||D|-|C||B|=1
 

Based on the obtained phase-dependence between the transfer matrix 

elements, we get six possible matrix forms (here we assume that A = 0): 

 

 



 91 

   C = /2 C = - /2 

2
  BD

 

B = - /2 











 

)()(

)()(

zDzCi

zBizA
 



















)()(

)()(

zDzCi

zBizA
 

B = /2 













 )()(

)()(

zDzCi

zBizA
 Not realizable 

2
  BD

 

B = - /2 Not realizable 

















)()(

)()(

zDzCi

zBizA
 

B = /2 













)()(

)()(

zDzCi

zBizA
 















 )()(

)()(

zDzCi

zBizA
 

Note that this relation is based on the general properties of linear 

differential equations and Chu’s theorem only. We do not use here any other 

knowledge or assumptions about the electron beam propagation.  

It is evident that the transfer matrix of zero-length (z = 0) is the unit matrix. 

However, a matrix which includes a diagonal term “-|D(z)|” can never reduce to be 

the unit matrix. From the rest of the matrix forms we conclude: 

DA    

Consequently we conclude that only four matrix forms are physical and 

consistent with Chu’s theorem (here we reintroduce the phase A(z)): 
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Note that the absolute value squared of the determinants for these four 

matrix forms are equivalent to the third condition (Eq. A0-14). Thus, the matrix 

determinant equals to 1 for each matrix relation: 

    1)(exp
2

 ziBCDA A  when 
2

  AC
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 and 

2
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Therefore, we found that when Chu’s theorem is valid, the general transfer 

matrix for the set of two linear differential equations may be represented by one of 
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two kinds of functions – ordinary trigonometric or hyperbolic. We define three real 

functions (z), K(z) and W(z) as: 

))((cos)()( 2 zzDzA   when 
2

  AC
 and 

2
  BA

 

))((cosh)()( 2 zzDzA   when 
2

  AC
 and 

2
  BA

 

)(
|)(|

|)(| 2 zK
zD

zA
  and )(

|)(|

|)(| 2 zW
zB

zC
  

where K(z) and W(z) are positive functions: 0 < K(z) < ∞ and 0 < W(z) < ∞ 

Finally, the transfer matrix may always be written in the general form: 
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This form presents the general symmetry properties of a charged particle beam 

system that conserves kinetic power (satisfies Chu’s theorem). 

If we pay attention to the slow-varying amplitude set of differential 

equations (Eqs. 2-53 and 2-54), then we find that the sign of the non-diagonal 

terms (B and C) must be the same. Therefore, the “ordinary trigonometric” form of 

the transfer matrix (Eq. A0-16) gives us the solution of the charged beam 

propagation. The sign of the non-diagonal terms depends on the phasor relation 

definition: for a “-it”-process the sign is “minus”. The presented relation is also 

true for the “fast”-amplitude set of differential equations. 
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4. The transfer matrix of an acceleration section 

Here we derive an explicit expression for the transfer matrix of “fast 

acceleration” corresponding to the 1
st
 order iteration matrix (Eq. 2-75), and 

assuming a constant acceleration gradient model (Eq. 2-78): 
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In the limit of zero acceleration gradient (’ = 0), pr(z) = const, and trivial 

integrations in (Eq. A0-18) result in: 
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This form is nothing but the Taylor expansion of the transfer matrix 

(Eq. 2-68) for a drift section of length Lacc. Now, for non-zero constant 

acceleration gradient (' = const), we substitute in equations A0-18 and A0-19

  z')0(0  
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dz   

and use the immediate integral identities (for x > 1): 
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Thus, we obtain for the matrix elements: 
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For the case when the e-beam is relativistic before and after an accelerator 

(0(0) >> 1 and 0(Lacc) >> 1), we define small parameters x0 = 1/0(0) and 

x1 = 1/0(Lacc). Keeping the second term only, we obtain: 
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or, in the matrix form, in terms of the plasma wave number (pr(0)) and using the 

e-beam wave impedance (Wd(0)) at the entrance to the accelerator, we obtain: 
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The same result in terms of the plasma wave number and the e-beam wave 

impedance at the end of the accelerator (pr(Lacc), Wd(Lacc)) is given by: 
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5.  A new theorem for a sufficient condition for quarter 

plasma oscillation in free space e-beam transport 

In this appendix we derive the conditions sufficient for obtaining quarter plasma 

oscillation in a free drift section of electron beam transport. We start from the K-V 

beam envelope equation of an e-beam transport in a section free from external 

fields [96]: 

0
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    A0-27 

where rb(z) is the beam radius,   is the conventional emittance, and K = 2I0/IA()
3
 

is the relativistic perveance (IA = 40mc
3
/e = 17 kA is the Alfven current). This 

equation is valid for a beam with flat top transverse current density distribution. 

The equation is approximately valid also for a Gaussian distribution (x is the 

Gaussian beam radius, x’ is the Gaussian beam transverse velocity spread) with 

replacements 

'2,2 xxxbr   . 

Neglecting reduction of the plasma wavenumber (rp = 1), we define the 

phase shift (
waistp ) of a plasma wave passing through a beam waist (using the 

Eq. 2-29) as: 
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The solution of the equation A0-27 for the zero-emittance case, namely – 

space-charge dominated transport beam expansion in free–space, is given in [96]. 

If we denote the minimal beam radius at the waist r0, then the beam radius as a 

function of distance (z) is given by: 
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with the accuracy better than 3% (see Figure A0-1). Analogously to optic beams, 

we introduce the term “waist length” (zwaist) as a distance along the z-direction 

where the beam cross section area is twice as large. Therefore, for a space charge 

dominance regime, we obtain: 
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Figure A0-1 Beam envelope in a space charge dominated case: numerical solution (red curve) 

and approximated analytical solution (blue curve). 
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Substituting these definitions (Eqs. A0-29 and A0-30) to equation A0-28, we 

obtain: 
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Thus we obtained that if the beam propagates in the space charge dominance 

regime, then the phase of the plasma wave in the waist is always equal to /2, 

independently of the beam parameters. 

The space charge dominance regime is defined by: 
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        A0-32 

This sets a condition on the emittance or the beam radius required for quarter 

wavelength longitudinal plasma oscillation in free space drift. 

The physical significance of this theorem is that the process of 

homogenization of longitudinal density bunches that takes place within the quarter 

plasma oscillation time, occurs at the same rate as the beam envelope expansion 

due to the Coulomb forces. In the beam frame of reference both processes are seen 

as the same.  

Since the beam is approximately uniform along the waist, the uniform 

beam model expression (Eqs. 2-51 and 2-52) is quite valid. This leads to a quite 

significant conclusion: If the beam is initially current noise dominated, and 

transported in the space-charge dominance regime (Eq. A0-32), then a sufficient 

condition for its noise suppression is to have it pass through through a waist in the 

sense defined above (Eq. A0-31). 

It is interesting to evaluate the plasma phase propagation also in the 

emittance dominated transport regime (K << 2
/r0, opposite case to Eq. A0-32). In 

this case the solution of the beam envelope equation (Eq. A0-27) is (see Figure 

A0-2): 
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Thus the waist length in an emittance dominated regime can be defined as: 
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Figure A0-2 Beam envelope in an emittance dominated case. Analytical solution. 
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Substituting these definitions (Eqs. A0-33 and A0-34) into equation A0-28, we 

obtain: 
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Thus, taking into account the relativistic perveance definition (K), we 

obtain: 
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Obviously, having significant emittance may have significant axial velocity 

noise, and attainment of quarter plasma oscillation this way may not correspond to 

noise suppression. 
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6. Optical Transition Radiation  

Optical Transition Radiation (OTR) is a commonly used particle beam 

diagnostic tool. The radiation effect, produced at the moment when a charged 

particle crosses the boundary between two different media, was theoretically 

predicted by Frank and Ginzburg [106] (see Figure A0-3). The solution for the 

intensity of the radiation field from one charged particle was found from 

Maxwell’s equation by applying necessary field boundary conditions on the 

dielectric surface [107, 108]: 
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where  is the angle between the forward OTR wave-vector and the beam axis, 1 

and 2 are the dielectric permittivities of the media (Figure A0-4).  

When OTR is used for beam diagnostics, it provides information about the e-

beam transverse current distribution. In the case where electrons are incident on the 

screen independently of each other, and their entrance times are uncorrelated, the 

radiation pattern is an incoherent sum of the radiation energies from each electron. 

OTR screens actually measure in general current noise, and they are used for 

current distribution diagnostics only under the assumption that the current noise at 

the OTR screen plane is uncorrelated and proportional to the current density [109]. 

Only then the intensity of OTR is proportional to the current density. 
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Figure A0-3. The Optical Transition Radiation. Radiation scheme. (Taken from CAA-Tech-

Note-internal report #24 by Beth Gitter) 

 

 

Figure A0-4 Transition Radiation patterns in the case of normal electron incidence on a 

boundary. (Taken from CAA-Tech-Note-internal report #24 by Beth Gitter). 
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7. Spectral power density of radiation modes 

We shall develop here a suitable, simple, mathematical formulation for 

quantifying the spectral characteristics of partially coherent radiation modes. This 

formulation deals with systems having known behavior regarding coherency and 

statistical probability in the time-space domain. It is based on the description of a 

system in the "phase-space" which is defined as the space containing the space-

time variable  t,r , and their Fourier transform variables in the space-frequency 

variable  ,r . 

We derive here an expression for the spectral radiation power per radiation 

mode within the framework of the general radiation mode expansion model (Eqs. 

3-8 and 3-9). At this point we still restrict the analysis to finite energy radiation 

signals that are Fourier transformable. 

We keep the previous definition of the Fourier transform (Eq. 2-104). Thus, 

the Fourier transform of the electric field (E(r,t)) and the magnetic field (H(r,t)) 

are: 

   



 dtet ti ,, rErE


 

   



 dtet ti ,, rHrH


 

and the inverse Fourier transforms of the fields are: 

   



 



 det ti,
2

1
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 det ti,
2

1
, rHrH


 

Since the fields in the time-space domain are real functions (imaginary part 

equal to zero), we can use a property of Fourier transforms: the transforms of such 

functions satisfy a reality condition (the real part of the Fourier transform is an 

even function of frequency, the imaginary part is an odd function of frequency):  

     EE


        A0-38 

     HH


        A0-39 

We identify  

),(),(),( ttt rHrErS   

as the Poynting vector in the time domain, and 

),(),(
2

1
),( * 


 rHrErS


       A0-40 

as the Poynting vector in the frequency domain. Based on the reality condition 

(Eqs. A0-38, A0-39), it is evident that the spectral Poynting vector S satisfies the 

reality condition too: 
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)()( *  SS


          A0-41 

Employing the Parseval theorem in the time-frequency dimensions (the 

total energy transfer in the time domain is equal to the sum of energies over all 

frequencies), we find the total energy (W) transferred (energy flow) to the +z-

direction as: 
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Or, using the field relation 
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It is now possible to express the radiation energy flow in terms of integration over 

positive frequencies only (taking into account A41): 
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This suggests that in the positive frequencies spectral domain definition, the 

spectral energy density flow (Pointing vector) should be defined as: 

),(Re2),(  rSrS


p  

and consequently, the positive frequency spectral energy flow can be written as: 
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We now focus our spectral formulation to the case when the radiation field is 

expressed in terms of mode expansion. For calculating axial flow of radiative 

energy, only transverse components of the fields need to be taken into account. 

Using the modal expansion formalism, we represent the fields in terms of a 

complete set of forward and backward propagating transverse modes q propagating 

in the z-direction): 

     

q

qzqqqzqq zikzCzikzC exp),(
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),(exp),(
~

),(),(  rHrHrH
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where  qqqzq kC HE
~

,
~

,,


 are. Respectively. the slow-varying amplitude, the wave 

number, and the electric and magnetic field transverse profile functions of the 

electromagnetic mode q. Mode “–q” propagates in the “–z”-direction. Note, that 

the profile amplitudes define a q-mode normalization power Pq as: 
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    dxdyeP zqqq
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and “–q”-mode normalization power as: 
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Substituting this formulation into equation A0-43, and using the orthogonality 

relation of the expansion mode profiles, we obtain: 
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If the electromagnetic wave is known to propagate only in the +z-direction 

( 0qC


), then: 
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8. Landau damping in relativistic e-beams 

In non-relativistic plasma physics there is a well-known effect called 

Landau damping. If some electrons in the system are synchronous with a plasma 

wave of frequency p and wavenumber kp (their velocity ue is about equal to the 

phase velocity of the plasma wave): 

p

p

e
k

u


  

Subsequently, there can be a significant energy swap from the wave to the kinetic 

energy of these electrons. This effect makes propagation of a short wavelength 

plasma wave into the system impossible. The increment of the Landau damping 

(L) is proportional to the derivative of the electron distribution function in terms of 

velocity at the point of synchronism and is given by: 
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For a Gaussian velocity distribution, the increment of Landau damping attains a 

maximum when the electrons have thermal velocities: ue ~ uth. 

The Landau damping effect was analyzed first by Lev Landau in the 

context of stationary plasma [79]. His kinetic model, based on the solution of the 

Vlasov equation in 1-D, was employed to stationary plasma (zero average velocity) 

with Maxwellian velocity distribution of standard deviation v. Instead of the pure 

sinusoidal oscillation solution at plasma frequency p , which is the solution of the 

fluid plasma equation, it was found in the kinetic model solution, that the 

frequency  has an imaginary part: 

    ImRe i  

therefore the sinusoidal wave solution decays exponentially with a decay constant 

  ImL  

Citing the solution of Jackson [80] (which includes some numerical factor 

correction to Landau’s formula), the frequency decay constant and the plasma 

wave dispersion equation are given in the case of stationary Maxwellian 

distribution plasma by approximate analytical expressions: 
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Here kD = p/u, and the analytical solution is only valid in the range 

ND = kp/kD < 0.5. 
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Clearly the Landau damping effect is negligible when the decay constant is 

small relative to the oscillation frequency (Im <  p). As can be seen from 

equation A0-44,  this happens in the limit ND = kp/kD <<1. 

Obviously the Landau damping effect would take place also in a drifting 

plasma (and particularly in a relativistic electron beam with axial velocity spread). 

Equations A0-44 and A0-45 certainly apply in the beam frame of reference. The 

time decay in this frame is viewed then in the Lab frame as spatial decay in the z 

coordinate of the stationary sinusoidal plasma wave solution of wavenumber 

/u±pr (here we use pr instead p to take into account the plasma reduction factor 

in a finite width beam). Based on the principle of phase invariance under Lorentz 

transformation, the spatial decay constant (Imkz) in the lab frame can be evaluated 

by a Lorentz transformation of equations A0-44 and A0-45 back to the lab frame. 

Alternatively, the entire Vlasov equation derivation can be carried out in the lab 

frame with a velocity distribution of a drifting Maxwellian [65]. This results in the 

same expression like equation A0-44 for the spatial decay constant Imkz = Im/u0 

with ND = k/kD evaluated in the lab frame. 

In this appendix we show that the Landau decay neglect condition is 

ND << 1 using a simple lab frame explanation. Figure A0-5 describes the 

dispersion diagram of plasma waves propagating on an electron beam with velocity 

u0, velocity spread uth and plasma frequency pr (all parameters are evaluated in 

the lab frame). Electrons with velocity u = u0±uth will be synchronous with the 

plasma wave when the following dispersion lines intersect: 

0uk zpr   

 thz uuk  0  

Thus, we obtain a synchronism condition between the electrons in the beam 

and plasma wave propagated on the beam as: 

D
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z k
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or in terms of the plasma wavenumber: 

th

prDz kk



 0  

or in terms of energy spread ( th 0

3

0 ): 

2

0

2

0
0 




 przk  . 

Therefore, Landau damping is negligible in the range  

k << kD  

where intersection of the curves is avoided. 
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For the example of the LCLS injector (Ek = 135 MeV, Ek = 3 keV, pr = 

0.318 rad/m), we obtain Landau damping for a wavelength less than  

nm6  



 109 

 

 

Figure A0-5  Scheme of the dispersion diagram for Landau damping in an e-beam. Landau 

damping occurs in the case where the dispersion lines of the fast and slow plasma waves 

(magenta curves) intersect the dispersion lines of the thermal electrons of the beam (red 

curves). 
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9. Derivatives of the Pierce equation roots 

Here some mathematical expressions of the roots of Pierce dispersion 

equation are calculated. They are being used in the analysis of the FEL transfer 

matrix in Chapter 3.   

The Pierce equation (Eq. 3-23) is: 

   0322
 iiss prw       A0-46  

Let Sj is a root of the Pierce dispersion equation. Thus, using the Implicit function 

theorem, we define: 
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Based on these results, the higher order derivatives are given as: 
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For the synchronism condition ( = 0), neglecting the space charge effect 

(prw = 0), the roots of the Pierce equation are: 
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Substituting these results into equations A0-47 - A0-51, we obtain: 
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Thus, the roots of the Pierce equation in the Tailor expansion are: 
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Comparison of this result with the exact calculation based on Cardano’s formula 

(Figure A0-6) demonstrates a good agreement near the synchronism frequency 

(/ < 1).   
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Figure A0-6. The Pierce equation’s root with a positive real part calculated by the Tailor 

expansion (blue lines) and by the exact Cardano’s equation (red lines). 
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10. The Radiation Noise Equivalent Power of an FEL 

considering the collective microdynamic process in a 

preceding e-beam drift section 

In order to find the noise equivalent power parameters (NEP) of the 

combined system (free drift and wiggler) of an FEL in the high gain regime, we 

multiply the transfer matrix of the FEL - 
FEL

H
~

, (see Eqs. 3-30, 3-39 and 3-40) by 

the 3x3 transfer matrix of the e-beam drift section - 
T

H
~

 (see Eqs. 2-68 and 4-2): 
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Thus, we obtain: 
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Substituting these expressions into the second, third and fourth terms of equation 4-3 

results in the following three NEP contributions to the total NEP power (Eq. 4-9) : 

1. The current noise equivalent power is:  
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2. The kinetic voltage noise equivalent power is:  
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3. The kinetic power noise equivalent power is: 
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where the equations 3-69 – 3-71 are used to define the corresponding NEP 

expressions for Ld = 0, and the noise suppression parameter S is defined by: 
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With simplifying assumptions that the beam cross-section area (Ae) and the 

plasma reduction factor (rp) are the same in the free drift and the wiggler sections, the 

noise suppression parameter may be written as: 
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