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Abstract—We consider the problem of transmitting confiden-
tial messages over a two-user broadcast multiple-input mtiple-
output (MIMO) channel. Surprisingly, the capacity region of
this setting under a covariance matrix constraint was showrby
Liu et al. to be rectangular. That is, there is no tension, and
both users can attain their respective MIMO wiretap capaciies,
simultaneously. In this work, we provide a new derivation of this
result by proposing an alternative achievability scheme fo the
corner point of the capacity region. This derivation, in addtion
to being considerably shorter and simpler than the original also
provides a practical transmission scheme, in the sense thahe

codes used are scalar (single-antenna) ones. We use two main

ingredients. The first is the explicit optimal input covariance
matrix of Bustin et al. for the MIMO wiretap channel under
a covariance matrix constraint, which we also re-derive in a
simple manner. The second is a dirty-paper variant of a recetty
proposed optimal scheme for the MIMO wiretap channel, which

uses scalar codes. The proposed treatment demonstrates the

connection between the confidential broadcast problem andhe
MIMO wiretap one: the former almost reduces to the latter,
except for the use of dirty-paper coding which is not mandatoy
in MIMO wiretap; the work sheds light on the reason for this
difference.

Index Terms—Confidential broadcast, wiretap channel, MIMO
channel, dirty-paper coding, matrix decomposition
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input) is the closure of the ratéf 5, R¢) such that reliable
decoding and secrecy are guarantged.

The confidential BC channel can be seen as a generalization
of the MIMO wiretap channel]3],[]4], where no information
is sent to Charlie 8- = 0). Hence, it is usually referred to
as an eavesdropper “Eve”. Indeed, there is also a very close
connection between the solutions to these two problems. For
the case where the input is subject to an avei@meariance
constraint

Ka2 E[zz'] <K, )

Liu et al. [B] established the capacity region by showing tha
it is rectangular. Namely, it is given by

RB S O(HBaH07K)
Rc < C(He,Hp,K),

(3a)
(3b)

where C(Hg,H¢e,K) is the capacity of the MIMO wiretap
channel when Charlie acts the part of an eavesdropper, under
a covariance input constraint. The converse is immediate,
as both users achieve their maximal possible secrecy rates
simultaneously; it is the direct part that is quite strikifidhe
MIMO wiretap capacity under a covariance constraint was,
in turn, shown by Liu and Shaméil[6] to be achieved by a

aussian input; the solution is given as a maximization over

posed of a sender (“Alice”) who wishes to convey dil‘ferer‘gO ariance matrices satisfving the constraiht (2):
data to two users (“Bob” and “Charlie”), such that no infor- var I sying it (2):

mation can be recovered by one user about the data intended C(Hp,Ho,K) = Jnax Is(Hg,He,Ka) (4)
for the other user. The Gaussian multiple-input multiplepait 4=
(MIMO)ﬂvariant of this scenario, considered first inl [1], isvhere
given b a

yp =Hpxa+ 25 (1a) Is(Hp,He,K) = I(Hp, K) — I(Hc, K),

Yo =Hexa + 20, (1b) and the Gaussian vector mutual information (Ml) is
where y; and y. are the received vector signals by Bob I(H,K) = logdet {I + HKH T} . (5)

and Charlie, respectively, of lengthégz and N¢; x4 is the
transmitted vector signal by Alice of length4; zp and z¢

are Gaussian noise vectors, that are assumed, w.l.o.ge to
circularly-symmetric with zero mean and unit covariance ma
trix. The channel matriceld 5 andH ¢ have the corresponding

dimensions. The capacity region (under a constraint on tg

1The Gaussian single-input single-output (SISO) scenarituces to mes-

sages for the stronger user only (the Gaussian SISO wirdtapnel [2]), as
the BC channel is degraded.

Later, Bustin et al.[]7] provided an explicit solution to ghi

aximization problem. In order to obtain these results, all
of the works [5]-[7] used heavy machinery such as channel
enhancement and vector extensions of the I-MMSE relation.
eln this work, we show that some of these results can be
€rived in a simpler manner, once we know that the solution
to the MIMO wiretap problem is Gaussian (that is, giveh (4)).

2Throughout the paper, we are only interested in weak secrecy



As an added value, we use constructive proofs which providector is non-increasing. In terms of the GSVs, we can re-
schemes that are practical, in the sense that they emplt@ar scavrite () as:
(SISO) codes for the MIMO secrecy problems at hand. Na
In Section[Il we re-interpret the explicit solution df][7] C(Hp,He, K) = max ZlOgH2 (Hp, Ho, K a).
in terms of the generalized singular value decomposition KasK— !
(GSVD) [8], [9], and then derive it fronl{4) using only linear
algebra, without any information-theoretic considenasio
Then, we note that this solution seems related to t
confidential BC channel. Namely, some “directions” are ukef
for Bob, while others would be useful for Charlie if we

Indeed, in these terms the capacity expression_of [7] can be
Igg—stated as follows.

Theorem 1:The secrecy capacity under a covariance matrix
constraintK is equal to

inverted the roles. However, we need yet another ingredient N N
To that end, we present in Sectibnl Il a dirty-paper coding C(Hp,Hc,K) = Z [log pf (Hp,He, K)] T,
(DPC) variant of a recently proposed successive interteren i=1

cancellation (SIC) scalar-codes schemel [10] for the MlMQ/here[a:]Jr 2 max{0,z}.
W|rgtap cr_lannel._ Ehe key to our proof of this result is the following lemma.
Finally in Sectiof TV we use the above to construct a DP Lemma 1:Let K andK 4 be two matrices satisfying <
scalar-codes scheme for the confidential BC channel. This ~ K. Then for alli — 1 N -
scheme is optimal, thus analyzing its performance provideé4 - A
an alternative achievability proof for the MIMO confiderttia |log 117 (Hy, He, K)| > [log pf (Hy, He K a)l -

BC capacit .
pacity [5] That is, as we “decrease” the input covariance, the GSVs move

1. MIMO W IRETAP AND CONFIDENTIAL BROADCAST towardsy; = 1. The proof, which appears in AppendiX B,

CAPACITITIES uses standard matrix calculus to show that the differenofial
In this section we re-derive the result of Bustin et @l. [7] ithe i-th GSV, dp;, w.r.t. a change in the covariance matrix
terms of the GSVDI[B],[[9]. dK 4, is given by
To that end, construct the augmented matri€eég = di — (12 — 1) -~ (dK
G(Hp,K) andGe = G(He, K), wher pi = (7 —1) - 7i(dK a),

1/2 where;(dK 4) > 0 for dK 4 > 0.

a (HK .

GH,K) = ( | ) ) (6) By Lemmal1l, clearly Theorefd 1 gives an upper bound on
the capacity. To see that it is achievable, consider theixnatr

Recall thatK is the constraining covariance matrfx (2). Now

choose some unitary matriX4 and apply the QR decompo-

sitions: whereV 4 is the right unitary matrix of the triangular form of
GpVa=UpTy, 7a A y 9
YA BB (72) the GSVD ofG andG¢ (@), | 5 is a diagonal matrix whose
GeVa =UcTe, (7b) diagonal values corresponding to GSVs that are greater than
where Uz and Uc are unitary, andT 5 and T¢ are (gen- 1 — equal tol, and_ the others ar@. Trivially, Kz < K. The
eralized) upper-triangular of dimensioid’s + N4) x N, choice ofKp effectively truncates the GSVs &:
and (N¢ + Na) x Ny, respectively, vizTg,;; = Tc.j =0 2 2 +
. 2 logu; (He,He,Kp) = [log i (H,He, K)| .
for i > j. We have obtained a family of joint unitary og i (Hp,Ho Kp) = [log i (Hp, Ho, K)]
decompositions, depending on the choice/of. Let {b;} and This is formally proved in AppendikJA.
{ci} denote the diagonal values ®f; and T¢, respectively. ~ Remark 1:The covariance matriK g (I0) is calledK* in

Kp = K2V 41 gV K12 (10)

Then, the Gaussian MI5) satisfies: [7], where it is given in terms of the diagonal form of the
GSVD (see also Append :
I(Hp,K) = 1ogdet{Gj9GB} =Y logt?  (® ( ppendiIA) 1
. _

and similarly for Charlie. Thus, for any 4, Kp=KY?Y [(YBYB) OLBXLC] YTKY2, (12)

Na b2 OLCXLB OLcXLc
Is(Hp,He, K) = Zlogc—lg - (9) whereY = X~ and X is the right invertible matrix of the

1=1 t

diagonal form of the GSVDL 5 and L~ denote the GSVs that

A special choice o/ 4 gives the GSVIH where the general- are greater and smaller than 1, respectivdly; is the sub-
ized singular values (GSVs) are given py(Hg,He,K) £  matrix composed of the first 3 columns of Y, and Op.x,,
bi/c;. Without loss of generality, we assume that the GSyenotes the all-zero matrix of dimensionsx n. Using the
triangular form of the GSVD, simplifies the presentation and
3K 1/2 is any matrixB satisfyingBBT = K.
4Here we use the triangular form of the GSVD; see Appehdix Afticther 5In [7] a specific choice oK 1/2 was used: the matriB that satisfies
details. BB = K.



construction ofK g, as is evident from comparing {10) withof all (rectangular) regions under a covariance constraitit
(92)) small enough trace.

Remark 2:One may wonder why, of all possible choices of m
V 4, the capacity is given in terms of the GSVD. An intuitive
reason is as follows. Among all achievable diagonal ratiwes,
GSV series is the “least balanced” possible in a multipiieat
majorization sense [11]. In particular, for al;,

DPC-BASED SCALAR SCHEMES FORMIMO

In this section we present DPC-based schemes for the
Gaussian MIMO channel (without secrecy) and the MIMO
wiretap channel. These schemes, which build upon the matrix
decomposition[{7), allow to approach the optimal rate for

o1+ Na b? + any input covariance matrix, using scalar dirty-paper sode
Z [k’g /‘i] = Z [k’g C_z} : SIC counterparts of these schemes were previously presente
i=1 i=1 v in [Z0].

Remark 3:Denote the capacity of the MIMO wiretap chan- .
nel under a power constraift by C'(Hg,H¢, P). Since by, A. Without Secrecy Constraints

Na

e.g., [12, Lemma 1], We novx{_briefly review the copngction between _matrix
decompositions and scalar transmission schemes, witlesut s
C(Hp,H¢, P) = « paax C(Hp,Hc, K), crecy requirements. For a more thorough account, the reader
racqK}<P is referred to[[111],[T18]. Consider the chanrell(1a). Réogll
it follows that @), construct the augmented mati&z = G(Hg,K). For
Na some unitary matrin/ 48 decomposés as in [78).
C(Hp,He,P)= max Z [loguf (HB,HC,K)TF. We start by describing a scheme that utilizes successive
Katrace{K}<P i interference cancellation (SIC) to approach capacity gisin

For the optimalK, all the GSVs are greater or equal to 15calar codes. We then discuss a similar scheme that prelsanc

To the contrary, assume that some are strictly smaller thantA€ interferences at the transmitter by means of DPC.
then, we can use a matri& 4 with the appropriate directions Let & be a vector of standard Gaussian variables, and set
“nullified”. But since tracéK 4} < tracg K} < P, we can x=KY2V % (13)
then use amplification to improve the rate. - i .

Now we note that, if we were interested in confidentiaPenOte byUp the sub-matrix consisting of the upper-left

it e Sharli i % N4 block of U, defineT = 0h,K1/2v ,, and let

communication with Charlie rather than with Bob, we would'B A B =Up A
get the same solution with the rolesldf; andH reversed. = UT _ UT K12V & + UT 2p=T&+325.(14
But then, this means inversion of the GSVs: Yp sY5 B B (14)

. ~ . " ~t .
SinceUgp is not unitary, the statistics af 2 U, z differ from
log p1i(He, Hp, K) = —log ui(Hp, He, K). b y B

those ofz, and its covariance matrix is given by £ DBU;.

Thus, we can write the rectangular capacity-region of thdow, fori =1,..., N4, define
confidential BC channel]3) as follows. Na
Theorem 2:The capacity region of the confidential MIMO Yp.i = UBsi — Z T;.0ice
BC channel under an input covariance constr&inis given =il
by all rates(Rg, R¢) satisfying: i—1 (15)
Na =T % + Z TioZe + 2 2 Tiadli + 25
Rp <Y [logpi? (Hp,He, K)] " | =1
=1 In this scalar channel fronx; to ng;i, we see otherz,
Na as ‘“interference”,z; — as “noise”, and their sum:;?ff —
Reo < Z [—loguf (Hg,He, K)]Jr . as “effective noise”. The resulting signal-to-interfecerand-
i=1 noise ratio (SINR) is given by:
The converse part of this result is trivial by Theoréin 1. N (Ti,i)Q N (T“.y
For the direct part, it is tempting to think that since diéfet Si = Ky 5 = ; )

GSVs are nullified for Bob and for Charlie, Alice can achieve
their optimal rates simultaneously by communicating over . )
orthogonal “subspaces”. However, since the matritgsand Where Kz, ; denotes the(i, j) entry of K 3. The following
Tc are not diagonal, these “subspaces” are not orthogorfgy result achieves the mutual informationl[13, Lemma 1.3
and some more care is needed. In the rest of this paper
dev_elop a DPC_sc_heme for the wiretap chgnnel_ that leads to an I (fi; Yp jf\h) -7 (ii; y%;i)
optimal transmission scheme for the confidential BC channel )
Thus, this derivation provides a proof for the direct part of = log(1+5;) = log(b;) .
Theoren{2, WhICh is an alternative to the proof[in [5]. 6See [10], [T1], [3] for interesting choices Wf.
Remark 4..S|m|IarIy to the MIMO W|re.tap Channel!_the “Note that, even thougi has dependent components, the entries of the
capacity region under a power constraintis just the union effective noisez", are independent.

i—1
Kz, i+ > (Tig)?
=1

(16)



On account of[(B), the sum of these rates amouni$tts;, K), Scheme 2 (MIMO wiretap via DPC):
which equals the channel capacity for the optirdal Offline:

This analysis leads immediately to an optimal SIC-based, Apply the QR decomposition t6 5V 4 and to GV 4,
scheme, since the decoder can perform iteratively the in- whereGyz 2 G(Hp,K) andGe 2 G(He, K):
terference cancellatiod _(L5). Indeed, such a scheme, which
can be found in, e.g.[T10], is a variant of the renowned GiVa=U,Ty, ke{B,C},
V-BLAST/GDFE scheme[[14]:[16]. A different approach is
that of pre-canceling the interferences at the transmitserg
DPC. Such pre-cancellation incurs no loss in performance
compared to the interference-free chanmel [17]. This tesul
in the following scheme.

Scheme 1 (MIMO point-to-point via DPC):

Offline: ConstructN, good dirty-paper codebooks as fol-
lows. Codebook (1 < i < N,) is constructed for a channel

{b;} and{¢;} are the diagonal values afz and T¢,
respectively, antl;, is the upper-leftV;, x N4 sub-matrix
of Us.

o Construct good scalar wiretap codes as follows. Code-
booki (1 < i < N,)is of unit power with entries denoted
by #,; (with the time index omitted to simplify notation).

It is constructed for an AWGN channel to Bob of SNR

5 :
with AWGN of power 1, SNRS; = b2 — 1 and interferend® b; — 1 and interference
N4 Na
Z Ti e Z T';iee, (17)
l=i+1 L=i+1
that is available as side information at the transmitter. and for an AWGN channel to Charlie of SNRR — 1 and
Alice: At each time instance: interference
o Generates; from last ¢ = N4) to first ¢ = 1), where Na
Z, is generated according to the message to be conveyed Z Tcuioe . (18)
and the interference signafg|¢{ =i+ 1,...,Na}. (=it1

o Formsz with entries{z;}.

. Transmitsz according to[TB): Alice: At each time instance:

Vo = o Generatest; from last to first, wherez; is generated
x=K'/"Vaz according to the message to be conveyed and the inter-
ference signal§z,|¢ =i+ 1,...,Na}.

Bob: o Formsz with entries{z;}.

« Transmitsz according to xz = K2V 2.
« At each time instance formg; according to[(I4): Bob: 9 toltZ) 4
Yp = U;yB . « At each time instance formg; according to[(I4).

« Decodes the codebooks using dirty-paper decoders, wheré I?ecodes the codebooks using dirty-paper decoders, where

- - Z; is decoded fronyg.;.
Z; is decoded fronyz.;. ) : o ]
By using good dirty-paper codes, capacity is achieved: se :I'he fo_llowmg theorem proves the optimality of this scheme
e.g. [13]. when using good scalar dirty-paper codes.
' be Theorem 3:Lete > 0, however small, and defirfe= N e.

Remark 5:The dirty-paper codes that are used can _ _ i
generated together using random binning; in this case @osth €M for any covarianc and any unitaryV/ 4, there exist
calar codebooks of secrecy rat@s = log(b?/c?) — €, such

auxiliaries{u;} as well as all the interferences are Gaussiai, Schem&]2 achi h
and hence Costa’s results follow through. Alternativelye o that Sc em achieves the secrecy (atel 5, He, K? — &
can generate the codebooks one-by-one and rely on the ex- Proof: The proof follows by a standard extension of the

tended analysis for non Gaussian noise and interferencePgpOf of Theorem 3 of [110] (Whi(_:h is a speciqlization of
[18]. Furthermore, structured versions can be applied ds we neorem 2 of [10] for the Gaussian MIMO setting) to the

which are valid for arbitrary interference sequences; &8 [ dirty-paper case. _
Codebook construction:For eachk = 1,..., N4, generate

B. MIMO Wiretap a codebook® of 27(Rx+Ex) sub-codebooks. Each such sub-
In this section we describe an optimal scheme for the MIMCodebook is assigned a unique index-p@it;, f), where

wiretap channel using scalar dirty-paper wiretap codes. We, € {1,2,...,2"%} and f;, € {1,27...72”15%}, and
moﬁ[ljé]ha;ﬁeségiﬁ:qscgu':.trﬁ25a]}grc’;rt]hecicg?.gfc\gans];t?serc]%entains2"“5°(k3p—(Rk+Rk” codewords. Each codeword is gen-
{N'th 't | f ' I'tpl Y t;ilétl' h thlxt erated independently in an i.i.d. manner wp(u,) which is

thout 10sS o generaity, W.e assume IS suc al” Gaussian with parameters dictated by
logui(Hg,He,K) > 0 for all i = 1,..., Ny4; otherwise we
can replaceK by K 5 (10). . Na

~ e = Togesin + ok > Tpikike,
8Note thatT},, = T;.p for £ > 1. htl



A bi -1 « Denote the diagonal entries @fz and T by {b;} and
b {c;}, respectively.

o Denote further the (first) number of indices for which
b; > ¢; by L. The remainingLc = N4 — Lp indices
satisfyc; > b;.

« Denote pyDB the upper-leftNg x L sub-matrix ofU,

g

where {xix|k = 1,...,N4} are unit power i.i.d. Gaussian
random variables.
The rates are chosen as follows.

R, 2 [I(uk;yB) -1 (uk; “kal)} -1 (uk;yE “kal) —¢ and byUc — the upper-rightNe x Lo sub-matrix of
Ue.
=1 (ug;yp) —1 (Uk;YE, Uﬁfl) —€ o ConstructN, good scalar wiretap codes of unit power
. - Na and lengthn, denoted byz; (with the time index omitted
=1 (X’“’yB‘XkH) -1 (X’“;yE‘XkH) -6 to simplify notation), as follows.
Rp 21 (UMYE‘Uivfl) —c — The first Lg codes are intended for Bob: Codebook
Z; (1 < i < Lp) is constructed for an AWGN
=1 (ik,YE‘ikal) —€, channel to Bob of SNR? — 1 and interferencd (17):
REP & I (uksys) — e, Na
. . . ) N Z TBiiee,
for unit power i.i.d. Gaussian random variabl¢z, |k = =i
1,...,Na}. The transitions above fromy, to z;, are justified )
since the interference (transmitter side-information)sirb- and for an AWGN channel to Charlie of SNRR —1
channel is composed of messaggs,|/ = 1,..., Na}. Note and interference (18):
that by [16),?;, = log(b? /c2)—e, thus by [9) the sum of these Na
rates approaches the desired secrecy Fatel 5, Ho, K) — &. Z Tcii et -
Encoding (Alice): Encoding is carried in a successive L=i+1
manner, from lasti{ = N4) to first (k = 1). Within codebook — The remainingL¢ codes are intended for Charlie:
k, the index of the sub-codebook to be used is determined Codebooki; (Ls + 1 < i < N.,) is constructed for
by the secret message;, and a fictitious messagg, drawn an AWGN channel to Charlie of SNR? — 1 and
uniformly over their respective ranges. The codeward interference[(18):
within sub-codebookmy, i) that is selected, is the one that is
jointly typical with the side informatiori:é\]:“k+1 TB;kngNTg. If oA T -
no such codeword,, exists, then the first codeword is selected. Z 36,602
Decoding (Bob): Bob recovers(my, fi) using standard =i
dirty-paper decoding (as discussed in Section 1lI-A) and and for an AWGN channel to Bob of SNE — 1
discardsf;. The error probability can be made arbitrary small and interference (17):
by taking large enough. Na
Secrecy analysis (Charlie):By recalling that {x,|¢ = Z Tp.i0ie .
1,...,Na} and {us|¢ = 1,...,Na} carry the same infor- =it1

mation, the_secrecy analysis is the same as in the proof OtAIice: At each time instance:
Theorem 2 in[[10].

o Generatest; from last to first, wherez; is generated
IV. CONFIDENTIAL BROADCAST SCHEME according to the messages to be conveyed and the inter-
ference signal§z¢|¢ =i+ 1,...,Na}.
o Formsz with entries{z;}.
« Transmitsz according to[(T13):

In view of Schemé12, the result of Sectibh Il has a rather
intuitive interpretation:V 4 of the GSVD is the precoding
matrix that designs the ratios betweéh} and {c;} to be
as large as possible, which corresponds to maximizing the x=KY2V %
achievable secrecy rate to Bob. In order to achieve Bob’s
secrecy capacity, only the sub-channels for which the sgcre Bob:
rate is positive §; > ¢;) need to be utilized. « At each time instance forms

Allocating the remaining sub-channels to Charlie, on the oo~ 0
other hand, attains Charlie’s optimal covariance matrix. Y5 = “BYs-

Combining the two gives rise to the following scheme, « Decodes codebooks = 1,...,Lp using dirty-paper
which is a straightforward adaptation of Schelme 2. decoders, wherg; is decoded fronyz.;.

Scheme 3 (Confidential Broadcast): Charlie:

Offline:

« At each time instance forms
o Apply the GSVD decomposition t&xp = G(Hp,K)

A
and toG¢ = G(H¢,K) as in [7). Yo =Ucyc -



o Decodes codebooks = Lp + 1,..., N4 using dirty- where Ug and Uo are unitary, X is invertible, andDp

paper decoders, whefig is decoded frongc.;. and D¢ are diagonal matrices with positive diagonal values
The following theorem proves that this scheme allows bof#tisfying
users to attain their respective secrecy capacgigsiltane- D2 + D% =1. (21)

ously, providing a proof for Theorerl 2. _ . .
Theorem 4:Let e > 0, however small, and defie= N e.  As in Sectior(ll, we take, w.l.0.g., the GSV vectar which
Then, there exist scalar codebooks intended for Bob of rag@uals the ratio between the diagonaldht andDc, to be
R; = log(b?/c?) — ¢, i = 1,...,Lp, and scalar codebookshon-increasing. Denote the number of GSVs that are greater
intended for Charlie of rate, = log(c?/0?) — ¢, i = than1lbyLp, and the rest —by.c = Ny — L. Denote
Lp + 1,..., N4, such that Schenié 3 simultaneously achievé4rther byl z the N4 timesN 4 diagonal matrix withL p ones
the secrecy rate§(Hp,He,K) — ¢ andC(He, Hp, K) — ¢ on its diagonal, followed by ¢ zeros. _
for Bob and Charlie, respectively. By applying a QL decomposition tX, we attain
Pr_oof outline:_ The proof of the d_ecodability and secrecy Gp = UBDBTVTL;
analysis for Charlie are the same as in the proof of TheGiem 3 t
(with Charlie being the “legitimate” user). In the treatrhen Ge =UcDcTVy,
for Bob, a small variation is needed: the interference ov@hereT is upper-triangular an¥ 4 is unitar)E

sub-channef (1 < i < Lp) is composed of both messages SinceV , is unitary, the following relations hold:

intended for Charlieiggﬂ, and messages intended for Bob, 1/2

@1%. Thus, the DPC for Bob is carried w.r.t. both of these Gy <HBKI Va

interferences, and the decodability and secrecy analykosf

as in the proof of Theorefd 3. [ ] Gl 2 <HCK1/2VA) — U-D.T
Remark 6 (Replacing DPC with SICPPC was used in © | cren

Schemd B for both users. However, in the proposed SChem’?ereU’ andU.. are unitary. That is, the GSVD &, and
one may use SIC instead of DPC for Charlie, as is done B “ ' B

& is achieved by applying a QR decomposition to each of
[10] for the MIMO wiretap problem. Alternatively, by usingthgm_ y applying a Q .

Iower-tr_langular matrices mstgad _of upper-triangulae®1in Finally, by incorporating 5 we achieve
(@) (which corresponds to switching roles between Bob and

[I>

> = U,DpT

|[>

Charlie in the construction of the scheme), one can use SIC fo = a (HeKY2Valg) 5 & =

. . GrB - = UBDBT (2261)
Bob and DPC for Charlie. This phenomenon was also observed |
by Liu et al. [B]. l_Jnfortunater, this scheme does not allow, G2 HoKY2V 4l g 0Dt (22b)
in general, to avoid DPC for both of the users. ¢ = [ — Yool

Remark 7 (Other choices of precoding matrixit  [10], . N ) . .
different choices ofVV4 were proposed for the MIMO Where Uz and Uc are unitary having the same firdts
wiretap problem: diagonalizing eithef 5 or T, which —columns as_UjB and U, respectively;T, D and D¢ have
corresponds to avoiding SIC by Bob or guaranteeing stroﬂf same firstLp columns asT, Dp and D¢, respectively,
secrecy, respectively; or, by incorporating space-tindingy Whereas the remalmng_c columns are all zero except for the
to design all the resulting SNRs of each of the users fagonal elements, which are equal to 1:
be constant, which allows using the same codebook over ~ ~ 1 i=i i>1I

. . - . =J,)> LB
all sub-channels and avoiding bit loading / rate allocation Dpij = Dc;ij =T ; = { R .
The analog in the case of confidential broadcast is by 0 i#J,j>Lp
applying block diagonal unitary operations, in additiorthe The latter is easily seen by noting that the QR decomposition
matrix V 4 that is dictated by the GSVD, where the blockgarries a Gram-Schmidt process over the columns of the
correspond to the sub-channels that are allocated to Bob aletomposed matrices, and hence the firstcolumns remain
to Charlie. However, whereas we can avoid SIC at Bob's etide same after applyingg, whereas the structure of the
in Schemé13 by diagonalizing his channel, we cannot achiengmaining columns is trivial due to the nullification of the
this result for both Charlie and Bob simultaneously, as DP@st L~ columns ofH gK /2V 4.

needs to be employed for at least one of the users. We note that[{22) is the GSVD d& 5 and G¢ up to the
normalization property(21), which has no effect on the GSVs
APPENDIXA and can be achieved by multiplying by &y x N, diagonal
TRUNCATION OF GENERALIZED SINGULAR VALUES matrix with its first Lz diagonal entries equal to 1 and the
The diagonal variant of the GSVD @5 = G(Hp,K) and remainingL¢ diagonal entries — td/v2. ,
Gc = G(Hg,K) is given by [8], [9]: The desired result is. established by noting thag/ =
K1/2V 41 5, and that the first 5 GSVs of(G 3, G¢) are equal
Gp = UpDpX' (20a)
- 9Note that, by denotingTg = DT and T¢ = DT, we attain the
Gc =UcDeXT, (20b) triangular variant of the GSGD, whifh is, in tu?n, a spgcial;e of [[7).



to the firstLp GSVs of(Gg, G¢) (the GSVs that are greater
than 1) and the remaining GSVs @&, G¢) are equal to 1.

APPENDIXB
PROOF OFLEMMA [II

as desired.

2

+BI(HHp — MHEH)BB ™ (aK)B )y,
=2(\ — 1)y/B~'(dK)B Ty,

Corollary 1: If dK is positive semi-definite, then the sign

Consider the diagonal variant of the GSVD Gz =

of d\; equals the sign of\; — 1.

G(Hp,K) andG¢ = G(Hc,K) (0) and denote the squared The result of Lemmdll follows immediately from this

GSV vector byA, i.e., the vector whose entries satisfy:
\ 2 ,u2 .
The Ml difference in terms of \;} is equal to
I(Hp,He K) =) "log A .

Proposition 1: For any matricesz g and G, consider the
generalized eigenvalue (GEV) problem:

GLGpy = \GLGy.

(1]

(2]
(3]

(4

Then, the generalized eigenvalue§6f,G 5, GLGe), {\i}, 18]
are the GSVs ofGg, G¢), {1}, and the generalized eigen-

vectors are the corresponding columns of

Y =X,

(6]

[7]
Furthermore, the differential of the GEX in terms of the

differentials ofG,G 5 and of G|,G¢ is given by
y! (d(GEGB) - /\d(GTch))y
yIGLGoy

Proof: The first part of the proposition easily follows from

(8]
El
[10]

dX =

(23)

GLGRY = XD%
GLGcY = XDZ.

(11]

[12]
The proof of the differential identity (23) can be derived by
standard eigenvalue perturbation analysis; see, £.4., [28 [13]
Lemma 2:The differential of GSVA; (i = 1,...,N4), in
terms of the differential of the covariance matKx is given

[14]
by

Edx = (A — 1)y!B™H(adK)B Ty, [15]

whereB = K'/2, ¢ is the diagonal ofD¢, and y; is the
corresponding generalized eigenvector corresponding.to

Proof: By specializinngBGB and GTCGC to the matri-
ces in [2D), and differentiating w.rk, we obtain

2d(GhL,Gp) =B 1 (dK)HLHEB + BIHLH p(dK )BT,
(24a)

2d(GLGe) =B H(dK)HEHEB + BTHL Ho(dK)B .
(24b)

[16]

[17]
(18]

[19]

20
Substituting [(24) in[(23), gives rise to (20]

22d); = yj(Bfl(dK)(HgHB — \HLHE)B
+BI(HiHB — MHEHE)(@K)B T )y,

—y! (B (aK)BTBI(HHL — AHEHC)B

corollary.
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