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Abstract—We consider the problem of transmitting confiden- The confidential BC channel can be seen as a generalization
tial messages over a two-user broadcast multiple-input mtiple-  of the MIMO wiretap channel [3], [4], where no information
output (MIMO) channel. Surprisingly, the capacity region of s sent to Charlie R = 0). Hence, it is usually referred to as
this setting under a covariance matrix constraint was showrby . .
Liu et al. to be rectangular. That is, there is no tension, and an eavesdropper. I.ndeed, there is also a very close coanecti
both users can attain their respective MIMO wiretap capaciies, P€tween the solutions to these two problems. For the case

simultaneously. In this work, we provide a new derivation of this  where the input is subject to an averag®ariance constraint

result by proposing an alternative achievability scheme fo the N

corner point of the capacity region. This derivation, in addtion Ka=F [fmﬁT] =K, (2)

to being considerably shorter and simpler than the original also | . . . . .

provides a practical transmission scheme, in the sense thahe LiU €t al. [5] established the capacity region by showing tha

codes used are scalar (single-antenna) ones. We use two mairt i rectangular. Namely, it is given by

ingredients. The first is the explicit optimal input covariance

matrix of Bustin et al. for the MIMO wiretap channel under Rp < C(Hp,Hc, K) (3a)

a covariance matrix constraint, which we also re-derive in a Ro < C(Heo,Hp,K), (3b)

simple manner. The second is a dirty-paper variant of a recetty

proposed optimal scheme for the MIMO wiretap channel, which  where C(Hz,H¢,K) is the capacity of the MIMO wiretap

uses scalar codes. The proposed treatment demonstrates thechannel when Charlie acts the part of an eavesdropper, under

connection betweeq the confidential broadcast problem andhe a covariance input constraint. The converse is immediate,

MIMO wiretap one: the former almost reduces to the latter, . . . .

except for the use of dirty-paper coding which is not mandatoy @S both users achieve their maximal possible secrecy rates

in MIMO wiretap; the work sheds light on the reason for this ~ Simultaneously; it is the direct part that is quite strikifighe

difference. MIMO wiretap capacity under a covariance constraint was,
I, INTRODUCTION in turn, shown by Liu and Shamai [6] to be achieved by a

. . . Gaussian input; the solution is given as a maximization over
The confidential two-user broadcast (BC) channel is com- PU% g

posed of a sender (“Alice”) who wishes to convey differen(iova”ance matrices satisfying the constraint (2):

data to two users (“Bob” and “Charlie”), such that no infor- C(Hp,He,K) = max Is(Hg,He, K 4) (4)
mation can be recovered by one user about the data intended KazK

for the other user. The Gaussian multiple-input multiplgpait  where Is(Hg,He,K) £ I(Hp,K) — I(He,K), and the
(MIMO) variant of this scenario, considered first in [1], iSGaussian vector mutual information (M) is

iven b
9 yl yB:HBwA+ZB (1a) I(H,K):logdet{l—i—HKHT} (5)

Yo =Heza + 20, (1b)  Later, Bustin et al. [7] provided an explicit solution to ghi

where Yp and Yo are the received vector 5igna|s by Bok;naximization problem. In order to obtain these results, all
and Charlie, respectively, of lengthéz and N¢; x4 is the Of the works [5]-[7] used heavy machinery such as channel
transmitted vector signal by Alice of lengthis; zz andz €nhancement and vector extensions of the I-MMSE relation.
are Gaussian noise vectors, that are assumed, w.l.o.ge to bln this work, we show that some of these results can be
circularly-symmetric with zero mean and unit covariance mélerived in a simpler manner, once we know that the solution
trix. The channel matriced 5 andH ¢ have the correspondingto the MIMO wiretap problem is Gaussian (that is, given (4)).
dimensions. The capacity region (under a constraint on tAé an added value, we use constructive proofs which provide
input) is the closure of the ratdd$iz, R) such that reliable schemes that are practical, in the sense that they emplty sca
decoding and secrecy are guarantéed_ (SlSO) codes for the MIMO secrecy problems at hand.
In Section Il we re-interpret the explicit solution of [7]
1The Gaussian single-input single-output (SISO) scenamituges to mes-

. . in terms of the generalized singular value decomposition
sages for the stronger user only (the Gaussian SISO wirétapnel [2]), as L . .
theg BC channel is Segraded, v 2D (GSVD) [8], [9], and then derive it from (4) using only linear

2Throughout the paper, we are only interested in weak secrecy algebra, without any information-theoretic considenasio



Then, we note that this solution seems related to theTheorem 1:The secrecy capacity under a covariance matrix
confidential BC channel. Namely, some “directions” are ukefconstraintk is equal to
for Bob, while others would be useful for Charlie if we Na
inverted the roles. However, we need yet another ingredient _ 2 +
To that end, we present in Section Il a dirty-paper coding CHz,Ho, K) = Z [log 4 (Hz, He, K]
(DPC) variant of a recently proposed successive interteren
cancellation (SIC) scalar-codes scheme [10] for the Mmivmgyhere[z] ™ £ max{0, z}.

i=1

wiretap channel. The key to our proof of this result is the following lemma.
Finally in Section IV we use the above to construct a DPC Lemma 1:Let K andK 4 be two matrices satisfying <

scalar-codes scheme for the confidential BC channel. THfist = K. Then foralli =1,..., Ny,

scheme |s_opt|ma_l, thu_s_ analyzing its performance_prov_|des |1ogu§(Hb,Hc,K)\ > |10gM?(Hb,HC,KA)‘-

an alternative achievability proof for the MIMO confidertia

BC capacity [5]. That is, as we “decrease” the input covariance, the GSVs

move towardsy; = 1. The proof, which appears in [11,
Appendix B], uses standard matrix calculus to show that

the differential of thei-th GSV, du;, w.r.t. a change in the
In this section we re-derive the result of Bustin et al. [7] izovariance matrixiK 4, is given by

terms of the GSVD [8], [9].

II. MIMO W IRETAP AND CONFIDENTIAL BROADCAST
CAPACITITIES

2
To that end, construct the augmented matri€dg = dp; = (i — 1) - vi(dK 4),
G(HB, K) andGc = G(Hc, K), Wheré Where%(dKA) >0 for dK 4 = 0.
1/2 By Lemma 1, clearly Theorem 1 gives an upper bound on
A HK . . . . . .
G(H,K) = | ©)  the capacity. To see that it is achievable, consider theixmatr

Recall thatK is the constraining covariance matrix (2). Now Kp = K2V 41 pVI K1/21 (10)

choose a unitary matrix 4 and apply the QR decomposmons:wherevA is the right unitary matrix of the triangular form of

GgVa=UpTgs, (7a) the GSVD ofGp andG¢ (7), | 5 is a diagonal matrix whose
GeVa =UoTe, (7b) diagonal values corresponding to GSYS that are greater than
1 — equal tol, and the others ar@ Trivially, Kz < K. The
whereUp and Uc are unitary, andT z and T¢ are (gen- choice ofK g effectively truncates the GSVs ¢:
eralized) upper-triangular of dimensioi®’s + N4) x Ny ) ) n
and (N¢ + Na) x Ny, respectively, vizTg,i; = Tc.qj =0 log 11 (Hp,He, Kp) = [log i (Hp,He, K)|
for i > ] We have o_btained a family of joint unitary This is formally proved in [11, Appendix A].
decompositions, depending on the choice&/of. Let {b;} and  Ramark 1:One may wonder why, of all possible choices of
{ci} denote the diagonal values _me_ andTc, respectively. \/  “the capacity is given in terms of the GSVD. An intuitive
Then, the Gaussian Ml (5) satisfies: reason is as follows. Among all achievable diagonal rattus,
I(Hp,K) =logdet {GLGzL =S logh? gy GSV series is the “least balanced” possible in a multipieat
(Hz,K) = logde { B B} Z o8l ® majorization sense [12]. In particular, for alyj,
and similarly for Charlie. Thus, for any 4, Na L M 21+
Nag2 Z [logpi] " > Z [1og c—g] .
IS(HB,HC,K):21ogC—2. 9) i=1 im1 i
i=1 ! Remark 2: Denote the capacity of the MIMO wiretap chan-
A special choice oW/ 4 gives the GSV¥, where the general- nel under a power constraidt by C(Hp,Hc, P). By, e.g.,
ized singular values (GSVs) are given py(Hg,Hc,K) £ [13, Lemma 1],

bi/c;. Without loss of generality, we assume that the GSV Na
vector is non-increasing. In terms of the GSVs, we can reC(Hg,He, P) =  max Z [logﬂf (HBch,K)Tr
write (4) as: KitracelK}< P =
Na For the optimalK, all the GSVs are greater or equal to 1.
C(Hp,He,K) = max > logp; (Hp.Heo,Ka). To the contrary, assume that some are strictly smaller than 1
A= then, we can use a matrik 4 with the appropriate directions
Indeed, in these terms the capacity expression of [7] can ‘tillified”. But since trac¢K 4} < tracg K} < P, we can
re-stated as follows. then use amplification to improve the rate.
3K1/2 is any matrixB satisfyingBB' = K. 5This covariance matrix is calle? in [7], where it is given in terms

4Here we use the triangular form of the GSVD; see [11, Apperdifor  of the diagonal form of the GSVD. Using the triangular forrmplifies the
further details. expression considerably. See [11, Remark 1] for furtheaiket



Now we note that, if we were interested in confidentidDenote byUp the sub-matrix consisting of the upper-left
communication with Cha_lrlie rather than with Bob, we wouldv, x N, block of U, defineT = U;K1/2VA, and let
get the same solution with the rolesidfz andH reversed.

. . . - ~ T ~ - ~t ~ -
But then, this means inversion of the GSVs: 9p=Upyp =UpK'?V2 +Upzp = T2 + 25.(13)
logui(He, Hp, K) = —logpui(Hp, He, K). SinceUs is not unitary, the statistics o 2 U,z differ from
Thus, we can write the rectangular capacity-region of tr{Bose ofz, and its covariance matrix is given by; = 05U
confidential BC channel (3) as follows. Now, fori =1,. NA’ define

Theorem 2:The capacity region of the confidential MIMO

BC channel under an input covariance constr&inis given = UB; Z TMW
by all rates(Rg, R¢) satisfying: f=it1 (14)
i—1
Na = 5~ - A A eff
Ry <Y [logp? (Hp. He. K)] Tuadit ) Tuebet 5 & Tiabi+ 2
i=1
Na N In th|s scalar channel frorm to yBl, we see otherz,
Re < Z [—1oguf (HB,HC,K)] . “interference”,z; — as “noise”, and their sum:eff —
i=1 as “effective noise“. The resulting S|gnal -to- mterfememnd—
The converse part of this result is trivial by Theorem noise ratio (SINR) is given by:
For the direct part, it is tempting to think that since diéfet (T5.0)2 (T5.0)2
GSVs are nullified for Bob and for Charlie, Alice can achieve S &£ s ,

their optimal rates simultaneously by communicating over ZeMiyi

K,%“ + Z (Ti,E)Q

orthogonal “subspaces”. However, since the matritgsand =
T are not diagonal, these “subspaces” are not orthogorughere](~ - denotes the(i, j) entry of K 5. The following
and some more care is needed. In the rest of this paper ng result achleves the Ml (see, e.g., [14 Lemma II1.3])
develop a DPC scheme for the wiretap channel that leads to an
optimal transmission scheme for the confidential BC channel I (571'; Yp ffvﬁl) =1 (%4 yp.,) (15)
Thus, this derivation provides a proof for the direct part of = log(1 + S;) = log(b?).
Theorem 2, which is an alternative to the proof in [5]. !

Remark 3:Similarly to the MIMO wiretap channel, the Onaccountof (8), the sum of these rates amounistiy, K),
capacity region under a power constraintis just the union Which equals the channel capacity for the optirdal
of all (rectangular) regions under a covariance constsgitit ~ This analysis leads immediately to an optimal SIC-based

small enough trace. scheme, since the decoder can perform iteratively the-inter
ference cancellation (14). Indeed, such a scheme, which can
Ill. DPC-BASED SCALAR SCHEMES FORMIMO be found in, e.g., [10], is a variant of the renowned VBLAST

We now present DPC-based schemes for the Gaussgieme. A different approach is that of pre-canceling therdin
MIMO channel (without secrecy) and the MIMO wiretapferences at the transmitter using DPC. Such pre-canaellati
channel. These schemes, which build upon the matrix decoimeurs no loss in performance compared to the interference-
position (7), allow to approach the optimal rate for any inpdree channel [15]. This results in the following scheme.
covariance matrix, using scalar dirty-paper codes. SIheou Scheme 1 (MIMO point-to-point via DPC):
terparts of these schemes were previously presented in [10] Offline: ConstructN4 good dirty-paper codebooks as fol-
lows. Codebook (1 <i < N,) is constructed for a channel

A. Without Secrecy Constraints with AWGN of power 1, SNRS; = b? — 1 and interference
We now briefly review the connection between matrix

decompositions and scalar transmission schemes, witlsut s Na B
crecy requirements. For a more thorough account, the reader Z Ti e
is referred to [12], [14]. Consider the channel (1a). Réogll
(6), construct the augmented mati@z = G(Hp,K). For that is available as side information at the transmitter.

some unitary matri®/ 4,° decomposeG z as in (7a). Alice: At each time instance:

We start by describing a scheme that utilizes successive Generates:; from last ¢ = N4) to first (¢ = 1), where
interference cancellation (SIC) to approach capacity gisin  Z; is generated according to the message to be conveyed
scalar codes. We then discuss a similar scheme that prelsanc  and the interference signajsi¢[¢ =i+ 1,..., Na}.
the interferences at the transmitter by means of DPC. o Formsz with entries{z;}.

Let & be a vector of standard Gaussian variables, and set « Transmitsz according to (12)z = K/?V 4.

{=i+1

1/2 ~
=K / Vaz. (12) "Note that, even thougl has dependent components, the entries of the
effective noisez®", are independent.

6See [10], [12], [14] for interesting choices bf4. 8Note thatT},p = Ty, for £ > i.



Bob:
« At each time instance formg, according to (13):

scalar codebooks of secrecy rat@s = log(b?/c?) — €, such
that Scheme 2 achieves the secrecy @telg,Ho, K) — €.
Proof: The proof follows by a standard extension of the
proof of Theorem 3 of [10] (which is a specialization of
« Decodes the codebooks using dirty-paper decoders,wh-é—%e?rem 2 of [10] for the Gaussian MIMO setting) to the
y-paper case.

i |§ decoded .fror‘ryB;i. o ) Codebook construction:For eachk = 1,..., N4, generate
By using good dirty-paper codes, capacity is achieved; S€Lrodebook® of 2n(Bx+2x) sub-codebooks. Each such sub-
e.g., [14]. codebook is assigned a unique index-pairy, fi), where
B. MIMO Wiretap my, € {1,2,...,2"%} and f, € {1,2,...,2"Rk}, and
In this section we describe an optimal scheme for the MIM@ontains2" %2 — (B« +1:)] codewords. Each codeword is gen-
wiretap channel using scalar dirty-paper wiretap codes. Weated independently in an i.i.d. manner wp(u,) which is
note that a SIC-based counterpart of the scheme was prdse@aussian with parameters dictated by

- ~ T
Yy =Upyp.

in [10]. The scheme is optimal for any covariance maffix

. . . Na
Without loss of generality, we assume thatis such that ~ - ~ -
. =Tg. Tg.
logui(He,He,K) > 0 for all ¢ = 1,..., N4; otherwise we e Bikk Xk + O Z;rl Bik, X
can replaceK by K (10). w21 B
Scheme 2 (MIMO wiretap via DPC): ap & & —
Offline: i
o Apply the QR decomposition t&xgV 4 and toGcVa, where {xx|k = 1,..., N4} are unit power i.i.d. Gaussian

whereGp = G(Hp,K) andG¢e = G(He,K):

GkVA:Uka, kG{B,C},

{b;} and {c;} are the diagonal values dfz and T,
respectively, antly, is the upper-leftVy x N4 sub-matrix
of Us.

booki (1 < i < Nj)is of unit power with entries denoted
by z; (with the time index omitted to simplify notation).

It is constructed for an AWGN channel to Bob of SNR

b? — 1 and interference

Na
E TB.ieTe,

(16)
(=i+1
and for an AWGN channel to Charlie of SNR — 1 and
interference
Na
Z TciieTe . (17)

l=i+1
Alice: At each time instance:
o Generatest; from last to first, wherez; is generated

according to the message to be conveyed and the inte

ference signal§z,|¢ =i+ 1,...,Na}.
o Formsz with entries{z;}.
« Transmitsz according to (12)z = K'/2V 4.
Bob:

» At each time instance formg, according to (13).
« Decodes the codebooks using dirty-paper decoders, wh
Z; is decoded fronyp.;.
The following theorem proves the optimality of this schem
when using good scalar dirty-paper codes.
Theorem 3:Lete > 0, however small, and defife= N 4e.
Then, for any covariancK and any unitaryV 4, there exist

Construct good scalar wiretap codes as follows. Code-

random variables.
The rates are chosen as follows.

R, = [I(Uk;YB) _I(UkQUkal)} —I(Uk;yE

Na
Uk+1) — €

=1 (uys)—1 (Uk;yE,ukal) —¢
=1 (Rye|R) 1 (Ruye W) — .
Rp 21 (uk,yE‘uinl) —€
=1 (>~<k§YE‘>~<ivf1) — e,
I

for unit power i.i.d. Gaussian random variabl¢g;|k =
1,...,Na}. The transitions above fromy, to z;, are justified
since the interference (transmitter side-information)sirb-
channel is composed of messagés,|{ = 1,..., N4}. Note
that by (15),R;, = log(b? /c2)—e, thus by (9) the sum of these
rates approaches the desired secrecy fatel 5, Ho, K) — &.
Encoding (Alice): Encoding is carried in a successive
manner, from lasti{ = N,) to first (k = 1). Within codebook
k, the index of the sub-codebook to be used is determined
b¥_ the secret message; and a fictitious messagg, drawn
uniformly over their respective ranges. The codewarsd
within sub-codebookmy, fi) that is selected, is the one that is
jointly typical with the side informatiorEi,\;“kH TB;kng?g. If
no such codeword, exists, then the first codeword is selected.
Decoding (Bob): Bob recovers(my, fx) using standard
dirty-paper decoding (as discussed in Section IlI-A) and
@i€cardsf,. The error probability can be made arbitrary small
by taking large enough.
e Secrecy analysis (Charlie):By recalling that {x,|¢ =
1,...,Na} and {ug|¢ = 1,...,N} carry the same infor-
mation, the secrecy analysis is the same as in the proof of
Theorem 2 in [10]. [ |



IV. CONFIDENTIAL BROADCAST SCHEME R; = log(b?/c?) —¢,i = 1,...,Lp, and scalar codebooks

In view of Scheme 2, the result of Section Il has a rathéitended for Charlie of rates?; = log(c?/b7) — €, i =
intuitive interpretation:V 4 of the GSVD is the precoding L5 + 1,..., Na, such that Scheme 3 simultaneously achieves
matrix that designs the ratios betweéh} and {c;} to be the secrecy rate§'(Hp, He,K) —¢ andC(He,Hp, K) = ¢
as large as possible, which corresponds to maximizing tf§ Bob and Charlie, respectively. 3
achievable secrecy rate to Bob. In order to achieve Bob's Proofoutline: The proof of the decodability and secrecy
secrecy capacity, only the sub-channels for which the S§Ecr@malyms for Charlie are the same as in the proof of Theorem 3
rate is positive §; > ¢;) need to be utilized. (with Charlie being the “legitimate” user). In the treatrnhen

Allocating the remaining sub-channels to Charlie, on tHer Bob, a small variation is needed: the interference over
other hand, attains Charlie’s optimal covariance matrix. ~ Sub-channet (1 < i < Lp) is composed of both messages

Combining the two gives rise to the following schementended for Charliez}'* |, and messages intended for Bob,
which is a straightforward adaptation of Scheme 2. :Effl. Thus, the DPC for Bob is carried w.r.t. both of these

Scheme 3 (Confidential Broadcast): interferences, and the decodability and secrecy analgttsf

Offline: as in the proof of Theorem 3. [ |

« Apply the GSVD decomposition t&Gz = G(Hp,K) Remark 4 (Replacing DPC with SICPPC was used in
and toG¢ = G(H¢,K) as in (7). Scheme 3 for both users. However, in the proposed scheme

« Denote the diagonal entries @fz andT¢ by {b;} and ©one may use SIC instead of DPC for Charlie, as is done in
{ci}, respectively. [10] for the MIMO wiretap problem. Alternatively, by using

« Denote further the (first) number of indices for whicHower-triangular matrices instead of upper-triangulae®m
b; > ¢; by L. The remainingLc = N4 — Lp indices (7) (which corresponds to switching roles between Bob and
satisfy ¢; > b;. Charlie in the construction of the scheme), one can use SIC fo
« Denote byU the upper-leftN s x Lz sub-matrix oz, Boband DPC for Charlie. This phenomenon was also observed

and byUc the upper-rightVe x Lo sub-matrix ofUc. Py Liu et al. [5]. Unfortunately, this scheme does not allow,

« ConstructN, good scalar wiretap codes of unit powetn general, to avoid DPC for both of the users.

and lengthn, denoted byz; (with the time index omitted

to simplify notation), as follows.

— The first Lg codes are intended for Bob: Codebook
Z; (1 < i < Lp) is constructed for an AWGN
channel to Bob of SNR? — 1 and interference (16), [2]
and for an AWGN channel to Charlie of SNR—1 3]
and interference (17).

The remainingLs codes are intended for Charlie:

Codebookz; (L +1 < i < Ny,) is constructed for

an AWGN channel to Charlie of SNR? — 1 and

interference (17), and for an AWGN channel to Bob

of SNR®? — 1 and interference (16).

Alice: At each time instance:

o Generatest; from last to first, wherez; is generated 7]
according to the messages to be conveyed and the inter-
ference signal§z,|¢ =i+ 1,...,Na}.

o Formsz with entries{z;}.

« Transmitsz according to (12)z = K'/2V 4.

(1]

(4]
(5]

(6]

(8]
El

Bob:

« At each time instance formgy = U;yB. [10]

o Decodes codebooks = 1,...,Lp using dirty-paper
decoders, wherg; is decoded fronyz.;. [11]

Charlie:

« At each time instance formg, = l:JTcyc. [12]

o Decodes codebooks = Lp + 1,..., N4 using dirty-

paper decoders, whefig is decoded fronyc.;. [13]
The following theorem proves that this scheme allows both
users to attain their respective secrecy capactisuiltane- [14]
ously, providing a proof for Theorem 2.

Theorem 4:Lete > 0, however small, and defie= Nae. 15

Then, there exist scalar codebooks intended for Bob of rates
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