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Abstract—We consider the problem of causal source coding
and causal decoding of a Gauss–Markov source, where the
decoder has causal access to a side-information signal. We
define the information causal rate–distortion function with causal
decoder side information and prove that it bounds from below
its operational counterpart.

I. INTRODUCTION

Motivated by recent advances in tracking and control over
networks [1]–[17], we consider the setting where a decoder
observes the system state corrupted by noise via an internal
sensor, while it also receives quantized descriptions of the
observations of the state from an external sensor over a rate-
limited link.

We focus in this paper on the tracking (estimation) problem
of a Gauss–Markov source over a rate-limited channel, i.e.,
causal encoding and decoding of the source; we view the
internal noisy measurements of the state as side information
that is available to the decoder but not to the encoder.

The idea of causal rate–distortion function (CRDF) was
introduced in [18], where [4], [19], [20] (see also [15], [21])
drew the connection between the CRDF and tracking of
a Gauss–Markov source over rate-limited links with causal
encoding and decoding. Recently, two notable efforts have
been made in determining bounds on the performance of
these settings in the presence of decoder SI [22], [23], which
provide a comprehensive set of definitions and bounds for
this problem, by relying on the seminal work of Wyner and
Ziv [24], [25] for rate–distortion with non-causal SI at the
decoder. However, since the technique of Wyner and Ziv relies
on non-causal knowledge of the SI at the decoder, applying
it for scenarios with causal SI imposes an additional slack
when used to bound from below the operational CRDF with
(causal) SI, on top of the existing gap between the information
and operational CRDFs without SI that stems from the causal
encoding restriction [26], [27].

Our goal in this paper is twofold: first, providing short
proofs of the lower bounds in [23] via a simple observation;
secondly, deriving a tighter lower bound on the performance
of causal source coding with decoder SI that is strictly higher
than the bounds in [22], [23]. To derive the latter, we build on
the work of Weissman and El Gamal [28] for rate—distortion
with causal SI and extend their results for CRDFs.
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Fig. 1: Scalar tracking system with driving WGN. The channel
is a bit pipe with instantaneous rate constraint Rt. The
presence of the SI in the encoder/decoder is according to the
state of switch A/B, respectively. We assume that the SI is the
original source xt after passing through a Gaussian channel.

As a by product, we settle a conjecture in the negative by
Stavrou and Skoglund [23] regarding the optimality of Wyner–
Ziv-type CRDF bounds for causal tracking over additive white
Gaussian noise (AWGN) channels, by proving that an adapta-
tion of our new lower bound is strictly higher for this setting.
The rest of the paper is organized as follows. In Sec. II, we
formulate the problem of tracking a Gauss–Markov source
over a rate-limited link for several different SI scenarios. We
review classical results and tools that are used throughout this
work in Sec. III. We review the CRDF scenario without SI
in Sec. IV, and with two-sided SI Sec. V. We provide simple
proofs for the existing results along with new tighter bounds
on the CRDF with decoder SI in Sec. VI. We evaluate the
expression of the new bound for a Gaussian test channel in
Sec. VII. Finally, we conclude the paper with Sec. VIII by
discussing future research directions.

II. PROBLEM STATEMENT

In this section, we formalize the tracking setting treated in
this work, depicted in Fig. 1.

Source. The source is generated by a first order Gauss–
Markov model with zero initial condition (x0 = 0):1

xt = λxt−1 + vt, t = 1, . . . , T, (1)

where xt ∈ R is the source sample at time t; vt is the system
disturbance at time t, whose temporal entries are independent
and identically distributed (i.i.d.) zero-mean Gaussian of vari-
ance σ2

v > 0; the eigenvalue λ ∈ R is fixed and known.
Encoder. Observes the state xt at time t and generates a

packet at ∈ {1, . . . ,2Rt} of rate Rt.

1The assumption x0 = 0 can be easily replaced with a Gaussian x0 that is
independent of the system-disturbance sequence {vt}.



Channel. At time t, a packet at ∈ {1,2, . . . ,2Rt} is sent
over a noiseless channel with rate Rt. The packets are subject
to an average-rate constraint:2

1

T

T

∑
t=1
Rt ≤ R.

Side information. The SI is a noisy version of the current
source sample xt, and is given by

yt = xt + nt,

where nt is zero-mean Gaussian of variance σ2
n, independent

of xt,3 and its temporal entries are i.i.d.
Decoder. At time t, receives the packet at and constructs

an estimate x̂t of xt.
Distortion. The average quadratic distortion at time t is

defined as

Dt = E [(xt − x̂t)
2
] , (2)

and the average-stage distortion is defined as

D =
1

T

T

∑
t=1
Dt. (3)

Definition 1 (Operational causal rate–distortion function). The
operational causal rate–distortion function (CRDF) Rc,op(D)

is defined as the infimum of all achievable average rates R,
1
T ∑

T
t=1Rt = R, subject to an average distortion constraint

1
T ∑

T
t=1Dt ≤D.

Different scenarios for the availability of the SI may be
considered, corresponding to different states of switches A
and B in Fig. 1:

● No SI (A open, B open). The encoder applies a causal
function Ft to the source history xt, to generate the packet
at ∈ {1, . . . ,2Rt}: at = Ft (x

t), whereas the decoder
applies a causal function Gt to the sequence of received
packets at, to construct an estimate x̂t of xt: x̂t = Gt (at).

● Two-sided SI (A closed, B closed). Here, both the encoder
and the decoder have access to the SI and hence at =
Ft (x

t, yt) and x̂t = Gt (at, yt).
● Decoder SI (A open, B closed). Here, only the decoder has

access to the SI. Thus, at = Ft (xt) and x̂t = Gt (at, yt).

III. BACKGROUND

A. Batch Rate–Distortion

In this section we review classical results from information
theory on lossy compression. The standard mode of operation
assumes batch operation over long blocks (T → ∞): The
encoder observes a long block of source samples xT , and maps
them together to a (single) packet a; the decoder recovers the
estimates x̂T of the the entire sequence upon receiving a, i.e.,
in a non-causal fashion [cf. (2)].

Within this framework, information theory discriminates
between four different scenarios of the availability of SI and
its nature, which we present next for the commonly-considered

2This is a more lenient constraint than the fixed-rate constraint. Conse-
quently, our lower bounds are valid for both scenarios, although they might
be too optimistic for the latter.

3We denote temporal sequences by at ≜ (a1, . . . , at).

case of an i.i.d. Gaussian source, corresponding to taking λ = 0
in (1):

● No SI. This is the classical rate–distortion scenario [29],
[30, Ch. 10]. For which the rate–distortion function
(RDF) is equal to

R(D) =
1

2
log+

σ2
v

D
,

where log+(x) ≜max{logx,0}.
● Two-sided SI. This scenario can be recast as that of no SI

with additional conditioning, as both the encoder and the
decoder know the SI. Thus, conditional RDF amounts to

Rboth
(D) =

1

2
log+

σ2
v∣y

D
=
1

2
log+

σ2
v∥σ

2
n

D
, (4)

where σ2
a∣b denotes the conditional variance of a given b,

and a∥b ≜ ab/(a + b).
● Decoder non-causal SI. Here, for the reconstruction of
xt (t ∈ {1, . . . , T}), the decoder may use the entire side
information sequence yT in addition to a, whereas the
encoder is oblivious of yT . Surprisingly, a classical result
due to Wyner [24] (an adaptation to the Gaussian case
of a result by Wyner and Ziv [25]) states that, for an
i.i.d. Gaussian source, the RDF for this scenario, RNC,
coincides with that of (4), i.e., RNC(D) ≡ Rboth(D).

● Decoder causal SI. This scenario is identical to the
previous one except that now, for the reconstruction x̂t
of xt at time t, in addition to a, the decoder may use
only the causal history of the SI yt. Weissman and El
Gamal [28] have shown that the RDF for this scenario is
given by4

RC
(D) = inf

P (w∣x) ∶ y→x→w,
E[(x−x̂(w,y))2]≤D

I (x;w) (5)

and is higher than (4). Furthermore, it is bounded from
above by

RC
(D) ≤ c.e.{

1

2
log+ (

σ2
v

D
−
σ2
v

σ2
n

)} ≜ c.e.{r(D)} .

where c.e. denotes the convex envelope operation,
and is manifested by a straight line between the
points (Dc, r(Dc)) and (σ2

n∥σ
2
v ,0) in the regime D ∈

(Dc,Dmax), where Dc is the solution to the equation
r(Dc) = (Dc − σ

2
v∥σ

2
n)

d
dD
r(D)∣

D=Dc
; the convex enve-

lope comes into play only when Dc < σ
2
n∥σ

2
v , i.e., only

when σ2
n < σ

2
v .

Remark 1. The RDFs for the different scenarios serve as an
outer bound for finite T and are attainable only in the limit of
T →∞. However, as have been proved by Zamir and Linder
[26], even in the limit of T →∞ (and even for i.i.d. Gaussian
sources) they are not attainable, in general (although they can
be approached up to a fixed additive loss [31, Ch. 5]). Finally,
note that for the batch setting these results may be extended
beyond the i.i.d. setting (λ ≠ 0); see [32], [33].
Remark 2. When the side information is known to both the
encoder and the decoder, it turns out that the RDFs coincide

4a→ b→ c denotes a Markov chain, i.e., given b, a is independent of c.



for the cases when the SI is known causally and non-causally.
Therefore, we do not distinguish between these two scenarios.

B. Directed Information

The Directed Information (DI) notion, introduced by
Massey [34], is the causal counterpart of the classical Mutual
Information MI and is defined as follows.

Definition 2 (DI). The DI between xT and yT is defined as

I (xT → yT ) =
T

∑
t=1
I (xt; yt∣y

t−1) (6a)

= D (P (yT Ú xT )∥PyT ∣PxT ), (6b)

where I (⋅; ⋅∣⋅) denotes the conditional MI, D (⋅∥⋅∣⋅) is the
conditional Kullback–Leibler divergence, and

P (yT Ú xT ) ≜
T

∏
t=1
P (yt∣y

t−1, xt)

is the causally conditional probability kernel [35, Ch. 3], [22].

Clearly, 0 ≤ I (xT → yT ) ≤ I (xT ; yT ), and for a sequence
of independent pairs {(xt, yt)}

T
t=1, the DI and the MI coincide

(see [35, Ch. 3] for further details).
The causally conditional DI is defined next and allows, in

turn, to derive a chain-rule and a Data-Processing Inequality
(DPI) for DIs.

Definition 3. The causally conditional DI is defined as

I (xT → yT Ú zT ) ≜
T

∑
t=1
I (xt; yt∣y

t−1, zt),

and its lagged-by-one variant—as

I (xT → yT Ú zT−1) ≜
T

∑
t=1
I (xt; yt∣y

t−1, zt−1). (7)

Theorem 1 (Chain rule for DIs [34], [35, Ch. 3]).
I ((xT , yT )→ zT ) = I (xT → zT ) + I (yT → zT Ú xT ),

I (xT → (yT , zT )) = I (xT → yT ÚzT−1) + I (xT → zT Ú yT).
(8a)

Theorem 2 (DPI for DIs [1], [21]). Let uT , aT , xT satisfy
the Markov relations (xt, a

t−1) → (at, ut−1) → ut for all t ∈
{1,2, . . . , T}. Then,

I (xT → uT ) ≤ I (xT → aT Ú uT−1).

IV. NO SI

In this section we review known results for the scenario
where SI is available to neither the encoder nor the decoder,
corresponding to switches A and B being open in Fig. 1.

Definition 4 ( [18]). The information CRDF of a Gaussian
source {xt} (without SI) is defined as

Rc(D) = lim
T→∞

inf
P (x̂T

ÚxT ),
1
T ∑t E[∥xt−x̂t∥2]≤D

1

T
I (xT → x̂T ) (9a)

=
1

2
log+

λ2D + σ2
v

D
. (9b)

(9b) is derived in [3], [5], [18], [36].

Theorem 3. The operational CRDF (without SI), Rc,op(D),
is bounded from below by the information CRDF (without
SI) (9): Rc(D) ≤ Rc,op(D).

For a detailed proof see [3], [5].
Remark 3. As mentioned in Rem. 1, equality in the lower
bound of Th. 3 cannot be achieved, in general. Nonetheless, it
can be mimicked up to a finite loss via entropy-coded dithered
quantization [1], [5], [21]. Note, however, that this bound may
become loose in the low-rate regime.

V. TWO-SIDED SI

We now treat the two-sided SI scenario, i.e., the scenario in
which the SI is available to both the encoder and the decoder,
corresponding to both switches A and B being closed in Fig. 1.

Definition 5 (Information CRDF with two-sided SI [22]). The
information CRDF with two-sided SI of a Gaussian source
{xt} with a jointly Gaussian SI {yt} that is known to both
the encoder and the decoder is defined as

Rboth
c (D) = lim

T→∞
inf

P (x̂T
ÚxT ,yT ),

1
T ∑t E[∥xt−x̂t∥2]≤D

1

T
I (xT → x̂T Ú yT )

(10a)

=
1

2
log+

σ2
n∥(λ

2D + σ2
v)

D
. (10b)

Theorem 4. The operational CRDF with two-sided SI,
Rboth
c,op (D), is bounded from below by the information CRDF

with two-sided SI (10): Rboth
c (D) ≤ Rboth

c,op (D).

The setting with two-sided SI is equivalent to the no SI
setting, w.r.t. to a (Gaussian) source that is equal to xt given
yt. This simple observation allows a simple adaptation of the
proof without SI to that of Th. 4.

Proof: By looking at the equivalent source xt∣y
t, the

problem is equivalent to the no SI setting (9a), with the
variance of the prediction error of xt given x̂t−1, yt being

σ2
xt∣yt,x̂t−1 = σ

2
yt∣xt

∥σ2
xt∣yt−1,x̂t−1 = σ2

n∥ (λ
2Dt−1 + σ

2
v) .

Plugging it in [5, Eq. (18)] gives rise to

Rbothc (D) =
1

T

T

∑
t=1

1

2
log (σ2

n∥ (λ
2Dt−1 + σ

2
v)) −

1

2
logDt .

By applying Jensen’s inequality and taking T → ∞ (i.e.,
repeating steps (18d),(18e) of [5]) we arrive at the desired
result:

Rbothc (D) =
1

2
log

σ2
n∥ (λ

2D + σ2
v)

D
,

with D being the average-stage distortion (3). Using Th. 3 we
conclude that Rbothc (D) ≤ Rboth

c,op (D).

VI. CAUSAL RATE–DISTORTION WITH DECODER SI

In this section, we treat the more involved scenario where
the SI is known only to the decoder while the encoder is
oblivious of the SI, corresponding to switch A being open
and B begin closed in Fig. 1.

We start by presenting a naı̈ve lower bound.



Lemma 1. The operational CRDF with decoder SI, Rdecc,op(D),
is bounded from below by the information CRDF with two-
sided SI (10a): Rbothc (D) ≤ Rdecc,op(D).

Proof: Making the SI available (as a “genie”) may only
improve performance, and thus Rboth

c,op (D) ≤ Rdecc,op(D). Using
Th. 4, the result follows.

Remark 4. Beyond the loss mentioned in Rems. 1 and 3 due
to the causal encoding, the lower bound in Lem. 1 is known to
be loose even for the batch memoryless RDF setting [28] due
to the causal access to the SI at the decoder (see also [37]).

Definition 6 (Information CRDF with decoder SI). The in-
formation CRDF with decoder SI of a Gaussian source {xt}
with a jointly Gaussian SI {yt} that is known to the decoder
is defined as

Rdec
c (D) = lim

T→∞
inf

P (wT
ÚxT ),{x̂t(wt,yt)}∶

1
T ∑t E[∥xt−x̂t∥2]≤D,

(yt,xt−1)→(xt,wt−1)→wt

1

T
I (xT → wT ). (11)

Theorem 5. The operational CRDF with decoder SI,
Rdecc,op(D), is bounded from below by the information CRDF
with decoder SI (11): Rdec

c (D) ≤ Rdecc,op(D).

Proof: We assume that the average distortion is equal to
(or lower than) D and bound the average rate R (recall Def. 1):

TR ≥H (aT ) (12a)

=
T

∑
t=1
H (at∣a

t−1) (12b)

≥
T

∑
t=1
H (at∣a

t−1,wt−1) (12c)

≥
T

∑
t=1
H (at∣a

t−1,wt−1) −H (at∣a
t−1,wt−1, xt) (12d)

=
T

∑
t=1
I (xt;at∣a

t−1,wt−1) (12e)

= I (xT → aT Ú wT−1) (12f)

≥ I (xT → wT ), (12g)

≥ TRdec
c (D), (12h)

where (12a) follows from the problem statement, (12b) is due
to the chain rule for entropies, (12c) holds since condition-
ing does not increase entropy, (12d) follows from the non-
negativity of entropy, (12e) and (12f) are by the definition
of the conditional MI and lagged-by-one DI (7), respectively,
(12g) follows from the DPI for DIs of Th. 2 for xt, at,wt

satisfying the Markov relations

(xt, a
t−1)→ (at,wt−1)→ wt (13)

for all t ∈ {1,2, . . . , T} (at ≜ 0, w0 ≜ 0), and (12h) follows
from (11) for xt,wt satisfying the distortion and Markov
constraints in (11).5

5If wt satisfies (13) it also satisfies the Markov constraint in (11).

Remark 5 (SI causality). Kostina and Hassibi [22, Def. 3]
defined the (information) CRDF with decoder SI as

RKH
c (D) ≜ lim

T→∞
inf

P (wT
ÚxT ),{x̂t(wt,yt)}∶

1
T ∑t E[∥xt−x̂t∥2]≤D

(yt,xt−1)→(xt,wt−1)→wt

1

T
I (xT → wT Ú yT ) =

(14a)

lim
T→∞

inf
P (wT

ÚxT ),{x̂t(wt,yt)}∶
1
T ∑t E[∥xt−x̂t∥2]≤D

(yt,xt−1)→(xt,wt−1)→wt

1

T
{I (xT → wT ) − I (yT → wT )} .

(14b)

and prove that RKH
c (D) = Rboth

c (D) in the Gaussian case [22,
Thm. 8].

This definition can be viewed as an adaptation of the
batch RDF with decoder non-causal SI, RNC(D). Indeed,
as RNC(D) = Rboth(D) in the Gaussian (batch) case, no
improvement beyond the naı̈ve bound of Lem. 1 is offered by
(14) for bounding the CRDF with decoder SI.

Instead, we argue that better bounds result by relying on
the technique of Weissman and El Gamal for batch RDF with
decoder causal SI, RC(D). By comparing (11) with (14b) the
difference between the two bounds is 1

T
I (yT → wT ) ≥ 0; as

we shall claim in the sequel in Lem. 2, I (yT → wT ) > 0 in
the Gaussian case, meaning that the bound offered by Th. 5
is strictly better than that of [22], [23].

Remark 6. We note that without the Markov chain constraint
in (14a) we could choose wt to be the x̂t that minimize (10a).
Thus, in general, the inequality RKH

c (D) ≥ Rbothc (D) holds.

Lemma 2. Rdecc (D) > RKH
c (D) whenever Rdecc (D) > 0, and

Rdecc (D) = RKH
c (D) = 0 whenever Rdecc (D) = 0.

Proof sketch: The statement for Rdecc (D) = 0 trivially
follows from the non-negativity of the MI (see also Rem. 5).
Assume Rdecc (D) > 0. Denote by wT∗ the wT that achieves
the infimum in (11). Consider the following two cases.

Case 1. wT∗ is jointly Gaussian with xT (and yT ) under the
limit superior in (11). Then, lim

T→∞
1
T
I (yT → wT ) > 0 in (14b)

[5], [22], and hence Rdecc (D) > RKH
c (D).

Case 2. wT∗ is not jointly Gaussian with xT and yT under
the limit superior in (11). Denote by wTG a jointly Gaussian
vector with xT and yT that has the same joint second-order
statistics with them as wT∗ . Then, we have

I (xT → wT∗ ) ≥ I (xT → wT∗ ) − I (yT → wT∗ ) (15a)

= I (xT → wT∗ Ú yT ) (15b)

> I (xT → wTG Ú yT ) (15c)

where (15a) follows from the non-negativity of the DI, (15b)
is according to (14b) and (15c) is from the uniqueness of the
Gaussian solution of the problem (14) [22]. Evaluating (15)
in lim

T→∞
yields the required result.

Corollary 1. The following relations hold when Rdecc (D) > 0:

Rdecc,op(D)
(a)
≥ Rdecc (D)

(b)
> RKH

c (D)
(c)
= Rboth

c (D).



Proof: Steps (a), (b), and (c) follow from Th. 5, Lem. 2,
and [22, Thm. 8] (see also Rem. 5), respectively.

Corollary 2. The minimum distortion Ddec
c,op(D) of causal

tracking of a Gauss–Markov source with causal SI over a
memoryless channel with capacity C is bounded from below by

Ddec
c,op(C) ≥ (Rdecc )

−1
(C) > (RKH

c )
−1

(C) = (Rboth
c )

−1
(C)

Proof: The proof is a simple adaptation of [38, Thm. 2],
[39, Thm. 1], which are in turn an adaptation of the ne-
cessity proof of the source–channel separation principle [40,
Thm 3.7]; we outline it next. Denote the channel input and
output at time t by at and bt, respectively. Then, we have

TRdecc (D)
(a)
≤ I (xT → bT )

(b)
≤ I (xT ; bT )

(c)
≤ TC

where (a) is due to Def. 6 and noting that bT satisfies the
conditions of wT in (11), (b) holds since the DI is bounded
from above by the MI, and (c) is due to [38, Eq. (31)]. The
proof then follows from Corol. 1, by inverting the RDFs and
invoking their monotonicity [40, Ch. 3].

VII. NUMERICAL SIMULATIONS

We have seen in Lem. 2 that Rdecc (D) gives a strictly tighter
lower bound than that of Rbothc (D) of Lem. 1 [and that of
(14)] on the operational CRDF with decoder SI. Unfortunately,
carrying out the optimization in (11) and finding an explicit
solution is difficult and is yet to be determined even for the
simpler memoryless batch, in which it reduces to the single-
letter optimization problem in (5).

Following [28], we consider a Gaussian test channel—wt =
xt + zt, where zt is a zero-mean AWGN of variance σ2

z in
lieu of the infimum in (11) and evaluate the expression for
this choice. We shall further show that Gaussian test channels
are suboptimal meaning that Case 2 prevails in the proof of
Lem. 2. We denote the minimum mean square errors (MMSEs)
given wt and given (yt,wt) by

Dt = E [(xt − x̂t(y
t,wt))

2
] , D̃t = E [(xt − x̂t(w

t
))

2
] .

First, note that R1 equals the channel capacity of a power
constrained AWGN channel [41]:

R1 = I(x1;w1) =
1

2
log(1 +

σ2
v

σ2
z

) , (16)

and D1 = σ
2
v∥σ

2
n∥σ

2
z . By substituting it in (16), we arrive at

R1 =
1

2
log(

σ2
v

D1
−
σ2
v

σ2
n

) . (17)

Since rate–distortion curves must be convex and non-negative
[41, Ch. 10], we clip R1 of (17) at 0 and take its lower convex
envelope to be the rate–distortion curve R1(D1).

By putting forth the the process dynamics (1) and pedestrian
MMSE estimation arguments we arrive at

Dt+1 = σ
2
n∥σ

2
z∥(λ

2Dt + σ
2
v) , D̃t+1 = σ

2
z∥(λ

2D̃t + σ
2
v) . (18)

By defining Rt(D̃t) ≜
1
2
log (λ2 +

σ2
v

D̃t
) for t > 1, (17), and

(a) λ = 0

(b) λ = 0.9

Fig. 2: Information average rate versus the average distortion
for no SI, two-sided SI, and causal decoder SI with a Gaussian
test channel wt = xt +nt with σn = 1/4 for λ = 0,0.9. We use
a uniform distortion allocation D1 = ⋯ = DT = D in all the
curves and T = 2048.

using [5, Proof of Corol. 2], [22, Thm. 2], we have (D̃0 = 0)

I (xT → wT ) =
1

2
log(

σ2
v

D̃1

) +
1

2

T

∑
t=2

log(λ2 +
σ2
v

D̃t

)

≜
T

∑
t=1
Rt(D̃t).

(19)

Using the definition of Rt(D̃t) and (18), we obtain

D̃t+1 = σ
2
z∥σ

2
v (1 − λ

22−2Rt)
−1
. (20)

And by equating (20) with D̃t+1 of the definition of
Rt+1(D̃t+1) we attain

σ2
z =

σ2
v

22Rt+1 − 1 − λ2 (1 − 2−2Rt)
. (21)

Substituting (21) into the recurssion of Dt+1 (18) we arrive at



the recursive description:

Rt+1 =
1

2
log(

σ2
v

Dt+1
−
σ2
v

σ2
n

−
σ2
v

λ2Dt + σ2
v

+ λ2 (1 − 2−2Rt) + 1).

(22)
By substituting (22) and (17) into (19) we get an expression

for the average rate.
The steady-state solution for (22) is given by

R =
1

2
log+ (λ2 +

σ2
v

D̃
) ,

where D̃ is the positive solution of the quadratic equation

λ2D̃2
+ [σ2

v + (1 − λ2)σ2
z] D̃ − σ2

vσ
2
z = 0,

whereas the distortion is given by the positive solution of the
quadratic equation

λ2D2
+ [σ2

v + (1 − λ2) (σ2
z∥σ

2
n)]D − σ2

v (σ
2
z∥σ

2
n) = 0.

This curve is not convex meaning that the optimal test
channel in (11) is not Gaussian. Consequently, by convexifying
(corresponding to time-sharing with R = 0), we improve this
curve.

We evaluate numerically the total rate using the recursion
(22) for λ = 0,0.9, σn = 1/4, σv = 1 and compare it to
RKH
c (D) ≡ Rboth

c (D) of (10b), (14) and Rc(D) of (9b);
clearly, the resulting curve lies between the two.

VIII. FUTURE WORK

Interesting research directions, that are currently under
investigation, are deriving an explicit expression for Rdecc (D)

of (6) and determining the exact improvement compared to
Rbothc (D) of (10), and extending our results to vector systems.
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