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Abstract—We consider the problem of transmitting confiden-
tial messages over a two-user broadcast multiple-input multiple-
output (MIMO) channel. Surprisingly, the capacity region of
this setting under a covariance matrix constraint was shownby
Liu et al. to be rectangular. That is, there is no tension, and
both users can attain their respective MIMO wiretap capacities,
simultaneously. In this work, we provide a new derivation of this
result by proposing an alternative achievability scheme for the
corner point of the capacity region. This derivation, in addition
to being considerably shorter and simpler than the original, also
provides a practical transmission scheme, in the sense thatthe
codes used are scalar (single-antenna) ones. We use two main
ingredients. The first is the explicit optimal input covariance
matrix of Bustin et al. for the MIMO wiretap channel under
a covariance matrix constraint, which we also re-derive in a
simple manner. The second is a dirty-paper variant of a recently
proposed optimal scheme for the MIMO wiretap channel, which
uses scalar codes. The proposed treatment demonstrates the
connection between the confidential broadcast problem and the
MIMO wiretap one: the former almost reduces to the latter,
except for the use of dirty-paper coding which is not mandatory
in MIMO wiretap; the work sheds light on the reason for this
difference.

I. I NTRODUCTION

The confidential two-user broadcast (BC) channel is com-
posed of a sender (“Alice”) who wishes to convey different
data to two users (“Bob” and “Charlie”), such that no infor-
mation can be recovered by one user about the data intended
for the other user. The Gaussian multiple-input multiple-output
(MIMO) variant of this scenario, considered first in [1], is
given by1

yB = HBxA + zB (1a)

yC = HCxA + zC , (1b)

where yB and yC are the received vector signals by Bob
and Charlie, respectively, of lengthsNB andNC ; xA is the
transmitted vector signal by Alice of lengthNA; zB andzC

are Gaussian noise vectors, that are assumed, w.l.o.g., to be
circularly-symmetric with zero mean and unit covariance ma-
trix. The channel matricesHB andHC have the corresponding
dimensions. The capacity region (under a constraint on the
input) is the closure of the rates(RB, RC) such that reliable
decoding and secrecy are guaranteed.2

1The Gaussian single-input single-output (SISO) scenario reduces to mes-
sages for the stronger user only (the Gaussian SISO wiretap channel [2]), as
the BC channel is degraded.

2Throughout the paper, we are only interested in weak secrecy.

The confidential BC channel can be seen as a generalization
of the MIMO wiretap channel [3], [4], where no information
is sent to Charlie (RC = 0). Hence, it is usually referred to as
an eavesdropper. Indeed, there is also a very close connection
between the solutions to these two problems. For the case
where the input is subject to an averagecovariance constraint

KA , E
[

xx
†
]

� K , (2)

Liu et al. [5] established the capacity region by showing that
it is rectangular. Namely, it is given by

RB ≤ C(HB,HC ,K) (3a)

RC ≤ C(HC ,HB,K), (3b)

whereC(HB,HC ,K) is the capacity of the MIMO wiretap
channel when Charlie acts the part of an eavesdropper, under
a covariance input constraint. The converse is immediate,
as both users achieve their maximal possible secrecy rates
simultaneously; it is the direct part that is quite striking. The
MIMO wiretap capacity under a covariance constraint was,
in turn, shown by Liu and Shamai [6] to be achieved by a
Gaussian input; the solution is given as a maximization over
covariance matrices satisfying the constraint (2):

C(HB,HC ,K) = max
KA�K

IS(HB,HC ,KA) (4)

where IS(HB ,HC ,K) , I(HB,K) − I(HC ,K), and the
Gaussian vector mutual information (MI) is

I(H,K) = log det
{

I + HKH †
}

. (5)

Later, Bustin et al. [7] provided an explicit solution to this
maximization problem. In order to obtain these results, all
of the works [5]–[7] used heavy machinery such as channel
enhancement and vector extensions of the I-MMSE relation.

In this work, we show that some of these results can be
derived in a simpler manner, once we know that the solution
to the MIMO wiretap problem is Gaussian (that is, given (4)).
As an added value, we use constructive proofs which provide
schemes that are practical, in the sense that they employ scalar
(SISO) codes for the MIMO secrecy problems at hand.

In Section II we re-interpret the explicit solution of [7]
in terms of the generalized singular value decomposition
(GSVD) [8], [9], and then derive it from (4) using only linear
algebra, without any information-theoretic considerations.



Then, we note that this solution seems related to the
confidential BC channel. Namely, some “directions” are useful
for Bob, while others would be useful for Charlie if we
inverted the roles. However, we need yet another ingredient.
To that end, we present in Section III a dirty-paper coding
(DPC) variant of a recently proposed successive interference
cancellation (SIC) scalar-codes scheme [10] for the MIMO
wiretap channel.

Finally in Section IV we use the above to construct a DPC
scalar-codes scheme for the confidential BC channel. This
scheme is optimal, thus analyzing its performance provides
an alternative achievability proof for the MIMO confidential
BC capacity [5].

II. MIMO W IRETAP AND CONFIDENTIAL BROADCAST

CAPACITITIES

In this section we re-derive the result of Bustin et al. [7] in
terms of the GSVD [8], [9].

To that end, construct the augmented matricesGB =
G(HB,K) andGC = G(HC ,K), where3

G(H,K) ,

(

HK 1/2

I

)

. (6)

Recall thatK is the constraining covariance matrix (2). Now
choose a unitary matrixVA and apply the QR decompositions:

GBVA = UBTB , (7a)

GCVA = UCTC , (7b)

where UB and UC are unitary, andTB and TC are (gen-
eralized) upper-triangular of dimensions(NB + NA) × NA

and (NC + NA) × NA, respectively, viz.TB;ij = TC;ij = 0
for i > j. We have obtained a family of joint unitary
decompositions, depending on the choice ofVA. Let {bi} and
{ci} denote the diagonal values ofTB and TC , respectively.
Then, the Gaussian MI (5) satisfies:

I(HB,K) = log det
{

G
†
BGB

}

=
∑

log b2i (8)

and similarly for Charlie. Thus, for anyVA,

IS(HB,HC ,K) =

NA
∑

i=1

log
b2i
c2i

. (9)

A special choice ofVA gives the GSVD,4 where the general-
ized singular values (GSVs) are given byµi (HB,HC ,K) ,
bi/ci. Without loss of generality, we assume that the GSV
vector is non-increasing. In terms of the GSVs, we can re-
write (4) as:

C(HB,HC ,K) = max
KA≤K

NA
∑

i=1

logµ2
i (HB,HC ,KA) .

Indeed, in these terms the capacity expression of [7] can be
re-stated as follows.

3K1/2 is any matrixB satisfyingBB†
= K .

4Here we use the triangular form of the GSVD; see [11, AppendixA] for
further details.

Theorem 1:The secrecy capacity under a covariance matrix
constraintK is equal to

C(HB,HC ,K) =

NA
∑

i=1

[

logµ2
i (HB,HC ,K)

]+
,

where[x]+ , max{0, x}.
The key to our proof of this result is the following lemma.

Lemma 1:Let K and KA be two matrices satisfying0 �
KA � K . Then for alli = 1, . . . , NA,

∣

∣logµ2
i (Hb,HC ,K)

∣

∣ ≥
∣

∣logµ2
i (Hb,HC ,KA)

∣

∣ .

That is, as we “decrease” the input covariance, the GSVs
move towardsµi = 1. The proof, which appears in [11,
Appendix B], uses standard matrix calculus to show that
the differential of thei-th GSV, dµi, w.r.t. a change in the
covariance matrixdKA, is given by

dµi =
(

µ2
i − 1

)

· γi(dKA) ,

whereγi(dKA) ≥ 0 for dKA � 0.
By Lemma 1, clearly Theorem 1 gives an upper bound on

the capacity. To see that it is achievable, consider the matrix:5

KB = K1/2VAIBV†
AK1/2† (10)

whereVA is the right unitary matrix of the triangular form of
the GSVD ofGB andGC (7), IB is a diagonal matrix whose
diagonal values corresponding to GSVs that are greater than
1 — equal to1, and the others are0. Trivially, KB � K . The
choice ofKB effectively truncates the GSVs ofK :

logµ2
i (HB,HC ,KB) =

[

logµ2
i (HB,HC ,K)

]+
.

This is formally proved in [11, Appendix A].
Remark 1:One may wonder why, of all possible choices of

VA, the capacity is given in terms of the GSVD. An intuitive
reason is as follows. Among all achievable diagonal ratios,the
GSV series is the “least balanced” possible in a multiplicative
majorization sense [12]. In particular, for anyVA,

NA
∑

i=1

[

logµ2
i

]+
≥

NA
∑

i=1

[

log
b2i
c2i

]+

.

Remark 2:Denote the capacity of the MIMO wiretap chan-
nel under a power constraintP by C(HB,HC , P ). By, e.g.,
[13, Lemma 1],

C(HB,HC , P ) = max
K :trace{K}≤P

NA
∑

i=1

[

logµ2
i (HB,HC ,K)

]+
.

For the optimalK , all the GSVs are greater or equal to 1.
To the contrary, assume that some are strictly smaller than 1;
then, we can use a matrixKA with the appropriate directions
“nullified”. But since trace{KA} < trace{K} ≤ P , we can
then use amplification to improve the rate.

5This covariance matrix is calledK∗
x in [7], where it is given in terms

of the diagonal form of the GSVD. Using the triangular form simplifies the
expression considerably. See [11, Remark 1] for further details.



Now we note that, if we were interested in confidential
communication with Charlie rather than with Bob, we would
get the same solution with the roles ofHB andHC reversed.
But then, this means inversion of the GSVs:

logµi(HC ,HB,K) = − logµi(HB,HC ,K).

Thus, we can write the rectangular capacity-region of the
confidential BC channel (3) as follows.

Theorem 2:The capacity region of the confidential MIMO
BC channel under an input covariance constraintK is given
by all rates(RB, RC) satisfying:

RB ≤

NA
∑

i=1

[

logµ2
i (HB,HC ,K)

]+

RC ≤

NA
∑

i=1

[

− logµ2
i (HB,HC ,K)

]+
.

The converse part of this result is trivial by Theorem 1.
For the direct part, it is tempting to think that since different
GSVs are nullified for Bob and for Charlie, Alice can achieve
their optimal rates simultaneously by communicating over
orthogonal “subspaces”. However, since the matricesTB and
TC are not diagonal, these “subspaces” are not orthogonal,
and some more care is needed. In the rest of this paper we
develop a DPC scheme for the wiretap channel that leads to an
optimal transmission scheme for the confidential BC channel.
Thus, this derivation provides a proof for the direct part of
Theorem 2, which is an alternative to the proof in [5].

Remark 3:Similarly to the MIMO wiretap channel, the
capacity region under a power constraintP is just the union
of all (rectangular) regions under a covariance constraintwith
small enough trace.

III. DPC-BASED SCALAR SCHEMES FORMIMO

We now present DPC-based schemes for the Gaussian
MIMO channel (without secrecy) and the MIMO wiretap
channel. These schemes, which build upon the matrix decom-
position (7), allow to approach the optimal rate for any input
covariance matrix, using scalar dirty-paper codes. SIC coun-
terparts of these schemes were previously presented in [10].

A. Without Secrecy Constraints

We now briefly review the connection between matrix
decompositions and scalar transmission schemes, without se-
crecy requirements. For a more thorough account, the reader
is referred to [12], [14]. Consider the channel (1a). Recalling
(6), construct the augmented matrixGB = G(HB,K). For
some unitary matrixVA,6 decomposeGB as in (7a).

We start by describing a scheme that utilizes successive
interference cancellation (SIC) to approach capacity using
scalar codes. We then discuss a similar scheme that pre-cancels
the interferences at the transmitter by means of DPC.

Let x̃ be a vector of standard Gaussian variables, and set

x = K1/2VAx̃ . (12)

6See [10], [12], [14] for interesting choices ofVA.

Denote by ŨB the sub-matrix consisting of the upper-left
NB ×NA block of UB, defineT̃ = Ũ

†

BK1/2VA, and let

ỹB = Ũ
†

ByB = Ũ
†

BK1/2VAx̃+ Ũ
†

BzB = T̃x̃+ z̃B .(13)

SinceŨB is not unitary, the statistics of̃z , Ũ
†

Bz differ from

those ofz, and its covariance matrix is given byK z̃ , ŨBŨ
†

B.
Now, for i = 1, . . . , NA, define

y′B;i = ỹB;i −

NA
∑

ℓ=i+1

T̃i,ℓx̃ℓ

= T̃i,ix̃i +
i−1
∑

ℓ=1

T̃i,ℓx̃ℓ + z̃i , T̃i,ix̃i + zeff
i .

(14)

In this scalar channel from̃xi to y′B;i, we see other̃xℓ

as “interference”,z̃i — as “noise”, and their sumzeff
i —

as “effective noise”. The resulting signal-to-interference-and-
noise ratio (SINR) is given by:

Si ,
(T̃i,i)

2

Kzeff;i,i

,
(T̃i,i)

2

Kz̃;i,i +
i−1
∑

ℓ=1

(T̃i,ℓ)2
,

whereKz̃;i,j denotes the(i, j) entry of K z̃ . The following
key result achieves the MI (see, e.g., [14, Lemma III.3])7

I
(

x̃i;yB

∣

∣

∣
x̃NA

i+1

)

= I
(

x̃i; y
′
B;i

)

= log(1 + Si) = log(b2i ) .
(15)

On account of (8), the sum of these rates amounts toI(HB,K),
which equals the channel capacity for the optimalK .

This analysis leads immediately to an optimal SIC-based
scheme, since the decoder can perform iteratively the inter-
ference cancellation (14). Indeed, such a scheme, which can
be found in, e.g., [10], is a variant of the renowned VBLAST
scheme. A different approach is that of pre-canceling the inter-
ferences at the transmitter using DPC. Such pre-cancellation
incurs no loss in performance compared to the interference-
free channel [15]. This results in the following scheme.

Scheme 1 (MIMO point-to-point via DPC):
Offline: ConstructNA good dirty-paper codebooks as fol-

lows. Codebooki (1 ≤ i ≤ NA) is constructed for a channel
with AWGN of power 1, SNRSi = b2i − 1 and interference8

NA
∑

ℓ=i+1

Ti,ℓx̃ℓ

that is available as side information at the transmitter.
Alice: At each time instance:
• Generates̃xi from last (i = NA) to first (i = 1), where

x̃i is generated according to the message to be conveyed
and the interference signals{x̃ℓ|ℓ = i+ 1, . . . , NA}.

• Formsx̃ with entries{x̃i}.
• Transmitsx according to (12):x = K1/2VAx̃.

7Note that, even though̃z has dependent components, the entries of the
effective noisezeff, are independent.

8Note thatT̃i;ℓ = Ti;ℓ for ℓ > i.



Bob:
• At each time instance forms̃yB according to (13):

ỹB = Ũ
†

ByB .

• Decodes the codebooks using dirty-paper decoders, where
x̃i is decoded from̃yB;i.

By using good dirty-paper codes, capacity is achieved; see,
e.g., [14].

B. MIMO Wiretap

In this section we describe an optimal scheme for the MIMO
wiretap channel using scalar dirty-paper wiretap codes. We
note that a SIC-based counterpart of the scheme was presented
in [10]. The scheme is optimal for any covariance matrixK .
Without loss of generality, we assume thatK is such that
logµi(HB,HC ,K) ≥ 0 for all i = 1, . . . , NA; otherwise we
can replaceK by KB (10).

Scheme 2 (MIMO wiretap via DPC):
Offline:
• Apply the QR decomposition toGBVA and toGCVA,

whereGB , G(HB,K) andGC , G(HC ,K):

GkVA = UkTk , k ∈ {B,C} ,

{bi} and {ci} are the diagonal values ofTB and TC ,
respectively, and̃Uk is the upper-leftNk×NA sub-matrix
of Uk.

• Construct good scalar wiretap codes as follows. Code-
booki (1 ≤ i ≤ NA) is of unit power with entries denoted
by x̃i (with the time index omitted to simplify notation).
It is constructed for an AWGN channel to Bob of SNR
b2i − 1 and interference

NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ , (16)

and for an AWGN channel to Charlie of SNRc2i − 1 and
interference

NA
∑

ℓ=i+1

TC;i,ℓx̃ℓ . (17)

Alice: At each time instance:

• Generates̃xi from last to first, wherẽxi is generated
according to the message to be conveyed and the inter-
ference signals{x̃ℓ|ℓ = i+ 1, . . . , NA}.

• Formsx̃ with entries{x̃i}.
• Transmitsx according to (12):x = K1/2VAx̃.

Bob:
• At each time instance forms̃yB according to (13).
• Decodes the codebooks using dirty-paper decoders, where

x̃i is decoded from̃yB;i.

The following theorem proves the optimality of this scheme
when using good scalar dirty-paper codes.

Theorem 3:Let ǫ > 0, however small, and defineξ = NAǫ.
Then, for any covarianceK and any unitaryVA, there exist

scalar codebooks of secrecy ratesRi = log(b2i /c
2
i ) − ǫ, such

that Scheme 2 achieves the secrecy rateC(HB,HC ,K)− ξ.
Proof: The proof follows by a standard extension of the

proof of Theorem 3 of [10] (which is a specialization of
Theorem 2 of [10] for the Gaussian MIMO setting) to the
dirty-paper case.

Codebook construction:For eachk = 1, . . . , NA, generate
a codebookC of 2n(Rk+R̃k) sub-codebooks. Each such sub-
codebook is assigned a unique index-pair(mk, fk), where

mk ∈
{

1, 2, . . . , 2nRk

}

and fk ∈
{

1, 2, . . . , 2nR̃k

}

, and

contains2n[R̃
GP
k
−(Rk+R̃k)] codewords. Each codeword is gen-

erated independently in an i.i.d. manner w.r.t.p(uk) which is
Gaussian with parameters dictated by

uk = T̃B;k,kx̃k + αk

NA
∑

ℓ=k+1

T̃B;k,ℓx̃ℓ ,

αk ,
b2k − 1

b2k
,

where {x̃k|k = 1, . . . , NA} are unit power i.i.d. Gaussian
random variables.

The rates are chosen as follows.

Rk ,

[

I (uk;yB)− I
(

uk; u
NA

k+1

)]

− I
(

uk;yE

∣

∣

∣
u
NA

k+1

)

− ǫ

= I (uk;yB)− I
(

uk;yE , u
NA

k+1

)

− ǫ

= I
(

x̃k;yB

∣

∣

∣
x̃
NA

k+1

)

− I
(

x̃k;yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ ,

R̃k , I
(

uk;yE

∣

∣

∣
u
NA

k+1

)

− ǫ

= I
(

x̃k;yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ ,

R̃GP
k , I (uk;yB)− ǫ,

for unit power i.i.d. Gaussian random variables{x̃k|k =
1, . . . , NA}. The transitions above fromuk to x̃k are justified
since the interference (transmitter side-information) insub-
channelk is composed of messages{xℓ|ℓ = 1, . . . , NA}. Note
that by (15),Rk = log(b2k/c

2
k)−ǫ, thus by (9) the sum of these

rates approaches the desired secrecy rateIS(HB,HC ,K)− ξ.
Encoding (Alice): Encoding is carried in a successive

manner, from last (k = NA) to first (k = 1). Within codebook
k, the index of the sub-codebook to be used is determined
by the secret messagemk and a fictitious messagefk drawn
uniformly over their respective ranges. The codeworduk,
within sub-codebook(mk, fk) that is selected, is the one that is
jointly typical with the side information

∑NA

ℓ=k+1 T̃B;k,ℓx̃ℓ. If
no such codeworduk exists, then the first codeword is selected.

Decoding (Bob): Bob recovers(mk, fk) using standard
dirty-paper decoding (as discussed in Section III-A) and
discardsfk. The error probability can be made arbitrary small
by taking large enoughn.

Secrecy analysis (Charlie):By recalling that {x̃ℓ|ℓ =
1, . . . , NA} and {uℓ|ℓ = 1, . . . , NA} carry the same infor-
mation, the secrecy analysis is the same as in the proof of
Theorem 2 in [10].



IV. CONFIDENTIAL BROADCAST SCHEME

In view of Scheme 2, the result of Section II has a rather
intuitive interpretation:VA of the GSVD is the precoding
matrix that designs the ratios between{bi} and {ci} to be
as large as possible, which corresponds to maximizing the
achievable secrecy rate to Bob. In order to achieve Bob’s
secrecy capacity, only the sub-channels for which the secrecy
rate is positive (bi > ci) need to be utilized.

Allocating the remaining sub-channels to Charlie, on the
other hand, attains Charlie’s optimal covariance matrix.

Combining the two gives rise to the following scheme,
which is a straightforward adaptation of Scheme 2.

Scheme 3 (Confidential Broadcast):
Offline:
• Apply the GSVD decomposition toGB = G(HB,K)

and toGC = G(HC ,K) as in (7).
• Denote the diagonal entries ofTB and TC by {bi} and

{ci}, respectively.
• Denote further the (first) number of indices for which

bi > ci by LB. The remainingLC = NA − LB indices
satisfy ci ≥ bi.

• Denote byŨB the upper-leftNB×LB sub-matrix ofUB,
and byŨC the upper-rightNC × LC sub-matrix ofUC .

• ConstructNA good scalar wiretap codes of unit power
and lengthn, denoted bỹxi (with the time index omitted
to simplify notation), as follows.

– The firstLB codes are intended for Bob: Codebook
x̃i (1 ≤ i ≤ LB) is constructed for an AWGN
channel to Bob of SNRb2i − 1 and interference (16),
and for an AWGN channel to Charlie of SNRc2i −1
and interference (17).

– The remainingLC codes are intended for Charlie:
Codebookx̃i (LB + 1 ≤ i ≤ NA) is constructed for
an AWGN channel to Charlie of SNRc2i − 1 and
interference (17), and for an AWGN channel to Bob
of SNR b2i − 1 and interference (16).

Alice: At each time instance:
• Generates̃xi from last to first, wherẽxi is generated

according to the messages to be conveyed and the inter-
ference signals{x̃ℓ|ℓ = i+ 1, . . . , NA}.

• Formsx̃ with entries{x̃i}.
• Transmitsx according to (12):x = K1/2VAx̃.
Bob:
• At each time instance forms̃yB = Ũ

†

ByB.
• Decodes codebooksi = 1, . . . , LB using dirty-paper

decoders, wherẽxi is decoded from̃yB;i.
Charlie:
• At each time instance forms̃yC = Ũ

†

CyC .
• Decodes codebooksi = LB + 1, . . . , NA using dirty-

paper decoders, wherẽxi is decoded from̃yC;i.
The following theorem proves that this scheme allows both

users to attain their respective secrecy capacitiessimultane-
ously, providing a proof for Theorem 2.

Theorem 4:Let ǫ > 0, however small, and defineξ = NAǫ.
Then, there exist scalar codebooks intended for Bob of rates

Ri = log(b2i /c
2
i ) − ǫ, i = 1, . . . , LB, and scalar codebooks

intended for Charlie of ratesRi = log(c2i /b
2
i ) − ǫ, i =

LB + 1, . . . , NA, such that Scheme 3 simultaneously achieves
the secrecy ratesC(HB ,HC ,K) − ξ andC(HC ,HB,K) − ξ
for Bob and Charlie, respectively.

Proof outline: The proof of the decodability and secrecy
analysis for Charlie are the same as in the proof of Theorem 3
(with Charlie being the “legitimate” user). In the treatment
for Bob, a small variation is needed: the interference over
sub-channeli (1 ≤ i ≤ LB) is composed of both messages
intended for Charlie,̃xNA

LB+1, and messages intended for Bob,
x̃LB

i+1. Thus, the DPC for Bob is carried w.r.t. both of these
interferences, and the decodability and secrecy analysis follow
as in the proof of Theorem 3.

Remark 4 (Replacing DPC with SIC):DPC was used in
Scheme 3 for both users. However, in the proposed scheme
one may use SIC instead of DPC for Charlie, as is done in
[10] for the MIMO wiretap problem. Alternatively, by using
lower-triangular matrices instead of upper-triangular ones in
(7) (which corresponds to switching roles between Bob and
Charlie in the construction of the scheme), one can use SIC for
Bob and DPC for Charlie. This phenomenon was also observed
by Liu et al. [5]. Unfortunately, this scheme does not allow,
in general, to avoid DPC for both of the users.
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