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Abstract—We consider a source-coding scenario in which
composite side information is available at the decoder, viz. part
of it is known non-causally, whereas the other part is available
only causally — by this combining the treatment of Wyner and
Ziv with that of Weissman and El Gamal. We then consider the
joint source–channel coding problem of transmitting a source
with composite side information at the decoder over a channel
with composite side information at the encoder. We show that
the separation principle between source coding with composite
side information and its dual channel problem holds true, thus
extending the result of Merhav and Shamai to the case of
composite side informations. These results provide a unified
framework for treating the causal side information case, the non-
causal state-information case, as well as a mixture of the two.

Index Terms—Side information, causality, state-dependent
channels, interference, finite look-ahead, separation principle.

I. INTRODUCTION

The discrete memoryless (DMS) source with side infor-
mation, depicted in Figure 1, is composed of a source se-
quence un

1 = (u1, . . . , un) and side information sequence
qn1 = (q1, . . . , qn), which are drawn jointly, in an i.i.d. manner,
from a joint probability mass function p:

pn(un
1 , q

n
1 ) =

n
∏

i=1

p(ui, qi) , ui ∈ U , qi ∈ Q , (1)

where U and Q are finite sets denoting the source and side-
information alphabets, respectively.

The encoder maps the source sequence un
1 to an index j

according to a mapping f : Un →
{

1, . . . , b2nRc
}

, i.e.,

j = f (un
1 ) ,

and sends this index to the decoder. The decoder, in turn,
recovers a (distorted) reconstruction ûn

1 (ûi ∈ Û) of the source
sequence un

1 from the index j sent by the encoder and its
side information sequence qn1 , according to a (deterministic)
mapping g :

{

1, . . . , b2nRc
}

×Qn → Ûn:

ûn
1 = g (j, qn1 ) = g (f (un

1 ) , q
n
1 ) .

The problem is to find the optimum rate–distortion function
(RDF) R(D), i.e., what is the smallest rate R needed to
achieve a given average per-symbol distortion D, with respect
to some distortion measure ρ.
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Different scenarios were considered for this problem, which
differ from each other by the way ûn

1 may depend on the side
information sequence qn1 .

In the most natural scenario ûn
1 may depend on qn1 in an

arbitrary manner. The optimum trade-off between rate and
distortion for this case was established in the 1976 seminal
paper by Wyner and Ziv [1]. We shall refer to this scenario
as the “non-causal” one, as each reconstructed source symbol
ûi may depend on the whole side information sequence qn1 .
Thus, ûi is of the form

ûi = gi (j, q
n
1 ) , (2)

where {gi} are the entries of g, namely, g = (g1, . . . , gn).
A more restrictive setting of the source-coding problem with

side information at the decoder is the case where the decoder
is constrained to anticipate and use only ` ≥ 0 future side
information symbols, where ` is referred to as the “finite look-
ahead” parameter. Thus, the reconstructed source symbol ûi

may depend on the side information symbols qi+`
1 but not on

qn`+1:1

ûi = gi
(

j, qi+`
1

)

. (3)

This problem was treated by Weissman and El Gamal in [2],
in which upper and lower bounds on the RDF for 0 < ` < ∞
were derived and the RDF for the “causal side information”
was determined, where the latter corresponds to ` = 0 and for
which

ûi = gi
(

j, qi1
)

. (4)

Note that for ` → ∞, this setting coincides with the original
setting of Wyner and Ziv (2). Thus, the finite look-ahead
setting may be regarded as a generalization of the original
(unconstrained) Wyner–Ziv setting (2).

In this work, we consider yet a more general “composite
side information” scenario, in which different parts of the
side information are available to the decoder in a different
manner, i.e., with different look-ahead lengths. Specifically,
we derive the RDF for the extreme case in which part of
the side information is known causally (“zero look-ahead”)
whereas the other — non-causally (“infinite look-ahead”).

The problem of source coding with composite side informa-
tion is dual to the problem of channel coding with composite

1In case i+ ` exceeds n, qn
1

is taken rather than q
i+`

1
.
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Fig. 1: Discrete memoryless source with side information.
When switches A and/or B are closed, the side information
is available at the encoder and/or decoder, respectively.

side information at the encoder, introduced and treated recently
in [3]. In the second part of this work, we consider the joint
source–channel coding problem of transmitting a source with
composite side information at the decoder over a channel with
composite side information at the encoder. we follow the steps
of Merhav and Shamai [4], and prove that a separation between
the source coding task and the channel coding task holds also
for the case of composite side informations.

The rest of the paper is organized as follows: We start by
reviewing previously known results for the different cases of
availability of side information in Section II. In Section III,
we provide a general framework for all of these scenarios
and determine the rate–distortion function for the composite
side information scenario where part of the side information
is known causally and the other – non-causally. We then
treat the problem of joint source–channel coding of a source
with composite side information conveyed over a channel with
composite side information in Section IV, and prove that the
separation principle extends to this case, as well. Finally, we
conclude the results in Section V.

II. SOURCE-CODING WITH
SIDE INFORMATION SCENARIOS

In this section we briefly review the different scenarios
considered for the memoryless source with side information,
depicted in Figure 1.

When the state q is not available at the encoder nor at the
decoder (A and B are open) the problem is that of the “regular”
rate–distortion problem, the RDF of which is given by

R(D) = min
p(û|u)

I(U ; Û) , (5)

where the minimization is over all admissible conditional prob-
ability mass functions p(û|u) satisfying the average distortion
constraint

E
[

ρ(U, Û)
]

≤ D .

Consider now the case where A is open and B is closed, i.e.,
the case in which the side information Q is available at the
decoder (but not at the encoder). When the side information
Q is available in a non-causal manner (2), in the lossless case,
viz. D = 0, the solution to this problem is a corner point of

the achievable region of the lossless distributed source-coding
problem of Slepian and Wolf [5], and is given by

ncR(D = 0) = H(U |Q) .

For its lossy counterpart, the solution was shown, by Wyner
and Ziv [1] to be the solution of the single-letter optimization
problem

nc
R(D) = min

p(w|u),g
[I(U ;W |Q)]

= min
p(w|u),g

[I(U ;W )− I(Q;W )] ,
(6)

where the minimization is over all auxiliary variables w (con-
ditional probability mass functions p(w|u)) and deterministic
functions g : W ×Q → Û , such that the distortion constraint

E[ρ(U, g(W,Q))] ≤ D

is satisfied. Moreover, the cardinality of W need not exceed
U + 1.

Remark 1: The auxiliary variable W of (6) satisfies a
Markov chain relation W ↔ U ↔ Q.

For the case in which the state is available only causally
(4), Weissman and El Gamal [2] showed the RDF to be given
by

c
R(D) = min

p(w|u),g
I(U ;W ) ,

with the minimization carried over the same set as in (6). They
further reinterpreted this result as a rate–distortion problem
with no side-information (as in (5)) with a new derived
distortion measure

ρ̃ (u, t) = E [ρ (u, t(Q))|U = u, T = t] , (7)

where t ∈ T is a mapping t : Q → Û , s.t.

û = g (w, q) = t(q) , ∀q ∈ Q (8)

and T is the set of all such mappings whose cardinality is
|T | = |Û ||Q|. Thus, the RDF for the causal side information
case is equal to

c
R(D) = min

p(t|u)
I(U ;T ) . (9)

In the case of side information of finite-lookahead (3), the
RDF has no known single-letter characterization. Nevertheless,
upper and lower bounds for this problem were established in
[2], which become tight with the increase in computational
complexity allowed.

Finally, note that the case where the state Q (or part of
it) is available at the encoder (B is closed), is equivalent to
an augmented source Ũ , composed of the (physical) source
U and the side information Q, i.e., Ũ = (U,Q), with the
distortion measure being only w.r.t. its first part (the “original
source”), i.e., ρ̃

(

ũ, ˆ̃u
)

= ρ (u, û). Hence, the case in which
the state or part of it are available at the encoder needs no
special treatment being a special case of the same problem
setting without state knowledge with a different “augmented”
source.



III. SOURCE CODING WITH
COMPOSITE SIDE INFORMATION

The memoryless source with composite K-part side in-
formation at the decoder, is given by (1), with the side
information Q being composed of K parts {Qi}

K

i=1, with
probability distribution p(q) = p(q(1), q(2), ..., q(K)), where
“part” q(i) is known to the decoder with look-ahead length
`i ∈ N ∪ {0,∞}.

As even the rate–distortion function of the single finite look-
ahead scenario has no (known) single-letter characterization
(see [2]), we limit our focus to the extreme case where the
state is composed of two parts, where one is available causally
(`1 = 0), whereas the other part is available in a non-causal
manner (`2 = ∞).

Theorem 1: The rate–distortion function with composite
side information at the decoder, where the state q is composed
of two parts, q = (cq, ncq) with joint probability distribution

p(q) = p(cq, ncq) ,

where cq is known causally (with look-ahead ` = 0) to the
decoder and ncQ — non-causally (` = ∞), is given by

c-nc
R(D) = min I(U ;W |ncQ)

= min [I(W ;U)− I(W ; ncQ)] ,
(10)

where the minimization is over all conditional pmfs p(w|u)
and functions g : W ×Q → Û satisfying

E[ρ(U, g(W,Q))] ≤ D . (11)

Proof:

Achievability: In order to achieve the desired rate (10), we
use the random strategies interpretation given in (8) w.r.t. the
causal side information cq. This allows to view the resulting
problem as a rate–distortion problem without causal side
information and with a different derived distortion measure ρ̃
given in (7), but rather with (only) non-causal side information
ncq. For this problem, the result of (6) may readily be applied,
resulting in the rate

R = min
ncg,p(w|u)

I (U ;W |ncQ) ,

where the minimization is carried over all deterministic func-
tions ncg : W × ncQ → cT satisfying the distortion constraint

E [ρ̃ (U, ncg (W, ncQ))] ≤ D (12)

and where cT is the set of all mappings from cQ to Û . Note
that, due to the law of total expectation, (12) is equivalent to
(11), as in (9). Finally, note that optimizing over the set of all
possible ncg : W × ncQ → cT is equivalent to optimizing over
all possible ncg : W × ncQ× cQ → Û .

Converse: The converse follows the same lines of the (only)
non-causal side–information case of Wyner and Ziv, as pre-
sented in [6]:

nR ≥ H(J) (13)

≥ H (J |ncQn
1 ) (14)

≥ I (Un
1 ; J |

ncQn
1 ) (15)

=

n
∑

i=1

I
(

Ui; J
∣

∣U i−1
1 , ncQn

1

)

(16)

=
n
∑

i=1

[

I
(

Ui; J, U
i−1
1 , ncQi−1

1 , ncQn
i+1

∣

∣

ncQi

)

− I
(

Ui;U
i−1
1 , ncQi−1

1 , ncQn
i+1

∣

∣

ncQi

)

]

(17)

=

n
∑

i=1

I
(

Ui; J, U
i−1
1 , ncQi−1

1 , ncQn
i+1,

cQi−1
1

∣

∣

ncQi

)

(18)

≥

n
∑

i=1

I
(

Ui; J,
ncQi−1

1 , ncQn
i+1,

cQi−1
1

∣

∣

ncQi

)

(19)

=
n
∑

i=1

I (Ui;Wi|
ncQi) (20)

≥

n
∑

i=1

R (E [ρ (Ui, g
∗ (Wi, Qi))]) (21)

≥ nR

(

E

[

1

n

n
∑

i=1

ρ (Ui, g
∗ (Wi, Qi))

])

(22)

≥ nR (D) , (23)

where
(13) follows from the fact that the cardinality of the alphabet

of J is 2nR,
(14) since conditioning reduces entropy,
(15) follows from the definition of mutual information and

non-negativity of entropy,
(16) from the chain-rule for mutual informations,
(17) from the chain rule for mutual informations as well,
(18) from the memoryless property (1),
(19) holds since

Ui ↔
(

J, U i−1
1 , ncQi

)

↔
(ncQn

i+1,
ncQi−1

1 , cQi−1
1

)

forms a Markov chain,
(19) follows since conditioning reduces entropy,
(20) by defining Wi ,

(

J, cQi−1
1 , ncQi−1

1 , ncQn
i+1

)

(21) from the definition of the information conditional rate dis-
tortion function with composite side information where
g∗ is the function achieving the minimum in (10),

(22) follows from Jensen’s inequality and the convexity of
the information conditional rate distortion function with
composite side information (which can be proved like the
convexity in the non-causal case; see, e.g., [7]),

(23) follows from the definition of the average distortion.
The bound on the cardinality of W is established via a standard
application of Carathéodory’s theorem, as done in [1].

Finally, the equality to the second expression in (10) is
established as in (6):

I (W ;U, ncQ) = I (W ; ncQ) + I (W ;U |ncQ) (24)
= I (W ;U) + I (W ; ncQ|U) (25)
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Fig. 2: State-dependent channel with state side information
available at the encoder. M and M̂ denote the transmitted
and recovered message, respectively.

where (24) and (25) follow from the chain rule for mutual
informations. Finally, by noting that I (W ; ncQ|U) = 0 due to
the Markov chain of Remark 1, W ↔ U ↔ Q, the equality
between the two expressions in (10) follows.

Remark 2: The result of Theorem 1 extends to infinite and
continuous alphabets, under mild regularity conditions, as is
done in [8].

IV. SEPARATION BETWEEN SOURCE AND CHANNEL
CODING WITH COMPOSITE SIDE INFORMATIONS

In this section we consider the related joint source–channel
coding problem of transmitting a memoryless source over a
state-dependent memoryless channel, where channel side in-
formation (a.k.a. state information) is available at the encoder
and source side information — at the decoder.

The state-dependent memoryless channel, depicted in Fig-
ure 2, is described by an i.i.d. state sequence s ∈ S with
a probability distribution and channel transition probability
distribution

p(s) and p(y|x, s) ,

respectively, where x ∈ X is the channel input and y ∈ Y is
the channel output; and where X ,Y and S denote the channel
input alphabet, channel output alphabet and state alphabet,
respectively, all of which are finite sets. The memoryless
property of the channel implies that

p(y|x, s) =

n
∏

i=1

p(yi|xi, si) .

When the side information s is known causally at the
encoder, Shannon determined the capacity of this channel to
equal [9]

cC = max
p(w),h

I(W ;Y ) , (26)

where W is an auxiliary variable independent of S and
h : W × S → X is a deterministic mapping, such that
x = h(w, s).2

2Shannon represented the solution to this problem as the capacity of an
equivalent memoryless channel with no side information whose inputs are all
possible mappings from S to X , similar to (8).
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Fig. 3: Joint source–channel coding of a source with side
information at the decoder and state-dependent channel with
state side information at the encoder.

Gel’fand and Pinsker showed that the capacity of this
channel, when the side information sequence is available non-
causally at the encoder, is given by [10]

ncC = max
p(w|s),h

I(W ;Y )− I(W ;Y ) , (27)

where W is an auxiliary (which may depend on S) and
h : W ×S → X is a deterministic mapping as in (26).

A recent result combined the two, for the case of composite
side information s = (cs, ncs), where cs is known causally at the
encoder and ncs — non-causally. The capacity, for this case,
is equal to [3]

c-ncC = max
p(w|ncs),h

I(W ;Y )− I(W ;Y ) , (28)

where w and h are as in (26) and (27).
Consider now the problem of joint source–channel coding,

depicted in Figure 3, of conveying a block of length k of
symbols generated by a memoryless source, U k

1 , with (source)
side information Qk

1 available at the encoder over n channel
uses of a state-dependent channel p(y|x, s) with channel (state)
side information Sn

1 available at the decoder. The rate of
the corresponding joint source–channel code denoted by r is
therefore equal to r = dk/ne.

Merhav and Shamai [4], which proved that the separation
principle between source and channel coding without side
information at either (see, e.g., [7]) extends to the case
of source coding with non-causal side information (4) and
channel coding with non-causal side information, as well as
to the case of source coding with non-causal side information
and channel coding with causal side information. In the next
theorem, we combine these two results by extending them to
the case of source coding with composite side information
available at the decoder and channel coding with composite
side information at the encoder.

Theorem 2: Let U be a memoryless source with composite
(source) side information Q = (cQ, ncQ) at the decoder, as
in Theorem 1, and state-dependent channel p(y|x, s) with
composite (channel state) side information at the decoder, as



in (28). Then, distortion D w.r.t. a distortion measure ρ is
achievable iff

r
c-nc

R(D) ≤ c-ncC , (29)

where c-nc
R(D) and c-ncC are given in (10) and (28), respec-

tively.

Proof:

Sufficiency: The achievable is a straightforward adaption of
the achievable of the “ordinary” joint source–channel coding
separation principle (see, e.g., [11, ch. 3.9]). Assume the de-
sired distortion level D satisfies a strict inequality in condition
(29). Then we can choose two constant rates RS and RC ,
representing the source and channel rates, respectively, s.t.

k
c-nc

R(D)
(a)
< kRS = nRC

(b)
< n c-ncC .

According to Theorem 1 and (a) one may compress the source
into RS bits per-symbol within average distortion D, for a
large enough k. The resulting kRS = nRC bits may then be
conveyed reliably over the channel according to (28) and (b),
for a large enough n. Thus, any distortion satisfying (29) is
achievable.

Necessity: We follow the steps of [4] to establish the necessity
of (29), by lower-bounding the expression I(U k

1 ;Y
n
1 ) by

k c-ncR(D) and upper-bounding it by n c-ncC.
Lower bound: The lower bound is proved similarly to the

converse of Theorem 1. Specifically, by repeating (15)–(23)
with J replaced by Y n

1 , the lower bound

I(Uk
1 ;Y

n
1 ) ≥ k

c-nc
R(D) , (30)

is achieved.
Upper bound: The upper bound is proved in a similar

manner to the converse of (28). Specifically, by repeating (b)–
(g),(10) of [3], with the message W in [3] replaced by U k

1 (not
to be confused with U of [3] which stands for the auxiliary
variable there), the following upper bound is achieved:

I(Uk
1 ;Y

n
1 ) ≤ n c-ncC . (31)

By combining the results of (30) and (31), the desired
inequality holds.

Remark 3: Again, the result of Theorem 2 extends to in-
finite and continuous alphabets, as well as to the constrained
channel input case, under mild regularity conditions, as is done
in [8] (see also [12] and references therein).

V. DISCUSSION

The repercussion of the present work is twofold: Estab-
lishing a general framework for the problem of sources with
side information and transmission of such over state-dependent
channels with state side information, where different parts of
the side informations are available with different look-ahead
lengths, as well as providing a unified treatment of the different
side-information scenarios, which were previously considered
and treated separately.

This is possible by observing the similarities between the
converses of the “original” side information scenarios and
combining them together. Finally, we note that for the general
case, where the side information is composed of parts known
with different finite look-ahead lengths, similar results to those
of Weissman and El Gamal [2] for the single-part finite look-
ahead, may be derived.
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