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Abstract—A long-standing question in coding theory is whether
code ensembles having a low-density parity check (LDPC) matrix
can attain capacity under belief propagation (BP) decoding.
An affirmative answer to this problem was recently given by
the special class of spatially-coupled LDPC code ensemble.In
this work, we provide a simple derivation of a different LDPC
code ensemble that approaches capacity under BP decoding,
following the classical approach of serial concatenation.This
LDPC code ensemble is constructed by concatenating a high-
rate outer LDPC code with an inner random convolutional
one. The analysis of the concatenated-coding framework takes
a particularly simple — “black box” — form. Specifically, the
joint effect of the particular inner code and the binary-input
memoryless output-symmetric (BMS) channel is encapsulated in
a single parameter — the Bhattacharyya parameter, which is
maximal for the binary symmetric channel (BSC). This implies
that an inner convolutional code designed for the BSC achieves
good performance over all BMS channels with a given capacity.
Moreover, the performance guarantee of the outer LDPC code
under BP decoding is dictated solely by this parameter. This,
in turn, implies that the overall concatenated code approaches
capacity under BP decoding for all BMS channels with a given
capacity, simultaneously.

I. I NTRODUCTION

Since the early days of information theory, a great deal
of the effort has been dedicated to finding low-complexity
schemes that are able to approach capacity. A major step
towards this goal was made by Forney [1], who proposed
using concatenated codes, taking theinner code to be a random
convolutional code and theouter code to be a Reed–Solomon
one.1

The asymptotic encoding/decoding complexity of concate-
nated codes was subsequently reduced from polynomial to
linear by replacing the outer Reed–Solomon codes with
expander-based codes [2], [3]. While these works have es-
tablished that approaching capacity with low complexity is
in a theoretical sense possible, they are generally not consid-
ered practical and hence the search for practical codes (and
decoders) remains an active area.

The goal of achieving capacity over the binary erasure
channel (BEC) with practical decoding has been met by

1Forney proposed to use an inner convolutional code. However, since a
bit-error rate analysis for convolutional codes was not available at the time,
he used bounds on block codes in the analysis. As will become evident in the
sequel, in Lemma 1, such an anaysis is possible also in our case, but results
in bounds that are much less tight.

irregular low-density parity check (LDPC) codes under belief
propagation (BP) decoding (which has linear decoding com-
plexity), originally in the work of Lubyet al. [4].

However, the question of whether codes having an LDPC
matrix representation can achieve capacity under BP decoding
for general binary-input memoryless output-symmetric (BMS)
channels, remained open until an affirmative answer was
provided by Kudekaret al. [5] for the special class of spatially-
coupled LDPC codes, first introduced by Felström and Zigan-
girov [6]. Moreover, this class was shown to beuniversal: It
achieves capacity simultaneously (compound channel setting)
for the class of BMS channels with a given capacity.

In this work, we provide a simple derivation of an LDPC
ensemble, which is different from the spatially-coupled en-
semble, that universally approaches capacity for all BMS
channels with a given capacity under BP decoding.2 This
LDPC ensemble is constructed by concatenating a high-rate
outer LDPC code with an inner random convolutional code.
The analysis of the concatenated-coding framework takes a
particularly simple — “black box” — form. Specifically, the
joint effect of the particular inner code and the BMS channel
is encapsulated in a single parameter — the Bhattacharyya
parameter (B-parameter). Coupled with the elegant result by
Khandekar [7], the performance guarantee of an LDPC code
under BP decoding is dictated solely by this parameter. This,
in turn, allows to translate the performance under BP decoding
of LDPC codes over the BEC, to any BMS channel. We note
that, since for convolutional codes belief propagation (BCJR
algorithm) amounts to (bit-wise)maximum a-posteriori decod-
ing [8], the proposed concatenated scheme achieves capacity
under BP decoding. Furthermore, by invoking the extremal
properties of the binary-symmetric channel (BSC) of [9],
designing the inner convolutional code for the BSC guarantees
the universality of the scheme over the class of BMS channels
with a given capacity. Finally, since the outer LDPC ensemble
is of high-rate, regular LDPC ensembles suffice to obtain the
desired result over the resulting factor graph.

II. BUILDING BLOCKS

In this section we introduce the tools that will serve in
Sec. III for obtaining the desired result.

2With a slight abuse of notation, we shall refer to a sequence of LDPC
code ensembles as an LDPC code ensemble of growing length.



A. Universality of Convolutional Codes

We now derive an achievable bit error rate (BER) over the
set of all BMS channels with a given capacity, applicable
to time-varying convolutional codes. For this, we review the
results of [10, Chapter 5] on the error exponent and BER of
convolutional codes, and combine them with the recent results
of [9] on the universality of error exponents of block codes.

We use the notation and definitions of [10, Part 2] for convo-
lutional codes. A compact representation (and implementation)
of a convolutional code is via a shift register: The delay-line
(shift register) length is denoted byK, whereas its widthb
is the number of information bits entering the shift register
at each time instant. Thus, the total memory size is equal to
Kb bits. At each time instant,n code bits are generated by
evaluatingn functionals over theKb memory bits and the new
b information bits. Therefore, the rate of the code is equal to
r = b/n bits per channel use. In general, these functionals
may change at each time instant, resulting in atime-varying
convolutional code.

Remark 1: The analysis in [10] considers an infinite stream
of information and resulting code bits. Nevertheless, the
derived upper bounds on the BER remain valid when zero-
terminating the convolutional code to a finite length, at the
price of a reduced rate that may be made arbitrarily small.

Denote the channel capacity byC. The following proposi-
tion is due to Viterbi and Yudkin (VY) [10, Chapter 5].

Proposition 1: The BER of a random time-varying convo-
lutional code with delay-line lengthK, width b and rater < C
over a BMS channel with capacityC is upper bounded by

Pb ≤
(

2b − 1
) 2−K b

r
EVY (r,ǫ)

[

1− 2−ǫ b
r
EVY (r,ǫ)

]2 ,

for any ǫ ∈ (0, 1), where

EVY (r, ǫ) = max
0≤ρ≤min((1−ǫ)E0(ρ)/r,1)

E0 (ρ) (1a)

=

{

R0 0 ≤ r ≤ R0(1− ǫ)

E0(ρ0) R0(1− ǫ) < r ≤ C(1 − ǫ)
, (1b)

ρ0 is the largest solution ofρr = (1− ǫ)E0 (ρ),3
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is Gallager’sE0 (see,e.g., [10, Ch. 2]), andR0 , E0 (ρ = 1)
is the corresponding cutoff rate.

We next show that the VY error exponent of convolutional
codes over any BMS channel is lower bounded by that of
the BSC with the same capacity. This result is based upon its
parallel for block codes [9].

To that end, denote the compound channel [11], whose
possible transition distributions comprise all BMS channels
with capacityC, by BMS(C); denote further the BSC with

3The constraint0 ≤ ρ < E0(ρ)/r means that we do not take into
consideration the cases in whichρ ≥ E0 (ρ) /r.

capacityC by BSC(C). Block-code error exponents will be
denoted by a subscriptG, and the convolutional code error
exponents of (1b) — by VY; superscripts indicate to which
channel these error exponents refer.

Theorem 1 ( [9]): Let c be any BMS channel with capacity
C, c ∈ BMS (C). Then, the following relations hold

E
(c)
0 (ρ) ≥ EBSC

0 (ρ) (2a)

R
(c)
0 ≥ RBSC

0 (C) (2b)

E
(c)
G (r) ≥ EBSC

G (r) , ∀r ∈ [0, C] . (2c)

The optimization problems in (1a) gives rise to the following
relation between VY and block-code error exponents, which
implies that capacity can be achieved by convolutional codes.

Lemma 1: Let c be any BMS channel with capacityC, c ∈
BMS (C). Then, for any0 ≤ r < (1− ǫ)C and0 < ǫ < 1:

E
(c)
VY (r, ǫ) ≥ E

(c)
G

(

r

1− ǫ

)

> 0 .

Similarly to the Gallager exponent for block codes, the next
lemma states that the VY error exponent of a BMS channel
is at least as good as that of a BSC with the same capacity.

Lemma 2: Let c be any BMS channel with capacityC, c ∈
BMS (C). Then, for any0 ≤ r < (1− ǫ)C and0 < ǫ < 1:

E
(c)
VY (r, ǫ) ≥ EBSC

VY (r, ǫ) .

By combining Lemma 2 and Proposition 1 we have the
following.

Corollary 1: The BER of a random time-varying convo-
lutional code over the compound channelBMS(C) is upper
bounded (universally) as follows:

Pb ≤ min
ǫ∈(0,1)

(

2b − 1
) 2−K b

r
EBSC

VY (r,ǫ)

[

1− 2−ǫ b
r
EBSC

VY (r,ǫ)
]2 , P̃ b(K, r, b) .

Consequently, for fixedr < C, b and n, an arbitrarily
small BER can be achieved universally overBMS(C), for a
sufficiently large delay-line lengthK.

B. Bounds on the Performance of Ensembles of LDPC Codes
via the Bhattacharyya Parameter

We now obtain performance guarantees for LDPC codes
under BP decoding over ageneral BMS channel via its
performance over the BEC. These guarantees are formulated
in Lemma 3 in terms of an upper bound on the achievable
BER after ℓ iterations; this bound is based, in turn, on the
density-evolution (DE) equations for the BEC, with the erasure
probability replaced by the B-parameter of the BMS channel,
and is given as part of the proof of Theorem 4.2 in [7] (see
also [12]). We base our notation, as well as the conditions
needed for the DE analysis to hold (the tree assumption, the
concentration propertyetc.), on [13].

Proposition 2: Consider a BMS channelP (y|x), where
x ∈ {0, 1}. Generate an LDPC code ensemble w.r.t. variable-
and check-node degree distributionsλ (x), ρ (x) respectively,
and denote byx(ℓ) the log-likelihood ratio (LLR) of a variable-
node message in iterationℓ ≥ 0. W.l.o.g., assume that the zero



codeword is transmitted. Then, in iterationℓ+ 1 we have

E

[

e−
x(ℓ+1)

2

]

≤ Z(ℓ+1) , B · λ
(

1− ρ
(

1− Z(ℓ)
))

, (3)

whereZ(0) = B, x(0) , log2

(

P (y|0)
P (y|1)

)

is the initial LLR

variable node message, andB ,
∑

y

√

P (y|0)P (y|1) is the
B-parameter.4

Proposition 2 gives rise to the following simple bound on
the BER, formally proved in [12].

Lemma 3: The BER in iterationℓ is upper bounded as

Pr
(

x(ℓ) > 0
)

≤ Z(ℓ) .

Thus, if limℓ→∞ Z(ℓ) = 0, then limℓ→∞ Pr
(

x(ℓ) > 0
)

= 0.
A threshold [13, Ch. 4] for the upper bound on the DE

equations is defined as the largest B-parameter,B0, such that
for any 0 < Z(0) = B < B0 we getlimℓ→∞ Z(ℓ) = 0. In the
next subsection we derive a performance guarantee based on
the existence of such a threshold, as well as provide a proof
for the existence of a threshold for regular LDPC codes.

C. Regular LDPC Codes Achieve Capacity Under BP Decod-
ing over Almost-Clean Channels

In [2] it has been shown that by considering an algebraic
“near-MDS” outer code of rate approaching1, Forney’s error
exponent [1], and as a consequence also the BSC capacity are
achieved with linear complexity. The mechanism that enables
this concatenated coding scheme to attain arbitrarily small
error probability relies on the fact that the minimal distance of
the outer code grows linearly with the block length. Therefore,
if the inner code induces a transition probability for the outer
code that is smaller than the relative minimum distance, then
the outer code error probability will decrease as desired for
increasing blocklength. Further, since the rate of the outer code
is nearly1, the rate penalty is negligible.

Similarly, in our scheme we also consider an outer LDPC
code with a rate very close to1. However, the mechanism
that enables the outer code in our case to reduce the error
probability as desired is the existence of a threshold for the
bound on the DE equation (3). The inner code induces a tran-
sition probability for the outer code such that the B-parameter
B is small enough to guarantee thatE

[

exp
{

−x(ℓ+1)/2
}]

approaches zero asℓ increases.
The next lemma shows that the desired result can be

achieved by regular LDPC codes.
Lemma 4: Consider any ensemble of regular LDPC codes

with variable nodes of degreedv and check nodes of degree
dc. Then, there exists a threshold for the upper bound on the
DE equation (3) for this ensemble.

Proof: For a regular ensemble of LDPC codes the upper
bound for the DE equation in iterationℓ takes the following
form (see,e.g., [13, Ch. 4]):

Z(ℓ+1) = B ·

(

1−
(

1− Z(ℓ)
)dc−1

)dv−1

. (4)

4The summation overy is replaced by an integral for continuous channels.

In order to show the existence of a threshold we wish to find
a certain valueB0 for which when assigningB < B0 in (4)
and also consideringZ(ℓ) ≪ 1 we get thatlimℓ→∞ Z(ℓ) = 0.
AssumingZ(ℓ) ≪ 1, (4) can be approximated via the first
non-zero term of its Taylor series expansion as

Z(ℓ+1) = B · (dc − 1)
dv−1

(

Z(ℓ)
)dv−1

.

Therefore, taking B < 1/ (dc − 1)
dv−1 leads to

limℓ→∞ Z(ℓ) = 0. Since Z(0) = B, consideringB that
satisfies bothB ≪ 1 and B < 1/ (dc − 1)dv−1, achieves
lim
ℓ→∞

Z(ℓ) = 0, which proves the existence of a threshold.

III. PUTTING IT ALL TOGETHER

We build on the results of the previous section for the
construction of a special ensemble with an LDPC matrix that
approaches capacity under BP decoding over a factor graph,
universally for the whole class of BMS channels with a given
capacity. The construction is a concatenated one, where the
inner code is a convolutional code whose delay-line length is
chosen according to the desired gap to capacity, and the outer
code is chosen to be an LDPC code whose length should be
taken long enough to achieve any desired BER.

For the sake of simplicity of analysis, we consider a
suboptimal message-passing decoding algorithm in Sec. III-A,
and show that it achieves the desired result. We then argue,
in Sec. III-B, that full BP decoding achieves performance at
least as good as this crude message-passing algorithm.

A. Achieving Capacity under Suboptimal Message-Passing

The concatenated code used throughout this section is
generated using the following encoder.

Algorithm 1 (Concatenated encoder):
1) Encodes the information bits using an outer LDPC coder

of lengthM .
2) Interleaves systematically the output of the LDPC coder:

The interleaver accumulatesrL consecutive outer-code
codewords of lengthM , such that they comprise the rows
of an rL × M matrix, wherer andL are the rate and
blocklength of the inner code, respectively. The columns
of the matrix are then fed to the inner coder, one by one.

3) Encodes the output of the interleaver using an inner zero-
terminated convolutional coder of lengthL and rater.

Remark 2: As the outer LDPC code blocklength is much
larger than that of the inner convolutional code (which is fixed
for a given gap-to-capacity), the resulting overall code has an
LDPC structure.

In this subsection we make use of the following two-stage
message-passing decoding algorithm.

Algorithm 2 (Two-stage decoder):
Inner code decoding:Calculates the LLRs of each input

bit of the inner code using the BCJR algorithm; these bits
constitute the outer LDPC coded bits.

De-interleaving: Undoes the encoder’s interleaving.
Outer code decoding:Applies BP decoding for the outer

LDPC code of lengthM , over the effective BMS channel
induced by the LLRs of the inner code.



Remark 3: This message-passing algorithm is not equiva-
lent to full BP decoding over the entire scheme; see Sec. III-B.

The following lemma states that the two-stage decoding of
Algorithm 2 universally achieves capacity with linear com-
plexity over all BMS channels with a given capacity.

Lemma 5: For any gap to capacity∆ > 0, however small,
a code ensemble of rateR = C−∆ can be constructed using
Algorithm 1, that universally achieves an arbitrarily small BER
overBMS(C) under the two-stage message-passing decoding
of Algorithm 2 with linear complexity.

Specifically, this is achieved by a convolutional code of rate
r ∈ (R,C) and a long enough (fixed) delay-line lengthK,
such thatP̃ b(K, r, b) of Corollary 1 satisfies5

0 < 2

√

P̃ b(K, r, b)
[

1− P̃ b(K, r, b)
]

, B0 < 1−
R

r
;

and an LDPC code ensemble of rateR/r whose threshold over
a BEC is aboveB0. By taking the lengthM of this ensemble
to be large enough, an arbitrarily small BER can be achieved.

Proof: We first show that random convolutional code and
LDPC codes can be generated with the desired parameters.

As shown in [9], the B-parameter of any BMS channel with
a given capacity is upper bounded by that of the BSC of the
same capacity. Moreover, the B-parameter of a BSC mono-
tonically decreases with capacity. Therefore, the B-parameter
B of the effective BMS channel induced by the LLRs of
the inner code is upper bounded by the B-parameter of this
channel after applying hard decoding (“slicing”) to the channel
outputs. The latter results in an effective BSC with a transition
probability that is upper bounded bỹP b(K, r, b). This leads,
in turn, to the upper boundB ≤ B0. By choosingK large
enough,P̃ b(K, r, b), and hence alsoB0, can be made as small
as desired, according to Corollary 1.

LDPC code ensembles of rateR/r that have a threshold
that is larger thanB0 over the BEC are well known to exist
[4], [7], [13]. Proposition 2 and Lemma 3 guarantee that these
ensembles achieve a BER as small as desired over all BMS
channels with the same B-parameter, simultaneously.

By concatenating such codes, as in Algorithm 1, we achieve
a code of total rateR. The decoder of Algorithm 2 first
recovers the LLRs of each input bit of the inner code, using
the BCJR algorithm. This induces an effective BMS channel
with B-parameterB that is upper bounded byB0. The de-
interleaving guarantees that this channel is memoryless. Lastly,
decoding the LDPC code over this induced BMS channel with
B < B0, achieves the desired result.

Remark 4: L should be taken large enough such that the
loss in rate due to the zero-padding is negligible. This loss
can be absorbed in∆ and can be made arbitrarily small by
choosing a large enough, but yet finite,L.

Remark 5: As is evident from the bounds in Lemma 5,
considering an inner convolutional code that is designed for a
BSC(C) and an outer code that is designed for a BEC, suffices
to prove the universality of the scheme overBMS(C).

5B0 is the resulting B-parameter of an effective BSC with transition
probability P̃ b(K, r, b).

The following is a simple corollary of Lemmas 4 and 5.
Corollary 2: The result of Lemma 5 remains valid when

using aregular LDPC code ensemble as the outer code.
Proof: Lemma 4 shows that regular LDPC ensembles

have a threshold that is bounded away from zero. Thus, retrac-
ing the proof of Lemma 5 and choosingB0 below this thresh-
old establishes the desired result with regular ensembles.

Remark 6: In the proposed scheme, the rate of the con-
volutional code is chosen to be close to capacity, whereas
the rate of the outer LDPC code is close to 1. A standard
way for obtaining a high rate code from a lower rate “mother
code” is via puncturing, if one is willing to sacrifice regularity.
Since the outer code is designed for an erasure channel,
(random) puncturing amounts to increasing the erasure prob-
ability. Moreover, judicious puncturing may further enhance
performance; see [14], [15].

Lastly, some desired properties for practical implementa-
tion are those of linearencoding complexity and systematic
representation. Both can be easily achieved by replacing
the outer LDPC code with a systematic irregular repeat–
accumulate (IRA) code. In fact, the results of Sec. II-B were
also introduced in the Ph.D. thesis of Khandekar [7], and were
shown to be valid both for general LDPC codes and for IRA
codes.

B. Achieving Capacity under Belief Propagation Decoding

Here we consider a slightly generalized variant of the
encoder of Algorithm 1: We userL independent LDPC code
ensembles of the same parameters. That is, the rows in the
interleaver of Algorithm 1 are drawn from independently
generated LDPC codebooks. We note that all the results of
Sec. III-A remain unchanged for this variant. This variant
allows to guarantee an extended tree assumption (formally
defined in the sequel), which is subsequently used to show
that BP decoding of the overall resulting code is at least as
good as that of the two-stage message-passing decoding of
Algorithm 2. In particular, it universally achieves the channel
capacity ofBMS(C) under BP decoding over thefactor graph
of the overall code, which results from the factor graphs of the
convolutional codes and the factor graphs of the LDPC codes.

Before considering the extended tree assumption, let us
present the bipartite graph representation for our proposed
coding scheme. We userL LDPC codes, each of length
M for the outer layer, andM time-varying zero-terminated
convolutional codes each of lengthL for the inner code.6

Denote thej-th symbol of thei-th LDPC codeword byxi,j ,
where 1 ≤ i ≤ rL and 1 ≤ j ≤ M . The mapping of the
outer LDPC code variable nodes to the inner zero-terminated
convolutional codes is as follows. Symbolxi,j , 1 ≤ i ≤ rL,
is mapped to convolutional codej, i.e., the first symbol in
each LDPC code,xi,1, is mapped to the first block of the
zero-terminated convolutional codes,etc.

The following assumption will be used in the BP analysis.

6Drawing M independent codewords from the same zero-terminated con-
volutional code, in the analysis to follow, yields the same results.



Assumption 1 (Extended tree assumption): The depth-ℓ ex-
tended tree assumption states that variable nodexi,j shares
no loops with the subtrees of depthℓ spanned by each other
variable nodexk,t (with at least one ofi 6= k or j 6= t holding).

In the proposed construction, this assumption amounts to
the “regular” tree assumption (cf. [13, Ch. 3]) along with
an “extension”. The regular tree assumption states thatxi,j

shares no loop with the subtrees of depthℓ stemming from
variable nodes{xi,t|t 6= j}, which comprise with it the same
LDPC codeword. The extension to the regular tree assumption
assumes also thatxi,j shares no loop with the subtrees of depth
(ℓ − 1) stemming from variable nodes{xk,j |k 6= i}, which
correspond to the same convolutional code codeword.

The extended tree assumption is satisfied for sufficiently
long outer LDPC codes with high probability, and is a simple
extension of the regular tree assumption [12].

Lemma 6: Let L be the length of the zero-terminated
convolutional code. Then, for anyǫ′ > 0 and ℓ > 0,
we can choose the lengthM of the LDPC code ensembles
to be sufficiently large, such that the depth-ℓ extended tree
assumption is satisfied with probability greater than1 − ǫ′

over the factor graph induced by the overall code.

Remark 7: The lengthM of the LDPC code ensembles
needed to satisfy theextended tree assumption with a given
probability is greater than that needed for the regular tree
assumption to hold with the same probability. Thus, the value
of M required for the analysis of full BP to hold is greater
than that needed for the analysis of Algorithm 2 of Sec. III-A.

We now describe the BP decoding algorithm over the overall
(bipartite) factor graph.

Algorithm 3 (Belief-propagation decoder): Variable and
LDPC code nodes use the standard sum-product algorithm
message-update rule (cf. [13]). The convolutional code node
carries BCJR decoding with non-uniform prior that is dictated
by the messages coming from the LDPC codes.7

The following lemma and theorem show that the proposed
concatenated ensemble achieves universally capacity under BP.

Lemma 7: Under the extended tree assumption (Assump-
tion 1), the BER achievable by Algorithm 3 is upper bounded
by the BER achievable by Algorithm 2.

Proof: Under the extended tree assumption (Assump-
tion 1), the two-stage message-passing decoding of Algo-
rithm 2 is carried over a subtree of the BP decoder. Since
BP decoding is optimal under the tree assumption (see,e.g.,
[13]), it follows that the BER achievable by Algorithm 3 is
upper bounded by the BER achievable by Algorithm 2.

Theorem 2: For any gap to capacity∆ > 0, however small,
a code ensemble of rateR = C − ∆ can be constructed
using Algorithm 1 withrL (independent) LDPC codes, that
(universally) achieves an arbitrarily small BER under the BP
decoding of Algorithm 3, overBMS(C).

Specifically, this is achieved by a convolutional code of rate
r ∈ (R,C) and a long enough (fixed) delay-line lengthK,

7BP decoding of convolutional codes amounts to BCJR decoding[8].

such thatP̃ (K, r, b) of Corollary 1 satisfies

0 < 2

√

P̃ b(K, r, b)
[

1− P̃ b(K, r, b)
]

, B0 < 1−
R

r
;

and LDPC code ensemble of rateR/r whose threshold over
a BEC is aboveB0. By taking the lengthM of this ensemble
to be large enough, an arbitrarily small BER can be achieved.

Proof: Use Lemma 5 to establish the desired parameters
of the convolutional code for the two-stage message-passing
decoding of Algorithm 2. Now take the lengthM of the LDPC
code ensemble to be large enough such that the sum of the
probability that the extended tree assumption fails, and the
BER of the LDPC code, is smaller than the desired BER.
Lemmas 5 and 7 guarantee that the BER of the overall code
is lower than this desired BER, as it can be made arbitrarily
small by choosing large enoughM, ℓ. Finally note that, as in
Lemma 5, the rate of the overall code isR, as desired.

Corollary 3: A code as in Lemma 5 and Theorem 2 can
be devised that achieves capacity simultaneously for any
(finite) subsetS of BMS(C), for a sufficiently large delay-
line lengthK, under the two-stage message-passing decoding
of Algorithm 2 or the BP decoding of Algorithm 3.

The proof follows by using theconcentration phenomenon
w.r.t. the inner convolutional and the outer LDPC codes.
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