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Abstract—The general two-user memoryless multiple-access
channel, with common channel state information known to the
encoders, has no single-letter solution which explicitly character-
izes its capacity region. In this paper a binary “dirty” multiple-
access channel (MAC) with “common interference”, when the
interference sequence is known to both encoders, is considered.
We determine its sum-capacity, which equals to the capacity when
full-cooperation between transmitters is allowed, contrary to the
Gaussian case. We further derive an achievable rate region for
this channel, by adopting the “onion-peeling” strategies which
achieve the capacity region of the “clean” binary MAC. We show
that the gap between the capacity region of the clean MAC and
the achievable rate region of dirty MAC stems from the loss of the
point-to-point binary dirty channel relative to the corresponding
clean channel.

I. INTRODUCTION

Consider the two-user memoryless state-dependent
multiple-access channel (MAC) with transition and state
probability distributions

p(y|x1, x2, s) and p(s) , (1)

where s ∈ S is known non-causally at both encoders, but not
to the decoder. The channel inputs are x1 ∈ X1 and x2 ∈ X2,
and the channel output is y ∈ Y . The memoryless property of
the channel implies that

p(y|x1, x2, s) =
n∏

i=1

p(yi|x1i, x2i, si). (2)

The capacity region of this channel is still not known
in general, and remains an open problem. See, e.g., [1].
Interestingly, this model appears to be a bottleneck in many
wireless networks, ad hoc networks and relay problems.

The MAC model in (1) generalizes the point-to-point chan-
nel with side information (SI) at the transmitter considered
by Gel’fand and Pinsker [2]. Gel’fand and Pinsker proved a
direct coding theorem using a random binning technique, an
approach widely used in the analysis of multi-terminal source
and channel coding problems [3]. They obtained a general
capacity expression which is given in terms of an auxiliary
random variable U :

C = max
p(u,x|s)

{H(U |S) − H(U |Y )} , (3)
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where the maximization is over all joint distributions of the
form p(u, s, y, x) = p(s)p(u, x|s)p(y|x, s).

Using this result, Costa [4] showed that in the Gaussian
additive channel with known interference, the capacity is equal
to that of the AWGN channel, i.e., as if the interference S were
not present. Nevertheless, this does not carry on to the binary
modulo-additive case (“binary dirty-paper channel”):

Y = X ⊕ S ⊕ Z ,

where X, S, Z ∈ Z2 and ⊕ denotes addition mod− 2 (XOR).
The input constraint is 1

nwH(x) ≤ q, where 0 ≤ q ≤ 1/2
(We shall refer to this constraint as “power constraint”), wH(·)
denotes Hamming weight, and n is the length of the codeword.
The noise Z ∼ Bernoulli(ε) is independent of S, X (w.l.o.g.
we assume ε ≤ 1/2) ; the state information (“interference”)
S ∼ Bernoulli (1/2) is known non-causally to the encoder.
The capacity of this (“dirty”) channel is equal to

CP2P
Dirty = uce

{
max {Hb(q) − Hb(ε), 0}

}
, (4)

where Hb(·) denotes the binary entropy [3] and ucre is the
upper convex envelope operation with respect to q (ε is
held constant). The capacity of the interference-free (“clean”)
channel (the binary symmetric channel with a Hamming input
constraint), given by

CP2P
Clean = Hb(q � ε) − Hb(ε) , (5)

is higher than that of the dirty binary channel (4), since Hb(q�
ε) ≥ Hb(q), where � denotes binary convolution, defined as

p1 � p2 � p1(1 − p2) + (1 − p1)p2 .

See [5], [6].
One approach to finding achievable rates for the MAC with

common interference (1), is to extend the Gel’fand and Pinsker
result [2] to the two-user case [1]. This extension leads to the
following inner bound for the capacity region of ( 1) (see [1]):

R � cl conv
{

(R1, R2) : R1 ≤ I(U ; Y |V ) − I(U ; S|V )

R2 ≤I(V ; Y |U) − I(V ; S|U)

R1 + R2 ≤I(U, V ; Y ) − I(U, V ; S)
}

, (6)

where cl and conv are the closure and convex hull , re-
spectively, taken over all admissible auxiliary pairs (U, V )
satisfying:
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Fig. 1. Dirty MAC with common state information

(U, X1) ↔ S ↔ (V, X2)
(U, V ) ↔ (X1, X2, S) ↔ Y.

Philosof et al. [7], [8] considered the “doubly-dirty MAC”: a
Gaussian additive MAC, with an additive interference which is
composed of a sum of two independent Gaussian interferences,
where each interference is known non-causally only to one of
the encoders.

The capacity region of the Gaussian “dirty MAC”, where
the interference is known non-causally to both transmitters
(“binary MAC with common interference”), was found by
Gel’fand and Pinsker [9] (and rediscovered by Kim, Sutivong
and Sigurjónsson [10]), to be equal to the interference-free
MAC channel, by applying dirty paper coding by both users.

Philosof, Zamir and Erez [11] considered a binary modulo-
additive version of this channel (“binary DMAC”), depicted
also in Figure 1:

Y = X1 ⊕ X2 ⊕ S ⊕ Z , (7)

where X1, X2, S, Z ∈ Z2. The input (“power”) constraints are

1
n

wH(xi) ≤ qi , i = 1, 2 , (8)

where 0 ≤ q1, q2 ≤ 1/2. The noise Z has Bernoulli(ε) distri-
bution and is independent of S, X1, X2; the state information
S ∼ Bernoulli (1/2) is referred to as “interference”. The rates,
R1 and R2, of the two users are given by Ri = 1

n log |Wi|,
where Wi is the set of messages of user i.

In [11], the capacity for two different scenarios is derived:
• The binary doubly-dirty MAC: in this scenario

S = S1 ⊕ S2, where S1, S2 ∼ Bernoulli(1/2) are
independent and known non-causally to encoders 1 and
2, respectively. The capacity region of this channel is
given by the set of all rate pairs (R1, R2) satisfying:

C(q1, q2) �
{
(R1, R2) :

R1 + R2 ≤ uce
{

max [Hb(qmin) − Hb(ε)]
}}

,

where qmin � min(q1, q2) and the upper convex envelope
operation is w.r.t. q1 and q2.

• The binary MAC with a single informed user: in this
scenario S is known only to user 1. The capacity region of
this channel is given by the set of all rate pairs (R1, R2)
satisfying:

C(q1, q2) � cl conv
{
(R1, R2) :

R2 ≤ Hb(q2 � ε) − Hb(ε)
R1 + R2 ≤ Hb(q1) − Hb(ε)

}
.

(9)

Unlike in the Gaussian case, in which the common interference
capacity region is the same as the interference-free region, and
is achieved using stationary inputs, in the binary DMAC, we
shall see that there is a loss.

In this work we consider the binary MAC with common
interference, depicted in Figure 1, where the interference S
is known non-causally at both encoders. We assume that the
interference is “strong” (S ∼ Bernoulli (1/2)).

This is the worst-case interference, as any other distribution
of the interference can be transformed into a uniform one by
incorporating dithering at the receiver’s end.

We show that using the dirty-paper strategies that
achieve (5) in (6), along with successive decoding of the
messages (“onion peeling”) allows to achieve a rate region of
the binary DMAC (7), that is equal to the binary clean MAC
capacity region up to a loss which stems from the loss seen in
the point-to-point case (4),(5). Moreover, we show that these
strategies achieve the sum-capacities of the binary clean MAC
and dirty MAC with common interference, which are equal to
the sum-capacities of these channels when full cooperation
between the encoders is allowed, unlike in the Gaussian MAC
with common interference.

To simplify the treatment we concentrate on the noiseless
case, i.e., Z = 0.

The paper is organized as follows: We first consider the
binary clean MAC in Section II and then turn to treating the
binary MAC with common interference in Section III.

II. CLEAN MAC

In this section we consider the “clean” binary modulo-
additive channel:

Y = X1 ⊕ X2 ⊕ Z (10)

with input constraints q1, q2.
The capacity region of this channel contains the capacity

region of the binary DMAC (7), and therefore serves as an
outer bound. Furthermore, the capacity achieving strategies are
useful also for the DMAC case, as is discussed in Section III.
As mentioned earlier, we concentrate on the “noiseless case”
(Z = 0).

The binary additive model (10) is a special case of the
general (“clean”) MAC channel, the capacity region of which
is known to be [12], [13]:

C � cl conv
{

(R1, R2) : R1 ≤ I(X1; Y |X2)

R2 ≤ I(X2; Y |X1)

R1 + R2 ≤ I(X1, X2; Y )
}

,

(11)

where the closure and convex hull operations are taken over
all product distributions p1(x1)p2(x2) on X1 ×X2.

In the Gaussian additive MAC, any point within its capacity
region can be achieved using Gaussian stationary inputs.
Hence the convex hull operation is superfluous (see, e.g., [3]).
In the binary case, however, the use of stationary inputs is not
optimal and convex hull is necessary to achieve the capacity



region envelope. To see this, we rewrite (11) explicitly for the
binary case:

C � cl conv
{
(R1, R2) : Ri ≤ Hb(Xi) , i = 1, 2

R1+R2 ≤ Hb(X1 ⊕ X2)
}

,
(12)

where the closure and the convex hull are taken over all admis-
sible distributions of the form p1(x1)p2(x2) on {0, 1}×{0, 1},
such that the input constraints (8) are satisfied.

One easily verifies that, by allowing only stationary inputs
in (12), .i.e., relinquishing the convex hull, the sum-rate
R1 + R2 cannot exceed

R1 + R2 ≤ Hb(q1 � q2) , (13)

which is suboptimal, as indicated by the following theorem.

Theorem 1 (Sum-Rate Capacity of the Binary Clean MAC):
The sum-capacity of the binary noiseless modulo-additive
MAC (10) with input constraints 1

nwH(xi) ≤ qi, i = 1, 2, is:

Csum
clean = H+

b (q1 + q2) , (14)

where H+
b (q) � Hb (min {q, 1/2}).

Proof: Direct: Using time-sharing one can divide each
block into two parts: in the first αn block samples user 1
spends all of its “power” to convey his private message, while
user 2 is silent (transmits zeros), whereas in the remaining
(1 − α)n block samples user 2 spends all of its transmission
“power” to convey his message, while user 1 is silent. This
leads to the sum-rate

R1 + R2 = αH+
b

(q1

α

)
+ (1 − α)H+

b (
q2

1 − α
) ,

which is equal to H+
b (q1 + q2) for α = q1

q1+q2
.

Converse: Full cooperation between the transmitters can
only increase the sum-capacity. Full cooperation transforms
the problem into a point-to-point problem of transmit-
ting over a binary clean channel with power constraint
1
nwH(x) ≤ q1 + q2, the capacity of which is H+

b (q1 + q2).

Thus, the sum-capacity of the binary (clean) MAC (14)
is strictly greater than the best achievable rate using only
stationary inputs (13).

Remark 1:

• The sum-capacity of (10) can be shown, using the same
methods, to be:

Csum
clean = H+

b

(
(q1 + q2) � ε

)
− Hb(ε) .

• If we allow full cooperation between the transmitters,
the capacity of the channel does not outperform ( 14),
as pointed out in the converse part of the proof. In the
Gaussian case, on the other hand, the sum-capacity of
the MAC channel is equal to 1

2 log(1 + SNR1 + SNR2),
which is strictly smaller than the full-cooperation ca-
pacity, 1

2 log(1 + SNR1 + SNR2 + 2
√

SNR1SNR2). This
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Fig. 2. Rate Regions for the binary clean MAC and input constraints:
q1 = 1/6, q2 = 1/10.

dissimilarity stems from the difference of the alphabets
that we work with in both problems and the nature of
the addition. In the binary case, no “coherence” can be
attained by transmitting the same message, and additional
power can only assist in exploiting more time slots within
a block. In the Gaussian case, on the other hand, cooper-
ation allows additional coherence gain, which cannot be
achieved in the binary case.

To find the capacity region of (12) explicitly, we replace the
convex hull with a time-sharing variable Q, with alphabet of
size |Q| = 2 (see, e.g., [14]).

C �
⋃ {

(R1, R2) : R1 ≤ Hb(X1|Q)

R2 ≤ Hb(X2|Q)

R1+R2 ≤ Hb(X1 ⊕ X2|Q)
}

,

(15)

where the union is over all admissible Markov chains
X1 ↔ Q ↔ X2, satisfying the input constraints EXi ≤ qi,
i = 1, 2.

Remark 2: Note that X1 and X2 are not independent
in (15), but rather independent given the time-sharing param-
eter Q.

Deriving an explicit analytical expression for (15) is hard,
and numerical solutions are needed instead.

Using the scheme proposed in the proof of Theorem 1,
in which only one user transmits at each time instance,
whereas the other user remains silent, is suboptimal in general,
as is illustrated in Figure 2. Exploring the capacity region
in (15), we note that the corner points of the pentagons, which
constitute the capacity region, i.e., points that satisfy one of the
first two inequalities and the third one with equality in (15),
can be achieved by incorporating the “successive cancellation”
(or “onion peeling”) method, in which the decoder treats the
message of one of the users as noise, recovers the message
of the other user, and subtracts it to recover the remaining
message.

Due to the time-sharing variable Q of cardinality 2, two such
strategies need to be considered, to achieve a general point
in the capacity region (15), such that the power constraints



are satisfied on the average. Nevertheless, we examine these
rates for stationary points (viz. P (Q = 0) = 1) , to obtain
better understanding. Thus, both users transmit simultaneously
at all times, such that user 1 uses all of its available power
EX1 = q1, whereas user 2 uses only some portion of its
power EX2 = q′2 (0 ≤ q′2 ≤ q2). User 1 treats q′2 as noise
and can achieve a rate of R1 = Hb(q1 � q′2) − Hb(q′2). After
recovering the message of user 1, it can be subtracted, such
that user 2 sees a clean point-to-point channel and hence can
achieve a rate of R2 = Hb(q′2). Note that even though using
this strategy alone the capacity region cannot be achieved,
it does achieve certain rate pairs which cannot be achieved
by simple time-sharing, like the one used in Lemma 1 and
depicted in Figure 2.

Remark 3:

• When using this onion peeling strategy, user 2 does not
exploit all of its power, but only a portion 0 ≤ q ′

2 ≤ q2.
Hence a “residual” power of q2 − q′2 is left unexploited.
This implies that this strategy is not optimal (except when
q′2 = q2) as is, and a way to exploit this residual power
needs to be constructed.

• As mentioned earlier, time-sharing between such onion
peeling strategies allows to achieve capacity. However,
numerical evidence suggest that a simpler scheme suffices
to achieve the capacity region, as is depicted in Figure 2.
In this scheme we divide the transmission block into two
parts, where in the first we use onion peeling, such that
the user being “pilled” first uses all of its power, whereas
the other user uses a portion of its power in the first
sub-block, and transmits with its remaining power in the
second-block (whereas the other user is silent). If we
denote by α the block portion allotted to onion peeling
and by q′2 (0 ≤ q′2 ≤ q2) the power of user 2, used during
this period, this scheme supplies us with the following
achievable rates:

R1 = αH+
b

(
q1

α
� q′2

α

)
− αH+

b

(
q′2
α

)
,

R2 = αH+
b

(
q′2
α

)
+ (1 − α)H+

b

(
q2 − q′2
1 − α

)
, (16)

Or in the noise case:

R1 = αH+
b

(
q1

α
� q′2

α
� ε

)
− αH+

b

(
q′2
α

� ε

)
,

R2 = αH+
b

(
q′2
α

� ε

)
+ (1 − α)H+

b

(
q2 − q′2
1 − α

� ε

)

− Hb(ε) ,

in a similar manner.
• The roles of user 1 and user 2 are not symmetric: the

achievable rate pairs, using onion peeling, when user 2 is
peeled, differ from the rate pairs that are achieved when
user 1 is peeled. Hence, by switching roles between the
two users, one may achieve additional rate points.

III. DIRTY MAC WITH COMMON INTERFERENCE

We adopt the strategies introduced in Section II to the dirty
case (7) (depicted also in Figure 1), and derive an achievable
rate region.

Similarly to the clean MAC case, the sum-capacity of
the binary DMAC with common interference is equal to
the capacity of this channel when both encoders can fully
cooperate, as indicated by the following theorem.

Theorem 2 (Sum-Rate Capacity of DMAC with Common SI):
The sum-capacity of the binary noiseless modulo-additive
MAC with common interference (7) and input constraints
1
nwH(xi) ≤ qi, i = 1, 2, is:

Csum
dirty = H+

b (q1 + q2) . (17)

Proof: Direct: We repeat the proof of Lemma 1, only
now the point-to-point BSC capacity (4) should be replaced
by the binary dirty paper channel capacity (5). Nevertheless,
in the noiseless case (Z = 0), there is no difference between
the two expressions, and thus

R1 + R2 = H+
b (q1 + q2) .

Converse: Again, like in the proof of Lemma 1, we allow full
cooperation between the transmitters, which in turn transforms
the problem into a point-to-point channel, the capacity of
which is H+

b (q1 + q2).

Remark 4:

• In the presence of noise, the sum-capacity of this channel
is

Csum
Dirty = uch max

{
H+

b (q1 + q2) − Hb(ε), 0
}

.

• In the noiseless case, the sum-capacities of the binary
clean and dirty MACs are equal. However, in the presence
of noise Z , the sum-capacity of the dirty MAC channel is
strictly smaller than that of the clean MAC channel (for
q1 + q2 < 1

2 ). This difference stems from the capacity
loss, due to the presence of interference, of the point-to-
point setting (4),(5)

• As was mentioned in Remark 1, if we allow full coopera-
tion between the transmitters, the capacity of the channel
cannot exceed (17), in contrast to the Gaussian case, in
which additional “coherence gain” can be achieved.

The capacity region of the “single informed user” (9) serves
as an inner bound for the capacity region of the common
interference dirty MAC. To improve the achievable region
of our channel of interest, we allow time-sharing between
“single informed user” strategies, where the informed user is
alternately user 1 or user 2. Note that by this only the user
that is pilled first needs to know the interference. This is also
true for the sum-capacity achieving strategy presented in the
proof of Theorem 2.

Remark 5:

• The strategies used in [11], to achieve the capacity region
of the single informed user (9), can be viewed as onion



peeling, where user 2 assumes a point-to-point dirty paper
channel and input constraint 0 ≤ q ′

2 ≤ q2; and user 1
treats the signal of user 2, X2, as noise, and uses dirty
paper coding of the form (5). The achievable rates, using
this strategy, are of the form:

R1 = Hb(q1) − Hb(q′2) ,

R2 = Hb(q′2) ,

where since q′2 can take any value in the interval [0, q2],
the single informed user capacity (9) is achieved by time-
sharing between such strategies (where user 1 is always
pilled first, since user 2 is ignorant of the interference
sequence).

• Using such “stationary” strategies alone (with no time-
sharing), one cannot hope to achieve the sum-capacity
of Lemma 2 (or the whole capacity region of the single-
informed user problem (9)), since there is an average
residual power of q2 − q′2, for each sample, left un-
exploited. As in the clean MAC case Section II, we
conjecture that rather than using time-sharing between
two “onion peeling” strategies, a simplified scheme that
divides the transmission blocks into two parts, where in
the first sub-block “onion peeling” is performed, where
the user that is pilled first exploits all of “power”, and in
the second sub-block the other user transmits with all of
its remaining power. This allows to achieve rate pairs of
the form:

R1 = αH+
b

(q1

α

)
− αH+

b

(
q′2
α

)
,

R2 = αH+
b

(
q′2
α

)
+ (1 − α)H+

b

(
q2 − q′2
1 − α

)
, (18)

where q′2 ∈ [0, q2]. See Figure 3. In the noisy case, this
scheme achieves the following rates:

R1 = αH+
b

(q1

α

)
− αH+

b

(
q′2
α

� ε

)
,

R2 = αH+
b

(
q′2
α

� ε

)
+ (1 − α)H+

b

(
q2 − q′2
1 − α

� ε

)

− Hb(ε) .

• Even in the noiseless case (Z = 0) the achievable rate
region of the dirty channel (18) is properly contained
in its corresponding clean counterpart (16) (as depicted
in Figure 3), in contrast to the point-to-point setting, in
which the capacities are equal in the absence of noise
(4), (5). The gap between the two regions stems from
the fact that in the first sub-block, the user being peeled
first, treats the signal of the other user as noise, in the
presence of interference. Hence the achievable rate during
this stage is strictly smaller, due to the point-to-point loss
of binary dirty paper coding (4), (5).

• This strategy is asymmetric in user 1 and user 2, as was
explained in Remark 3.
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