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Abstract—State-dependent channels have received much at-
tention over the years, due to their relevance in many different
network and multi-user communication scenarios. Nonetheless,
previous treatments of this problem assumed that all of the state
is available in the same manner: causally, non-causally or non-
causally with a finite look-ahead. Yet, in many realistic situations,
different parts of the state are known in a different manner.
We consider the case where the state is composed of several
parts, where each part is known with a different look-ahead.
Specifically, we derive the capacity for the case where part of
the state is known non-causally to the transmitter, whereas the
other part is known only causally, and demonstrate that there
are cases in which this capacity can be strictly larger that the
capacity of the case where the state is known in a causal fashion,
and strictly smaller than the capacity of the same channel, where
the state is available non-causally. We note that the treatment in
this work provides a unified framework for treating the causal
state-information case, the non-causal state-information case, as
well as a mixture of the two.

Index Terms—Side information, state-dependent channels, in-
terference, causality, finite look-ahead.

I. INTRODUCTION

The state-dependent discrete memoryless channel (DMC),

depicted in Figure 1, is described by an i.i.d. state sequence

s ∈ S with a probability distribution and channel transition

probability distribution

p(s) and p(y|x, s) ,

respectively, where x ∈ X is the channel input and y ∈ Y is

the channel output; and where X ,Y and S denote the channel

input alphabet, channel output alphabet and state alphabet,

respectively, all of which are finite sets. The memoryless

property of the channel implies that

p(y|x, s) =

n
∏

i=1

p(yi|xi, si) . (1)

The first to consider this model was Shannon [1], who

assumed that the state sequence is available to the transmitter

as “side-information” in a causal manner, i.e., the transmitted

symbol at time i, xi, may depend on all past channel states as

well as the channel state at time instance i, si. More specifi-

cally, the encoder maps the message w ∈ {1, 2, . . . , 2nR} into
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Xn using functions:

xi = fi
(

w; si1
)

, 1 ≤ i ≤ n, (2)

where si1 = (s1, . . . , si) are the states up to time i.
The non-causal counterpart of the problem was formulated

by Gel’fand and Pinsker [2], who assumed non-causal knowl-

edge of the state sequence s at the transmitter. This allowed

them to solve the problem of writing to memories with defects

which was considered in [3] (see also [4]). In this scenario,

the transmitted symbol at time i is a function of the entire

state sequence

xi = fi (w; s
n
1 ) , 1 ≤ i ≤ n. (3)

In both cases, the receiver decodes the message w from the

whole received vector as ŵ = g(yn1 ).
The case where the side-information is known non-causally

but only up to a finite number of time slots ahead (“finite look-

ahead”), was considered in [5] (where it was called “finite

anticipation”) for the special case of the dirty paper channel

(additive white Gaussian channels with additive interference

[6]); for this case a lattice-based achievable was derived. The

finite look-ahead problem for a general state-dependent DMC

was treated by Weissman and El Gamal [7, Sec. VI]; however

no single-letter solution for this problem is known.

Nevertheless, in certain communication scenarios, different

parts of the channel state are available to the encoder in a

different manner, i.e., with different look-ahead lengths. This

is the case, for instance, in certain cognitive radio scenarios

and dynamic ad-hoc networks, where, e.g., the message to an

adjacent user is known in advance (“non-causally”), and can be

regarded as a non-causal state, but the channel characteristics

are known only in a causal manner or only up to a short look-

ahead (depending on the memory of the channel).

In the present work, we consider the case of “composite side

information”, in which different parts of the channel state are

known to the transmitter with different look-ahead lengths.

We derive the capacity for the extreme case in which part of

the state is known causally (“zero look-ahead”) whereas the

other – non-causally (“infinite look-ahead”).

The rest of the paper is organized as follows: We start by

reviewing previously known results for the different cases of

availability of side information in Section II. In Section III,

we provide a general framework for all of these scenarios and
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Fig. 1: The discrete memoryless state-dependent channel.

When switches A and/or B are closed, the state is available at

the transmitter and/or receiver, respectively.

derive the capacity for the composite state-dependent scenario

where part of the state is known causally and the other – non-

causally. We conclude by presenting a few examples for the

composite case with causal and non-causal side-information

parts, along with a discussion of the results and suggestions

for further generalizations, in Section IV.

II. STATE-DEPENDENT CHANNEL SCENARIOS

In this section we briefly review the different scenarios

considered for the state-dependent DMC, depicted in Figure 1.

When the state S is not available to the transmitter nor to

the receiver (A and B are open), the channel reduces to a

“regular” DMC with transition probability distribution

p(y|x) =
∑

s∈S

p(s)p(y|x, s). (4)

Therefore, the capacity in this case is given by the standard

capacity expression

C = max
p(x)

I(X ;Y ) . (5)

Hence, any part of the state known to none of the transmission

ends, can be absorbed into the channel transition matrix.

Consider now the case where the state S is known to the

encoder but not to the receiver (A is closed, B is open) so

that the transmitted symbols are governed by (2). For this

scenario, Shannon showed [1] that when S is known causally,

the capacity is given by the capacity of an associated DMC.

The input alphabet of the associated channel, denoted by T ,

is the set of all possible mappings

t : S → X

which we refer to as strategies or strategy functions. The

output y of the associated channel is related to the input t
according to the transition probability

p(y|t) ,
∑

s

p(s)p(y|x = t(s), s)

and also

p(yn1 |t
n
1 ) =

n
∏

i=1

p(yi|ti) .

Thus, the capacity in this case is given by

C = max
p(t)

I(T ;Y ) , (6)

where the maximization is taken over all possible distributions

p(t) of the random variable T ∈ T . We also note that at most

min{|S|(|X | − 1) + 1, |Y|} of the strategies need be given

positive probability in order to achieve capacity [8, Ch. 4].

For the case in which the state S is known non-causally,

i.e., the encoder knows the entire state sequence in advance,

Gel’fand and Pinsker showed, using random binning for the

achievability part, that the capacity of this problem is given

by [2]

C = max
p(u|s), x=x(u,s)

{I(U ;Y )− I(U ;S)} , (7)

where the maximum is over all auxiliary variables U , satisfy-

ing the Markov relation U ↔ (X,S) ↔ Y , and the cardinality

of U need not exceed min{|S||X |, |Y|+ |S| − 1}, and all

deterministic functions x = x(u, s).

Remark 1: The capacity of the causal-knowledge case (2)

could be achieved using random binning, as in the non-causal

case (3), but where the auxiliary U is independent of the state

S, thus attaining a rate of

R = max
p(u)

I(U ;Y ) ,

which is indeed equal to the capacity in (6).

The case where the encoder, at each time instance, knows

the state sequence only up to a finite (constant) number

of instances ahead (“finite look-ahead”) was treated in [7,

Sec. VI]; however no single-letter solution is known for this

problem.

Finally, note that the case where the state S (or part of

it) is available at the decoder (B is closed), is equivalent to

a channel with an augmented output Ỹ which is composed

of the channel output Y and the state S, i.e., Ỹ = (Y, S).
Hence, the case in which the state or part of it are available

at the decoder needs no special treatment being a special case

of the same problem without state knowledge with a different

“augmented” output.

In the next section we introduce the problem, in which

different parts of the state are known with different look-

aheads and derive the capacity for the case in which part of

the state is known causally, whereas the other - non-causally.

III. CHANNEL CODING WITH COMPOSITE STATE

INFORMATION

The memoryless state-dependent channel with composite

state information at the encoder with K parts, is given by (1),

with the state S being composed of K parts {Si}
K

i=1, with

probability distribution p(s) = p(s1, s2, ..., sK), “part” Si is

known to the encoder with look-ahead of length ℓi ∈ N.

As even the capacity of the single finite look-ahead scenario

has no (known) single-letter characterization, we limit our

focus to the extreme case where the state is composed of two

parts, where one is known causally (ℓ1 = 0), whereas the other
part is known non-causally (ℓ2 = ∞).

Theorem 1: The capacity of the state-dependent channel (1)

where the state S is composed of two parts S = (Γ,Λ) with
joint probability distribution

p(s) = p(γ, λ) ,



where Γ is known causally (with look-ahead ℓ = 0) to the

encoder and Λ - non-causally (ℓ = ∞), is given by

C = max
p(u|λ), x(u,λ,γ)

[I(U ;Y )− I(U ; Λ)] , (8)

where the maximization is over all auxiliary variables

U , which, given Λ, are independent of Γ and satisfy

U ↔ (X,Γ,Λ) ↔ Y , and over all deterministic functions

x = x(u, λ, γ). The cardinality of the auxiliary random vari-

able is bounded by

|U| ≤ min{|Λ| [1 + |Γ|(|X | − 1)] , |Y|+ |Λ| − 1} .

Proof:

Achievability: To achieve a rate as given (8), we use Shannon

strategies t which map the causally known side-information γ
to a channel input x = t(γ). We now may view the resulting

channel as a channel whose inputs are all possible strategies t,
as in (6), with non-causal side-information λ available at the

encoder. According to (7), the rate given by

R = max
p(u|λ),tu,λ

[I(U ;Y )− I(U ; Λ)] (9)

is achievable for this channel, where by tu,λ we mean that t
is a deterministic function of (u, λ). Since x = t(γ), (9) can
be written as

R = max
p(u|λ),x=tu,λ(γ)

[I(U ;Y )− I(U ; Λ)]

= max
p(u|λ),x=x(u,λ,γ)

[I(U ;Y )− I(U ; Λ)] .

Thus (8) is achievable.

Converse: The converse follows along the same lines of the

converse for the non-causal side-information (only) problem

(7), as presented in [9].

n(R− ǫn)
(a)

≤ I(W ;Y n
1 )

(b)
=

n
∑

i=1

I(W ;Yi|Y
i−1
1 )

(c)

≤

n
∑

i=1

I(W,Y i−1
1 ;Yi)

(d)
=

n
∑

i=1

I
(

W,Y i−1
1 ,Λn

i+1;Yi

)

− I
(

Yi; Λ
n
i+1|W,Y i−1

1

)

(e)
=

n
∑

i=1

I
(

W,Y i−1
1 ,Λn

i+1;Yi

)

− I
(

Y i−1
1 ; Λi|W,Λn

i+1

)

(f)
=

n
∑

i=1

I
(

W,Y i−1
1 ,Λn

i+1;Yi

)

− I
(

W,Λn
i+1, Y

i−1
1 ; Λi

)

(g)
=

n
∑

i=1

I(Ui;Yi)− I(Ui; Λi)

≤ max
p(u|λ),x(u,γ,λ)

{I(U ;Y )− I(U ; Λ)} , (10)

where (a) follows from Fano’s inequality with ǫn → 0 for

n → ∞; (b), (c) and (d) follow from the chain-rule for mutual

information; (e) holds true by the Csiszár-Körner identity [10,

Chap. 3, §4]; in (f) we used the fact Λi is independent of

(W,Λn
i+1); and in (g) we defined Ui , (W,Y i−1

1 ,Λn
i+1). Note

that this choice of U satisfies U ↔ (X,Λ,Γ) ↔ Y and is

independent of Γ given Λ.
We shall now show that the maximum in (10) is achieved for

a deterministic function, i.e., x = x(u, γ, λ). Fix p(u|s). Hence
the second term in (10), I(U ;S), is constant, suggesting that

maximization needs to be carried over the first term I(U ;Y )
only. We now observe that

p(y|u) =
∑

x,λ,γ

p(y|x, γ, λ)p(x|u, γ, λ)p(λ, γ|u)

is linear in p(x|sC, sNC), since p(y|x, γ, λ) is fixed, p(λ, γ|u)
is fixed given p(u|s) and the Markov chain relation U ↔
(X,Γ,Λ) ↔ Y . Since I(U ;Y ) is convex in p(y|u) it is

therefore convex in p(x|u, γ, λ), which implies in turn that

it is maximized by a deterministic mapping x = x(u, γ, λ).
Cardinality Bound: The bound for the auxiliary random

variable cardinality is derived in a similar manner to the

cardinality bound for the Gel’fand-Pinsker problem in [9].

Remark 2: For pure causal state information (at the trans-

mitter) case, the cardinality bound reads |U| ≤ min{|S|(|X |−
1)+1, |Y|}, whereas for the pure non-causal case, it takes the
form |U| ≤ min{|S||X |, |Y| + |S| − 1}. When we compare

the right flanks of these expression, the non-causality reflects

on the result with a contribution of |S| − 1. In our case,

this factor takes the form |Λ| − 1, since Λ is the non-causal

part of the available state information. As for the left flank

components, consider the random variable V , (U |Λ = λ0),
i.e., the auxiliary random variable conditioned on the non-

causal state information. For each instance of Λ, the cardinality
of V is bounded by |V | ≤ |Γ|(|X | − 1) + 1. Since there

are |Λ| possible different choices, |U| ≤ |Λ| [1 + |Γ|(|X | − 1)]
follows.

Remark 3: When the (entire) state S is known causally (by

setting Λ = λ0, i.e., it is deterministic and known by both

ends of transmission), respectively non-causally (by setting

Γ = γ0), (8) reduces to (6), respectively (7).

Remark 4: The capacity (8) in Theorem 1 can be achieved

using a single random binning scheme without the need to

split the scheme into a two-step scheme as was done in the

proof of Theorem 1.

Remark 5: Additional parts of the state which are known

pure-causally, i.e., with negative look-ahead (l < 0) cannot

increase capacity. This is seen from the proof of the converse

of Theorem 1.

IV. EXAMPLES

In this section we further discuss the composite side-

information scenario, where part is known causally and the

other – non-causally, treated in Theorem 1. We start by

considering three examples: In Example 1 we show a case

where knowing part of the state non-causally does not increase

capacity beyond the all-causal side information case; in Ex-

ample 2 we present a case in which the capacity when part of
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Ŵ

1

n
wH(x) ≤ q

Fig. 2: Binary dirty paper channel with two interferences.

the state is known causally and the other non-causally is equal

to the capacity as if both parts were available non-causally,

which in turn is strictly greater than the capacity of the same

channel with only causal side-information; finally, Example 3

demonstrates a case in which the capacity of the composite

side-information case is strictly greater than that of the all-

causal side-information case, yet strictly smaller than that of

the case in which all of the state is available non-causally.

Example 1 (Binary dirty paper channel with two interferences):

Consider the (noiseless) “binary dirty paper channel” with

two interferences (depicted also in Figure 2):

Y = X ⊕ Γ⊕ Λ ,

where X,Y,Γ,Λ ∈ Z2 and ⊕ denotes addition modulo-

2 (XOR). The states Γ and Λ are independent, i.i.d. with

distribution Bernoulli(1/2) and are known at the transmitter.

The input is subject to a (“power”) constraint 1
n
wH(x) ≤ q,

where 0 < q < 1/2, wH(·) denotes Hamming weight, and n
is the length of the codeword.

When Λ and Γ are known causally, the problem reduces to

that of (only) causal side-information, the capacity of which

is given in (6), and was explicitly found in [11] to equal

Ccausal = 2q. On the other hand, when both Λ and Γ are known

non-causally, the capacity is equal to [11] Cnoncausal = Hb(q),
where Hb(·) denotes the binary entropy function. This in

turn is equal to the capacity of the interference-free case

(Λ = Γ = 0) and is strictly larger than the capacity of

the causal case, for 0 < q < 1/2. Considering the case in

which Λ is known non-causally whereas Γ – only causally, one

observes that non-causal knowledge of Λ does not help beyond

the causal knowledge scenario, i.e., Ccomposite = Ccausal = 2q.
This happens since even if Λ were known at both sides (or

alternatively, equal to 0), the channel would reduce to the

case of a channel with a single causally-known interference

Γ, the capacity of which is 2q. Thus the capacity of the

composite side-information scenario, is equal to the causal

side-information capacity in this case and does not provide

further improvement:

Ccausal = Ccomposite < Cnoncausal .

Example 2 (Binary dirty paper channel with erasures): In this

example we consider a state-dependent channel with binary

input and ternary output, where part of the state determines,

at each time instance, whether an erasure, which corresponds

to one of the channel outputs, occurs or not (in the latter case

only one of the two other channel output outcomes is possible).

This channel, depicted in Figure 3, is described by

Y =

{

X ⊕ Λ Γ = 0

ε Γ = 1
, (11)

where X,Γ,Λ ∈ Z2, Y ∈ {0, 1, ε}, Γ and Λ are independent

with distribution Bernoulli(1/2) and are known at the transmit-

ter, and X is subject to a (“power”) constraint 1
n
wH(x) ≤ q,

where 0 < q < 1/2. This channel could be thought of as a

binary dirty paper channel with erasures, where the erasures

are available as side information at the encoder, in addition to

the additive interference.

The scenario in which both Γ and Λ are known only causally

falls under the framework considered by Shannon, the capacity

of which is given in (6). For our channel of interest (11), the

(all-causal) capacity is equal to

Ccausal = min{2q, 1/2} ;

note that when q ≤ 1/4 the capacity is equal to that of the

same channel when no erasures are possible (i.e., when Γ = 0).
This happens, since both the transmitter and the receiver are

aware of erasure occurrences: The encoder – due to its causal

side-information, and the decoder – since it observes a distinct

outcome in case of an erasure. Thus, the encoder and decoder

can ignore channel uses in which erasures occur, and in this

manner “save power” that may be used during the rest of the

channel uses.

The capacity of the Gel’fand-Pinsker scenario, in which Γ
and Λ are known non-causally, given in (7), can be shown to

equal

Cnoncausal =
1

2
Hb

(

min

{

2q,
1

2

})

,

for the channel of interest (11). Again note that since both

transmission ends are aware of the exact places erasure oc-

curred, they would only use the remaining channel uses to

convey information. Since in the limit of large block-length

n, the number of erasures is n/2, one is left with only n/2
channel uses over which information may be transmitted.

Thus knowledge of the erasures in advance is superfluous,

as for large n values, it is guaranteed that the number of

erasures is equal (approximately) to n/2 and the times of

their occurrences are known at both ends. Hence, in this case

the capacity of the composite side-information case, in which

Γ is known causally and Λ - non-causally, is equal to the

case in which both are known non-causally, yet larger than

the capacity of the case in which both parts are known only

causally. For q < 1/4, these results can be summarized as

follows:

Ccausal < Ccomposite = Cnoncausal .

Example 3 (Binary dirty paper channel with product interference):

Consider now the binary dirty paper channel with a product

interference (depicted in Figure 4):

Y = X ⊕ ΓΛ ,
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Fig. 4: Binary dirty paper channel with a product interference.

where X,Y,Γ,Λ ∈ Z2, Γ and Λ are independent with

distribution Bernoulli(1/2) and are known at the transmitter,

and the input is subject to a (“power”) constraint 1
n
wH(x) ≤ q.

Note that the additive interference is equal to the product of

the interferences Γ and Λ.
When both Λ and Γ are known non-causally, this problem

reduces to the non-causal side-information problem (7), the

capacity of which is [11] Cnoncausal = Hb(q).
When Λ and Γ are known only causally, the problem

reduces to that of (only) causal side-information, the capacity

of which is given in (6) and is strictly smaller than that of its

non-causal counterpart, as depicted in Figure 5.

Finally, consider the case in which Λ is known non-causally

whereas Γ is available in a causal manner. This case falls

under the framework of Theorem 1 and its capacity is given

by (8) and is strictly larger than that of the causal case and

strictly smaller than the capacity in the non-causal case, as

depicted in Figure 5. This is true since Λ is known in advance

(“non-causally”) and due to the structure of the channel (the

interferences are multiplied), we can anticipate approximately

2/3 of the time instances in which the interference is equal

to zero. This allows us to achieve higher rates in these

time instances than could be achieved in the causal case.

Nonetheless, since not all the interference sequence can be

anticipated in advance, as is the case in the “all non-causal”

scenario, one cannot hope to achieve the same rate of the

latter case. Thus, this channel demonstrates a case in which

partial non-causal side-information in addition to causal one,

improves performance, yet additional non-causal information

beyond the part known only causally can assist further to

improve performance:

Ccausal < Ccomposite < Cnoncausal .

V. CONCLUSIONS

The repercussion of the present work is twofold: Establish-

ing a general framework for the problem of state-dependent
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Fig. 5: Capacities in nats of the different side-information

scenarios of Example 3, as a function of the Hamming input

constraint q. Continuous line – Γ and Λ are known non-

causally; dashed-dotted line - Γ is known causally and Λ –

non-causally; dotted line – Γ and Λ are know causally.

channels with different parts of the state available with dif-

ferent look-ahead lengths, as well as providing a unified

treatment of the different side-information scenarios, which

were previously considered and treated separately. This is

possibly by noting that the right flank of (c) in (10) is the

same both in the converses of Shannon [1] and Gel’fand and

Pinsker [2]. Thus, both the causal and the non-causal scenarios

can be treated simultaneously. Finally, we note that for the

general case, where the state is composed of parts known with

different finite look-ahead lengths, similar results to those of

Weissman and El Gamal [7] for the single-part finite look-

ahead, may be derived.
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