The College of Judea and Samaria

Dept. of Electrical and Electronic Engineering

המחלקה להנדסת חשמל ואלקטרוניקה

APPLICATION OF TERA-HERTZ WAVES FOR DETECTION OF HIDDEN OBJECTS FINAL REPORT

Prof. Yosef Pinhasi

Prof. Asher Yahalom

נושא המחקר : שימוש בקרינת טרה-הרץ לחישה מרחוק וגילוי עצמים מוסתרים

- חוקרים ראשיים: פרופי יוסף פנחסי, פרופי אשר יהלום
- התאמה לחזון המאגד : גילוי אובייקטים חשודים מרחוק
 בעזרת קרינת טרה-הרץ

נציג במאגד : דני חרדון •

BAND			FREQUENCY	WAVELENGTH
Extremely Low Frequency	ELF		300 - 3,000 Hz	1,000 - 100 Km
Very Low Frequency	VLF		3 - 30 KHz	100 - 10 Km
Low Frequency	LF		30 - 300 KHz	10 - 1 Km
Medium Frequency	MF		300 - 3,000 KHz	1 - 0.1 Km
High Frequency	HF		3 - 30 MHz	100 - 10 m
Very High Frequency	VHF		30 - 300 MHz	10 - 1 m
Ultra High Frequency	UHF		300 - 3,000 MHz	1 - 0.1 m
		L	1 - 2 GHz	
		S	2 - 4 GHz	
Super High Frequency	SHF		3 - 30 GHz	10 - 1 cm
		С	4 - 8 GHz	
		Х	8 - 12 GHz	
		Ku	12 - 18 GHz	
		K	18 - 26.5 GHz	
		Ka	26.5 - 40 GHz	
Extremely High Frequency	EHF		30 - 300 GHz	1 - 0.1 cm
		V	40 - 75 GHz	
		W	75 - 110 GHz	
Sub-millimeter (TeraHertz)			300 - 3,000 GHz	1 – 0.1 mm
Far infra-red			3 – 30 THz	100 – 10 µm
Infra-red			30 – 300 THz	10 – 1 µm

יעדי מחקר

ני משנה)
ו לגבי המקדם
שונים
גריזה.
ועברה ובליעה
גלי של מערכת
זיאורטי
יאספו.
ידת המקדמים
אריזה וחומרים
<mark>ל קבל</mark> נתונים יגוד וא יגוד וא יגוד הו ייים שי ייים שי ביגוד, י

סקר ספרות

חומרי נפץ וסמים

Unique Spectral Lines of Explosives and Drugs

•	Feature band centre position
Material	frequency (THz)
Explosive	
Semtex-H	0.72, 1.29, 1.73, 1.88, 2.15, 2.45, 2.57
PE4	0.72, 1.29, 1.73, 1.94, 2.21, 2.48, 2.69
RDX/ C4	0.72, 1.26, 1.73
PETN ^a	1.73, 2.51
PETN ^b	2.01
HMX ⁴	1.58, 1.91, 2.21, 2.57
HMX ^b	1.84
TNT ^a	1.44, 1.91
TNT	1.7
TNT	5.6, 8.2, 9.1, 9.9
NH4NO3	4,7
Drugs	
Methamphetamine	1.2, 1.7-1.8
MDMA	1.4, 1.8
Lactose α -monohydrate	0.54, 1.20, 1.38, 1.82, 2.54, 2.87, 3.29
Icing sugar	1.44, 1.61, 1.82, 2.24, 2.57, 2.84, 3.44
Co-codamol	1.85, 2.09, 2.93
Aspirin, soluble	1.38, 3.26
Aspirin, caplets	1.4, 2.24
Acetaminophen	6.5
Terfenadine	3.2
Naproxen sodium	5.2, 6.5

Absorption Spectra

γ -HNIW הצגת נתונים לחומר הנפץ

חלק ממשי ומדומה של מקדם דיאלקטרי

Fig. 2. Frequency-dependent complex dielectric function of γ -HNIW. ε_l and ε_2 are the real part and imaginary part of the dielectric function.

Fig. 1. Frequency-dependent refraction index n(v)and absorption coefficient $\alpha(v)$ of γ -HNIW.

תדריי רזוננס נבחרים וערכים מתאימים להם

Resonans	E'	£"	$tg[\delta]$	$2\alpha[cm]$	$\beta \begin{bmatrix} rad \\ - \end{bmatrix}$
frequency	C	U	(10^{-3})	L	$\int cm$
[THz]					
1.05	3.25	0.11	33.846	14.2	396.5
1.52	3.12	0.325	104.16	59.2	563.0
1.9	3.1	0.157	50.645	36.2	700.8

RDX הצגת נתונים לחומר הנפץ

Fig. 2. The spectral extinction coefficient (base *e*) and refractive index of RDX (100 mg in polyethylene).

תדריי רזוננס נבחרים וערכים מתאימים להם

Resonans frequency [THz]	${\cal E}^{'}$	${\cal E}^{"}$	$tg[\delta]$ (10 ⁻³)	$2\alpha[cm^{-1}]$	$\beta \left[\frac{rad}{cm} \right]$
1.05	3.25	0.11	33.846	14.2	396.5
1.52	3.12	0.325	104.16	59.2	563.0
1.9	3.1	0.157	50.645	36.2	700.8

הצגת נתונים לחומר הנפץ PETN

Fig. 1. The spectral extinction coefficient (base *e*) and refractive index of PETN (100 mg in polyethylene).

תדריי רזוננס נבחרים וערכים מתאימים להם

Resonans frequency [THz]	${\cal E}^{'}$	${\cal E}^{"}$	$tg[\delta]$ (10 ⁻³)	$2\alpha[cm^{-1}]$	$\beta \left[\frac{rad}{cm} \right]$
1.05	3.25	0.11	33.846	14.2	396.5
1.52	3.12	0.325	104.16	59.2	563.0
1.9	3.1	0.157	50.645	36.2	700.8

בגדים וחומרי אריזה

THz properties – clothes & packs

Absorption in Clothes

•מגמה ברורה של הגדלת הניחות עם עליית התדר.

•אין אחידות בין הניסויים השונים. סיבות אפשריות להבדלים: עובי הבגד, מבנה הבגד-צורת התפירה\אריגה ,תנאי הניסוי.

Transmittance in Cloth

Fabric	Morphology	Origin
Wool	Nap	Animal
Linen	Woven	Plant (flax)
Leather	Compound polymer	Animal (mammal)
Denim	Woven	Plant (cotton)
Naugahyde	Homogeneous polymer	Synthetic
Silk	Woven	Animal (insect)
Nylon	Knit	Synthetic
Rayon	Woven	Synthetic

Fabric	Thickness [mm]	Density [kg/m³]	-3 dB Frequency [THz]	Attenuation At 1 THz [dB]	ε΄ (100kHz)
Wool	2.2	214	0.35	11.0	1.6
Linen	1.1	509	0.35	8.0	2.9
Leather	0.75	813	0.40	10.0	5.1
Denim	0.96	490	0.50	6.5	2.3
Naugahyde	0.65	800	0.70	5.5	2.6
Silk	0.36	256	1.0	3.0	1.4
Nylon	0.19	379	1.0	3.0	1.9
Rayon	0.15	733	>1.0	2.5	1.9

<u>ממצאים ומסקנות:</u>

בתדרים נמוכים העברה טובה מאוד בכל סוגי הבדים.

> תדר מחצית ההספק המינימלי-0.35 THz

בתדר 1THz יש הבדל של כמעט 9dB בין סוגי הבגדים.

העברה מושפעת בעיקר מ:

- 1. סוג הבד
 - 2. תדר
- .3 עובי הבד(!)

המחקר לא הבחין בין פיזור, בליעה, והחזרה.

Fabric	Thickness [mm]	Density [kg/m³]	-3 dB Frequency [THz]	Attenuation At 1 THz [dB]	ε΄ (100kHz)
Wool	2.2	214	0.35	11.0	1.6
Linen	1.1	509	0.35	8.0	2.9
Leather	0.75	813	0.40	10.0	5.1
Denim	0.96	490	0.50	6.5	2.3
Naugahyde	0.65	800	0.70	5.5	2.6
Silk	0.36	256	1.0	3.0	1.4
Nylon	0.19	379	1.0	3.0	1.9
Rayon	0.15	733	>1.0	2.5	1.9

הצגה אנליטית

exp[-αd] ניחות בתווך דיאלקטרי מתנהג בצורה אקספוננציאלית:

T=T0 עבור תדר נמוך α≈ 0 ולכן

ε´ כאשר T0 הוא פונקציה של

$T=T0exp[-\alpha d]$

ע"פ משוואה זו מספיק לדעת את α ע"מ לקבל את ההעברה בכל תדר.

ההנחה היא ש- T0 לא משתנה, כלומר ´ε לא משתנה. הנחה זו צריכה בדיקה.

חומרים ביולוגיים

התנהגות חומרים שונים בטרה-הרץ

פיתוח מודל תיאורטי

הכללה של חוק סנל לתווך בולע ונוסחאות העברה

השדה החשמלי בתווך ללא מטענים וזרמים חופשיים מקיים את המשוואה הבאה:

$$\nabla^2 \widetilde{\mathbf{E}}(\mathbf{r}, f) + k^2 (f) \widetilde{\mathbf{E}}(\mathbf{r}, f) = 0$$

:כאשר

 $k^{2}(f) = \mu \varepsilon(f)(2\pi f)^{2} = \mu_{r}\varepsilon_{r}(f)(\frac{2\pi f}{c})^{2}$

בתווך שאינו מגנטי אפשר להניח:

$$\mu_r = 1$$

בואקום וגם באוויר (בתדרים מסוימים) אפשר להניח:

$$\mathcal{E}_r = 1$$

אך בדרך כלל התווך בולע חלק מסוים של הקרינה העוברת בו ולכן המקדם הדיאלקטרי הוא גודל מרוכב:

$$\varepsilon_r = \operatorname{Re} \varepsilon_r + j \operatorname{Im} \varepsilon_r$$

גלים מישוריים וגלים מישוריים מוכללים

בדרך כלל מקובל להניח כי קיים למשוואות השדה החשמלי בוואקום פתרון בצורת גל מישורי:

$$\widetilde{\mathbf{E}}(\mathbf{r},f) = Ae^{+j\cdot\vec{k}(f)\cdot\vec{r}}$$

כאשר \vec{k} וקטור הגל הוא וקטור ממשי. זהו פתרון כאשר מתקיים:

$$\vec{k}^2(f) = \varepsilon_r(f)(\frac{2\pi f}{c})^2$$

יחד עם זאת למשוואה:

$$\vec{k}^2(f) = \varepsilon_r(f)(\frac{2\pi f}{c})^2$$

אין פתרון כאשר המקדם הדיאלקטרי מרוכב שהרי:

$$\operatorname{Im} \vec{k}^{2}(f) = 0 \neq \operatorname{Im} \varepsilon_{r}(f)(\frac{2\pi f}{c})^{2}$$

לשם כך אנו נגדיר גל מישורי מוכלל:

$$\widetilde{\mathbf{E}}(\mathbf{r},f) = Ae^{+j\cdot\vec{k}(f)\cdot\vec{r}}$$

:כאשר $ar{k}$ וקטור הגל הוא וקטור מרוכב

$$\vec{k} = \vec{k}_r + j\vec{k}_i$$

כלומר:

$$\widetilde{\mathbf{E}}(\mathbf{r},f) = A e^{+j \cdot \vec{k}_r(f) \cdot \vec{r}} e^{-\vec{k}_i(f) \cdot \vec{r}}$$

מתקיים:

$$\vec{k}^2(f) = \varepsilon_r(f)(\frac{2\pi f}{c})^2$$

$$\vec{k}_r^2 - \vec{k}_i^2 = \operatorname{Re} \varepsilon_r (\frac{2\pi f}{c})^2$$

$$2\vec{k}_r \cdot \vec{k}_i = \operatorname{Im} \varepsilon_r \left(\frac{2\pi f}{c}\right)^2$$
$$\widetilde{\mathbf{E}}(\mathbf{r},f) = A e^{+j \cdot \vec{k}_r(f) \cdot \vec{r}} e^{-\vec{k}_i(f) \cdot \vec{r}}$$

אינו מקיים תנאי שפה של סופיות השדה כאשר:

$$\vec{r} \rightarrow \pm \infty$$

ולכן איננו פתרון קביל במרחב כולו. יחד עם זאת זהו פתרון קביל בחצי מרחב כמו בבעיה שלפנינו.

בעיות שבירה והחזרה

גלים

$$\widetilde{\mathbf{E}}_{in} = E_{in} e^{+j \cdot \vec{k}_r^{in}(f) \cdot \vec{r}} \qquad \widetilde{\mathbf{E}}_{re} = E_{re} e^{+j \cdot \vec{k}_r^{re}(f) \cdot \vec{r}}$$

$$\widetilde{\mathbf{E}}_{z<0} = \widetilde{\mathbf{E}}_{in} + \widetilde{\mathbf{E}}_{re}$$

$$\widetilde{\mathbf{E}}_{z>0} = \widetilde{\mathbf{E}}_{tr} = E_{tr} e^{+j \cdot \vec{k}_r^{tr}(f) \cdot \vec{r}} e^{-\alpha z}$$

$$\alpha = \operatorname{Im} k_{z}^{tr} > 0, \ \operatorname{Im} k_{x,y}^{tr} = 0$$
$$\operatorname{Im} \vec{k}^{in} = \operatorname{Im} \vec{k}^{re} = 0$$

$$(\vec{k}^{in})^2 = (\vec{k}^{re})^2 = (\frac{2\pi f}{c})^2$$

$$\vec{k}_r^{tr^2} - \alpha^2 = \operatorname{Re} \varepsilon_r (\frac{2\pi f}{c})^2$$

$$2k_{rz}^{tr}\alpha = \operatorname{Im}\varepsilon_{r}(\frac{2\pi f}{c})^{2}$$

פתרון

$$\alpha^{2} = \frac{1}{2} \left(\operatorname{Re} \varepsilon_{r} \left(\frac{2\pi f}{c} \right)^{2} - \left(k_{\perp}^{tr} \right)^{2} \right) \left(-1 + \sqrt{1 + \frac{\left(\frac{2\pi f}{c} \right)^{4} \left(\operatorname{Im} \varepsilon_{r} \right)^{2}}{\left(\operatorname{Re} \varepsilon_{r} \left(\frac{2\pi f}{c} \right)^{2} - \left(k_{\perp}^{tr} \right)^{2} \right)^{2}}} \right)$$

כאשר

$$\left(k_{\perp}^{tr}\right)^{2} = \left(\vec{k}^{tr}\right)^{2} - \left(k_{z}^{tr}\right)^{2}$$

בליעה קטנה

רציפות

תנאי הכרחי (ולא מספיק) לקיום תנאי השפה מחייב רציפות של כל הגורמים האקספוננציאליים במישור z=0:

$$+ j \cdot \vec{k}_{r}^{in} \cdot \vec{r} |_{z=0} = + j \cdot \vec{k}_{r}^{re} (f) \cdot \vec{r} |_{z=0} = + j \cdot \vec{k}_{r}^{tr} (f) \cdot \vec{r} - \alpha z |_{z=0}$$
$$= + j \cdot \vec{k}_{r}^{tr} (f) \cdot \vec{r} |_{z=0}$$

$$\begin{split} \vec{r} \mid_{z=0} &= \left(R\hat{R} + z\hat{z} \right) \mid_{z=0} = R\hat{R} \mid_{z=0} \\ &\implies \\ \vec{k}_{r}^{in} \cdot \hat{R} = \vec{k}_{r}^{re} \cdot \hat{R} = \vec{k}_{r}^{tr} \cdot \hat{R} \\ &\implies \\ \vec{k}_{r\perp}^{in} \cdot \hat{R} = \vec{k}_{r\perp}^{re} \cdot \hat{R} = \vec{k}_{r\perp}^{tr} \cdot \hat{R} \\ &\vec{k}_{\perp} = \vec{k} - k_{z}\hat{z} \end{split}$$

\hat{R} מכיוון שהמשוואות מתקיימות לכל $\hat{R} = \cos\phi \,\hat{x} + \sin\phi \,\hat{y}$ דהיינו לכל זווית \Rightarrow $\vec{k}_{r\perp}^{in} = \vec{k}_{r\perp}^{re} = \vec{k}_{r\perp}^{tr}$ ובפרט $k_{r\perp} = \vec{k}_{r\perp}$ $k_{r\perp}^{in} = k_{r\perp}^{re} = k_{r\perp}^{tr}$

נסתכל באיור:

 k^{in} sin $i = k^{re}$ sin $r' = k^{tr}$ sin rמכיוון ש: $k_{r}^{in} = k_{r}^{re} = \frac{2\pi f}{c}$ $i < \frac{\pi}{2}, r' < \frac{\pi}{2}$ i = r'זווית הפגיעה שווה לזווית ההחזרה כמצופה!

כמו כן:

$$k_{r\perp}^{tr} = k_r^{tr} \sin r = \frac{2\pi f}{c} \sin i$$

 $2\pi f$ $\alpha \cong \left(\frac{\left(\frac{2\pi f}{c}\right) \operatorname{Im} \varepsilon_r}{2\sqrt{\operatorname{Re} \varepsilon_r} - (\sin i)^2} \right)$

מקדם הבליעה תלוי בזווית הפגיעה, בתדר, ובתכונות החומר!

נחשב את זווית השבירה

$$\sin r = \frac{2\pi f}{ck_r^{tr}}\sin i$$
$$\left(k_r^{tr}\right)^2 = \alpha^2 + \left(\frac{2\pi f}{c}\right)^2 \operatorname{Re} \varepsilon_r$$
$$= \operatorname{Re} \varepsilon_r \left(\frac{2\pi f}{c}\right)^2 \left[1 + \frac{\alpha^2}{\operatorname{Re} \varepsilon_r \left(\frac{2\pi f}{c}\right)^2}\right]$$

נחשב את זווית השבירה:

בקירוב:

$$\sin r \cong \frac{\sin i}{\sqrt{\operatorname{Re} \varepsilon_r}} \left[1 - \frac{\alpha^2}{2\operatorname{Re} \varepsilon_r \left(\frac{2\pi f}{c}\right)^2} \right]$$

בקירוב:

$$\sin r \cong \frac{\sin i}{\sqrt{\operatorname{Re} \varepsilon_r}} \left[1 - \frac{(\operatorname{Im} \varepsilon_r)^2}{8 \operatorname{Re} \varepsilon_r (\operatorname{Re} \varepsilon_r - \sin^2 i)} \right]$$

$$\operatorname{Im} \varepsilon_r = 0$$
 במקרה:

$$\sin r \cong \frac{\sin i}{\sqrt{\operatorname{Re} \varepsilon_r}}$$

קיבלנו את חוק סנל הידוע!

$$\operatorname{Im} \mathcal{E}_r
eq 0$$
 במקרה: במקרה

$$\sin r \cong \frac{\sin i}{\sqrt{\operatorname{Re} \varepsilon_r}} \left[1 - \frac{(\operatorname{Im} \varepsilon_r)^2}{8 \operatorname{Re} \varepsilon_r (\operatorname{Re} \varepsilon_r - \sin^2 i)} \right]$$

זווית השבירה תהיה קטנה יותר מאשר מנבא חוק סנל! שכן:

$$\operatorname{Re} \varepsilon_r > 1 \ge \sin^2 i$$

$$T_{TM} = \frac{2\cos i\sqrt{2\alpha^2 + \operatorname{Re}\varepsilon_r \left(\frac{\omega}{c}\right)^2}}{\varepsilon_r \left(\frac{\omega}{c}\right)^{\cos i} + \sqrt{\alpha^2 + \operatorname{Re}\varepsilon_r \left(\frac{\omega}{c}\right)^2 \cos r - j\alpha}}$$

תכנון קונספטואלי

Heterodyne מדידה בשיטת

Outlook: interferometric homodyne detection scheme

- 1 THz BWO
- 2 THz detector
- 3 Focusing lenses
- 4 Chopper
- 5 Reflecting mirror
- 6 Quasi-optical
- splitter
- 7 Shutter.
- Solid box shut,
- dashed open

$$v(t) = R \cdot \frac{1}{Z} \cdot \left| \overline{\widetilde{E}(t)} \right|^2$$

$$V(t) = R \cdot \frac{1}{Z} \cdot \left[\frac{\widetilde{E}_{RF}(t) \cdot e^{j\omega_{RF}t}}{RF - signal} + \underbrace{\widetilde{E}_{LO} \cdot e^{j\omega_{LO}t}}_{Local - oscillator} \right]^{2} = R \cdot \frac{1}{Z} \cdot \left[\left| \widetilde{E}_{RF}(t) \right|^{2} + \left| \widetilde{E}_{LO} \right|^{2} + \underbrace{2\operatorname{Re}\left\{ \widetilde{E}_{RF}(t) \cdot \widetilde{E}_{LO} \cdot e^{j(\omega_{RF} - \omega_{LO})t} \right\}}_{Intermediate - Frequency} \right]$$

$$V_{IF}(t) = 2R \cdot \frac{1}{Z} \cdot \left| \widetilde{E}_{RF}(t) \right| \cdot \left| \widetilde{E}_{LO} \right| \cdot \cos(\omega_{IF}t + \Delta\phi)$$

$$I(t) = +V_{IF}(t) \cdot \cos(\omega_{IF}t + \theta) = +R \cdot \frac{1}{Z} \cdot \left| \tilde{E}_{RF}(t) \right| \cdot \left| \tilde{E}_{LO} \right| \cdot \cos(\theta - \Delta\phi)$$
$$Q(t) = -V_{IF}(t) \cdot \sin(\omega_{IF}t + \theta) = -R \cdot \frac{1}{Z} \cdot \left| \tilde{E}_{RF}(t) \right| \cdot \left| \tilde{E}_{LO} \right| \cdot \sin(\theta - \Delta\phi)$$

מערך מדידות

Experimental set-up

# #		Manufacturer
1	THz source GBWO-103 (Power Supply)	Gycom, Nizhny Novgorod, Russia
2	Pyro-electric Detector (based on LiTaO ₃ Crystal)	Microtech Instruments, Inc
3	High-Performance Mid-Range Travel Linear Stage ILS-100PP With Universal Motion controller ESP-300	Newport Corporation
4	THz Absolute Power Meter System	Thomas Keating LTD, UK

Frequency Measurements

Calibration curve: frequency vs. e-beam energy

Fig.1. Configuration of the measuring cell used in THz experiments.

תצלום מערך הניסוי

Optical lenses : unbearable losses > 10 dB

THz lenses: **\$700 piece** =>

Home-made lenses' production

Mm-wave lenses: teflon

THz lenses: polyethylene (PE) lower material losses ~ 20% higher refraction index ~ 10%

- Home-made THz lens design software
 MathCad
- Lenses' design
- Manufacturing

(Weizmann Institute workshop)

Home-made: \$75 piece

Microtech Inc. \$700

העברה במודל פברי-פרוט

חילוץ מקדמים דיאלקטריים על ידי פתרון משוואות לא לינאריות

 $T_p(L_1, t, \varepsilon_r'\varepsilon_r, f) = A_1$ $T_p(L_2, t, \varepsilon_r'\varepsilon_r, f) = A_2$ $T_p(L_3, t, \varepsilon_r'\varepsilon_r, f) = A_3$

Alumina תוצאות הניסוי

Experimental set-up

Experimental set-up

Transmission mode

- + : Absorption measurable
- : Impossible to measure high-loss samples

Experimental set-up

Reflection mode

- Impossible to measure absorption
- + : Possible to measure high-loss samples (refraction index)

Data processing - reflection

 $R(TE) = | r(TE) |^2$ $R(TM) = | r(TM) |^2$

where

$$r(TE) = \{ \cos(\theta_1) - \sqrt{[\varepsilon_2 - \sin^2(\theta_1)]} \} / \\ \{ \cos(\theta_1) + \sqrt{[\varepsilon_2 - \sin^2(\theta_1)]} \}$$

 $r(TM) = \{ \epsilon_2 \cos(\theta_1) - \sqrt{[\epsilon_2 - \sin^2(\theta_1)]} \} / \\ \{ \epsilon_2 \cos(\theta_1) + \sqrt{[\epsilon_2 - \sin^2(\theta_1)]} \}$

Data processing - reflection

Data processing - transmission

- λ radiation wavelength (in vacuum)
- **a** absorption coefficient
- $n + i \kappa$ Complex refraction index $\epsilon' + i \epsilon''$ Complex dielectric constant

$$n + i \kappa = \sqrt{(\epsilon' + i\epsilon'')}$$

 $a = 4 \pi \kappa / \lambda$

$$\epsilon' + i \epsilon'' = (n + i\kappa)^2$$

 $\kappa = a \lambda / 4\pi$

YOSH THz facility upgrade

Power Meter

Power Meter

Power Meter

Measurements:

Bio-materials

Measurements:

Bio-materials

Measurements:

Bio-materials

Measurements: Powders

Measurements: Powders

Experiment: dummy explosives

Experiment: dummy explosives

