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Abstract—In the scalar dirty multiple-access channel, in ad-
dition to Gaussian noise, two additive interference signals are
present, each known non-causally to a single transmitter. It was
shown by Philosof et al. that for strong interferences, an i.i.d.
ensemble of codes does not achieve the capacity region. Rather,
a structured-codes approach was presented, which was shown
to be optimal in the limit of high signal-to-noise ratios (SNRs),
where the sum-capacity is dictated by the minimal (“bottleneck”)
channel gain. In the present work, we consider the multiple-
input multiple-output (MIMO) variant of this setting. In order
to incorporate structured codes in this case, one can utilize
matrix decompositions, which transform the channel into effec-
tive parallel scalar dirty multiple-access channels. This approach
however suffers from a “bottleneck” effect for each effective
scalar channel and therefore the achievable rates strongly depend
on the chosen decomposition. It is shown that a recently proposed
decomposition, where the diagonals of the effective channel
matrices are equal up to a scaling factor, is optimal at high
SNRs, under an equal rank assumption.

I. INTRODUCTION

The dirty-paper channel, introduced by Costa [1], is given by

y = x+ s+ z, (1)

where y is the channel output, x is the channel input subject to
an average power constraint P , z is an additive white Gaussian
noise (AWGN) of power 1, and s is an interference which is
known non-causally to the transmitter but not to the receiver.

Costa [1] showed that the capacity of this channel, when
the interference is i.i.d. and Gaussian, is equal to that of an
interference-free channel 1

2 log(1 + P ), i.e., as if s ≡ 0. This
result was subsequently extended to ergodic interference in [2]
and to arbitrary interference in [3], where to achieve the latter,
a structured lattice-based coding scheme was used.

This model serves as an information-theoretic basis for the
study of interference cancellation techniques, and was applied
to different network communication scenarios; see, e.g., [4].

Its multiple-input multiple-output (MIMO) variant as well as
its extension to MIMO broadcast with private messages can be
easily treated either directly or via scalar dirty-paper coding
and an adequate orthogonal matrix decomposition, the most
prominent being the singular-value decomposition (SVD) and
the QR decomposition (QRD); see [5] and references therein.

Philosof et al. [6] extended the dirty-paper channel to the
case of K multiple (distributed) transmitters, each transmitter
knowing a different part of the interference:

y =

K∑
k=1

(xk + sk) + z, (2)

where y and z are as before, xk (k = 1, . . . ,K) is the input of
transmitter k and is subject to an average power constraint Pk,
and sk is an arbitrary interference sequence which is known
non-causally to transmitter k but not to the other transmitters
nor to the receiver. The capacity region of this scenario, termed
the dirty multiple-access channel (DMAC) in [6], was shown
to be contained (“outer bound”) in the region of all rate tuples
(R1, . . . , RK) satisfying

K∑
k=1

Rk ≤
1

2
log

(
1 + min

k=1,...,K
Pk

)
, (3)

and to contain (“achievable region”) all rate tuples
(R1, . . . , RK) satisfying1

K∑
k=1

Rk ≤
1

2

[
log

(
1

K
+ min

k=1,...,K
Pk

)]+
, (4)

where [x]+ , max{0, x}. These two regions coincide
in the limit of high signal-to-noise ratios (SNRs) —
P1, . . . , PK � 1 — thus establishing the capacity region
in this limit to be equal to the region of all rate tuples
(R1, . . . , RK) satisfying

K∑
k=1

Rk ≤
1

2
log

(
min

k=1,...,K
Pk

)
. (5)

That is, the sum-capacity suffers from a bottleneck problem
and reduces to the minimum of the individual capacities in this
limit. Interestingly, Costa’s random binning technique does not
achieve the rate region (4) or the high-SNR region (5), and
structured lattice-based techniques need to be used [6].

The MIMO counterpart of the problem is given by

y =

K∑
k=1

(Hkxk + sk) + z. (6)

For simplicity, we assume for now that all vectors are of equal
length N .2 We further assume, without loss of generality, that
the square channel matrices all have unit determinant, since
any other value can be absorbed in Pk. The AWGN vector z
has i.i.d. unit-variance elements, while the interference vectors
{sk} are arbitrary as in the scalar case. The transmitters are
subject to average power constraints {Pk}.

1In addition to (4), other inner bounds which are tighter in certain cases
are derived in [6].

2We will depart from this assumption later.



In the high-SNR limit (where all powers satisfy Pk � 1),
the individual capacity of the k-th user is given by:3

Nr

2
log

(
Pk

Nr

)
.

Thus, similarly to the scalar case (5), one can expect the high-
SNR capacity region to be given by

K∑
k=1

Rk ≤
Nr

2
log

 min
k=1,...,K

Pk

Nr

 . (7)

However, in contrast to the single-user setting (1), the
extension of the scalar DMAC to the MIMO case is not
straightforward. As structure is required even in the scalar case
(2), one cannot use a vector random codebook. To overcome
this, we suggest to employ Nr parallel scalar schemes, each
using the lattice coding technique of [6]. This is in the spirit
of the capacity-achieving SVD [7] or QRD [8] based schemes,
that were proposed for MIMO communications (motivated by
implementation considerations). The total rate is split between
multiple scalar codebooks, each one enjoying a channel gain
according to the respective diagonal value of the equivalent
channel matrix obtained by the channel decomposition.

Unfortunately, for the MIMO DMAC problem, neither
the SVD nor the QRD is suitable, i.e., their corresponding
achievable rates cannot approach (7). Applying the SVD is not
possible in the MIMO DMAC setting as joint diagonalization
with the same orthogonal matrix on one side does not exist in
general. Applying the QRD to each of the orthogonal matrices,
in contrast, is possible as it requires an orthogonal operation
only at the transmitter.4 However, the resulting matrices will
have non-equal diagonals in general, corresponding to non-
equal SNRs. Specifically, denoting the i-th diagonal element
of the k-th matrix by tk;i, the resulting high-SNR sum-rate
would be limited to

K∑
k=1

Rk ≤
Nr∑
i=1

1

2
log

 min
k=1,...,K

(Pkt
2
k;i)

Nr

 (8)

in this case. As this represents a per-element bottleneck, the
rate is in general much lower than (7).

In this work we make use of a recently proposed joint
orthogonal triangularization [9] to remedy the problem, i.e.,
to transform the per-element bottleneck (8) into a global one
as in (7). Specifically, the decomposition allows to transform
two matrices (with equals determinants) into triangular ones
with equal diagonals, using the same orthogonal matrix on
the left — corresponding to a common operation carried
at the receiver — and different orthogonal matrices on the
right — corresponding to different operations applied by each
of the transmitters. The equal diagonals property implies that
the minimum in (8) is not active and hence the per-element

3The optimal covariance matrix in the limit of high SNR is white; see
Lemma 1 in the sequel.

4More precisely, RQ decompositions need to be applied to the channel
matrices in this case.

bottleneck problem, incurred in the QRD-based scheme, is
replaced by the more favourable vector bottleneck (7).

The paper is organized as follows. We start by introduc-
ing the channel model in Section II. We then present the
ingredients we use: the matrix decomposition is presented in
Section III, and a structured coding scheme for the single-user
“dirty” MIMO channel is presented in Section IV. Our main
result, the high-SNR capacity of the two-user MIMO DMAC
(6) is given in Section V, using a structured scheme. We extend
this result to the K-user case in Section VI. We discuss the
usefulness of this scheme for physical-layer MIMO network
coding and conclude the paper in Section VII.

II. PROBLEM STATEMENT

The K-user MIMO DMAC is given by:

y =

K∑
k=1

(Hkxk + sk) + z, (9)

where y is the channel output vector of length Nr,5 xk

(k = 1, . . . ,K) is the input vector of transmitter k of length
N

(k)
t and is subject to an average power constraint Pk defined

formally in the sequal, z is an AWGN vector with an identity
covariance matrix, and sk is an interference vector of length
Nr which is known non-causally to transmitter k but not to
the other transmitters nor to the receiver. The interference
vector signals {sk} are assumed to be arbitrary sequences. We
consider a closed-loop scenario, meaning that the Nr ×N (k)

t

channel matrix Hk is known everywhere and that it satisfies
the following properties.

Definition 1 (Proper). A matrix H of dimensions Nr ×Nt is
said to be proper if it has no fewer columns than rows, i.e.,
Nr ≤ Nt, is full rank (namely of rank Nr) and satisfies6

det
(
HHT

)
= 1. (10)

Transmission is carried out in blocks of length n. The
input signal transmitted by transmitter k is given by
xn
k = fk (wk, s

n
k ), where we denote by an blocks of a at

time instants 1, 2, . . . , n, i.e., an = a[1], . . . , a[n], wk is the
conveyed message by this user which is chosen uniformly from{
1, . . . ,

⌈
2nRk

⌉}
, Rk is its transmission rate, and fk is the

encoding function. The input signal xk is subject to an average
power constraint

1

n

n∑
t=1

x2
k[t] ≤ Pk.

The receiver reconstructs ŵ1, . . . ŵK from the channel out-
put, using a decoding function g: (ŵ1, . . . , ŵK) = g (yn). A
rate tuple (R1, . . . , RK) is said to be achievable if for any
ε > 0, however small, there exist n, f and g, such that
the error probability is bounded from the above by ε, i.e.,
Pr (ŵ1 6= w1, . . . , ŵK 6= wK) ≤ ε. The capacity region is
defined as the closure of all achievable rate tuples.

5All vectors in this paper are assumed column vectors.
6There is no loss in generality in the communication settings we consider,

since a scalar coefficient can always be absorbed in the power constraint.



III. BACKGROUND: ORTHOGONAL MATRIX
TRIANGULARIZATION

In this section we briefly recall some important matrix
decompositions that will be used in the sequel. In Section III-A
we recall the generalized triangular decomposition (GTD) and
some of its important special cases. Joint orthogonal triangu-
larizations of two matrices are discussed in Section III-B.

A. Single Matrix Triangularization
Let A be a proper matrix of dimensions M × N . A

generalized triangular decomposition (GTD) of A is given by:
A = UTVT , (11)

where U and V are orthogonal matrices of dimensions
M ×M and N × N , respectively, and T is a generalized
lower-triangular matrix. Namely, it has the following structure:

T = M



N︷ ︸︸ ︷
T11 0 0 · · · 0 · · · 0
T21 T22 0 · · · 0 · · · 0

...
...

. . .
...

. . .
...

TM,1 TM,2 · · · TMM 0 · · · 0

 .
The diagonal entries of T always have a unit product.

Necessary and sufficient conditions for the existence of a GTD
for a prescribed diagonal {Tii} are known, along with explicit
constructions of such a decomposition [10], [11].

Three important special cases of the GTD include the
SVD — in which the matrix T is diagonal, the QRD — in
which V is equal to the identity matrix, and the geometric
mean decomposition (GMD) — in which the matrix T has a
constant diagonal which is equal to the geometric mean of its
singular values of A.7

B. Joint Matrix Triangularization
Let A1 and A2 be two proper matrices of dimensions

M1 ×N and M2 ×N , respectively. A joint triangularization
of these two matrices is given by:

A1 = U1T1V
T , (12a)

A2 = U2T2V
T , (12b)

where U1, U2 and V are orthogonal matrices of dimensions
M1 ×M1, M2 ×M2 and N × N , respectively, and T1 and
T2 are generalized lower-triangular matrices.

It turns out that the existence of such a decomposition
depends on the diagonal ratios {T1;ii/T2;ii}. Necessary and
sufficient conditions were given in [9]. Specifically, it was
shown that there always exists a decomposition with unit
ratios, i.e.,

T1;ii = T2;ii , i = 1, . . . , N .

Such a decomposition is coined the joint equi-diagonal de-
composition (JET).8 Technically, the existence of JET is an
extension of the existence of the (single-matrix) GMD.

Unfortunately, JET of more than two matrices is not possible
in general [12]. Nonetheless, in Section VI we present a way
to overcome this obstacle.

7See [12] for a geometrical interpretation of these decompositions.
8See [12] for a geometrical interpretation of the JET.

IV. BACKGROUND: SINGLE-USER MIMO
DIRTY-PAPER CHANNEL

In this section we review the (single-user) MIMO dirty-
paper channel, corresponding to setting K = 1 in (9):

y = Hx+ s+ z. (13)

We drop the user index of x, s and H in this case.
For an i.i.d. Gaussian interference vector, a straightforward

extension of Costa’s random binning scheme achieves the
capacity of this channel,

C (H,K) , max
K: trace(K)≤P

1

2
log
∣∣I+HKHT

∣∣ , (14)

which is, as in the scalar case, equal to the interference-free
capacity. In the high-SNR limit, we have the following.

Lemma 1 (See [13]). The capacity of the single-user MIMO
dirty-paper channel (13) satisfies lim

P→∞
[C − RHSNR] = 0,

where

RHSNR ,
Nr

2
log

P

Nr
. (15)

Moreover, this rate is achieved by the input covariance matrix

K =
P

Nr
INr

.

The Costa-style scheme for the MIMO dirty-paper channel
suffers from two major drawbacks. First, it requires vector
codebooks of dimension Nt, which depend on the specific
channel H. And second, it does not admit an arbitrary inter-
ference. Both of these can be solved by using the orthogonal
matrix decompositions of Section III to reduce the coding
task to that of coding for the scalar dirty-paper channel
(1). For each scalar channel, the interference consists of two
parts: a linear combination of the elements of the “physical
interference” s and a linear combination of the off-diagonal
elements of the triangular matrix which also serve as “self
interference”. When using the lattice-based scheme of [3], the
capacity (14) is achieved for arbitrary interference sequences.
Scheme (Single-user zero-forcing MIMO dirty-paper coding).
Offline:
• Apply any orthogonal matrix triangularization (11) to the

channel matrix: H = UTVT .
• Denote the vector of the diagonal entries of T by

t , diag (T).
• Construct Nr good unit-power scalar dirty-paper codes

with respect to SNRs {t2iP/Nr}.
Transmitter: At each time instant:
• Generates {x̃i} in a successive manner from first (i = 1)

to last (i = Nr), where x̃i is the corresponding entry of
the codeword of over sub-channel i, the interference over
this sub-channel is equal to

i−1∑
`=1

Ti,`x̃` +

Nr∑
`=1

Vi,`s`,

and Ti,` is the (i, `) entry of T.



• Forms x̃ with its first Nr entries being {x̃i} followed by
(Nt −Nr) zeros.

• Transmits x which is formed as folows: x = Vx̃.
Receiver:
• At each time instant forms ỹ = UTy.
• Decodes the codebooks using dirty-paper decoders, where
x̃i is decoded from ỹi.

As is well known, the zero-forcing dirty-paper coding
scheme approaches capacity for proper channel matrices in
the limit of high SNR. This is formally stated as folows.

Corollary 1. For any proper channel matrix H, the zero-
forcing MIMO dirty-paper coding scheme achieves RHSNR

(15). Thus, it approaches the capacity of the MIMO dirty-
paper channel (13) in the limit P →∞.

Proof: The zero-forcing MIMO dirty-paper coding
scheme achieves a rate of

RZF =

Nr∑
i=1

1

2
log

(
1 +

P

Nr
t2i

)

≥ Nr ·
1

2
log

(
P

Nr

)
+

1

2
log

(
Nr∏
i=1

t2i

)

=
Nr

2
log

(
P

Nr

)
,

where the last equality follows from (10).
Remark 1. A minimum mean square error (MMSE) variant of
the scheme achieves capacity for any SNR and any channel
matrices (not necessarily proper); see, e.g., [5]. Unfortunately,
extending the MMSE variant of the scheme to the DMAC set-
ting is not straightforward, and therefore we shall concentrate
on the zero-forcing variant of the scheme.

V. TWO-USER MIMO DMAC
We now derive outer and inner bounds on the capacity

region of the two-user MIMO DMAC. We show that the two
coincide for proper channel matrices in the limit of high SNRs.

The outer bound of [6] for the scalar case (3) is easily
extended to the MIMO setting (9): Both users convey a
common message with one interference nullified and the
variances of the other taken to infinity. This upper bounds
the sum-capacity by the individual capacity of each user and
is stated formally next; a detailed proof is available in [14].

Proposition 1 (Two-user sum-capacity outer bound). The sum-
capacity of the two-user MIMO DMAC (9) is bounded from
above by the minimum of the individual capacities:

R1 +R2 ≤
1

2
log min

k=1,2
max

Kk: trace(Kk)≤Pk

∣∣I+HkKkH
T
k

∣∣(16)

We next introduce an inner bound that approaches the upper
bound (16) in the limit of high SNRs.

Theorem 1. For the two-user MIMO DMAC (9) with any
proper channel matrices H1 and H2, the region of all non-
negative rate pairs (R1, R2) satisfying

R1 +R2 ≤
Nr

2

[
log

(
min{P1, P2}

Nr

)]+
(17)

is achievable.
We give a constructive proof by adapting the single-user

MIMO dirty-paper coding scheme of Section IV to the two-
user DMAC. To this end, we replace the GTD of Section III-A
with the JET of Section III-B. Applying the JET to the channel
matrices translates the two-user MIMO DMAC (9) into par-
allel SISO DMACs with equal channel gains (corresponding
to equal diagonals). Over the resulting SISO DMACs, good
SISO DMAC codes as in [6] are used to attain (17).

Proof of Theorem 1: The proposed scheme achieves any
rate pair (R1, R2) whose sum-rate is bounded from below by

R1 +R2 =

Nr∑
i=1

(r1;i + r2;i) (18a)

≥
Nr∑
i=1

1

2

[
log

(
1

2
+ t2i ·

min{P1, P2}
Nr

)]+
(18b)

≥
Nr∑
i=1

1

2
log

(
t2i ·

min{P1, P2}
Nr

)
(18c)

=
Nr

2
log

(
min{P1, P2}

Nr

)
, (18d)

where rk;i is the achievable rate of transmitter k (k = 1, 2)
over sub-channel i (i = 1, . . . , Nr), (18b) follows from (4),
and (18d) holds true due to (10).

By comparing Proposition 1 with Theorem 1 in the limit of
high SNR, the following corollary follows.

Corollary 2. The capacity region of the two-user MIMO
DMAC (9) with any proper channel matrices H1 and H2 is
given by CHSNR + o(1), where CHSNR is given by all rate
pairs satisfying:

R1 +R2 ≤
Nr

2
log

(
min{P1, P2}

Nr

)
and o(1) vanishes as min{P1, P2} → ∞.

Remark 2. At any finite SNR, the scheme can achieve rates
outside CHSNR. Specifically, inequality (18c) is strict, unless
the achievable sum-rate is zero. However, in that case the
calculation depends upon the exact diagonal values {ti}; we
do not pursue this direction.

VI. K-USER MIMO DMAC

In this section we extend the results of Section V to MIMO
DMACs with K > 2 users. The outer bound is a straightfor-
ward extension of the two-user case of Proposition 1.

Proposition 2 (K-user sum-capacity outer bound). The sum-
capacity of the K-user MIMO DMAC (9) is bounded from the
above by the minimum of the individual capacities:

K∑
k=1

Rk ≤
1

2
log min

k=1,...,K
max

Kk: trace(Kk)≤Pk

∣∣I+HkKkH
T
k

∣∣ .
For an inner bound, we would have liked to use JET of

K > 2 matrices. As such a decomposition does not exist in
general, we present a “workaround”, following [12].



We process jointly N channel uses and consider them as
one time-extended channel use. The corresponding channel is

”y =

K∑
k=1

(Hk ”xk + ¯sk) + ˚z ,

where ”y, ”xk, ¯sk, ˚z are the time-extended vectors composed
of N “physical” (concatenated) output, input, interference and
noise vectors, respectively. The corresponding time-extended
matrix Hk is a block-diagonal matrix whose N blocks are all
equal to Hk:

Hk = IN ⊗Hk , (19)

where ⊗ is the Kronecker product operation. As the following
result shows, for such block-diagonal matrices we can achieve
equal diagonals, up to edge effects that can be made arbitrarily
small by taking a sufficient number of time extensions N .

Theorem 2 (K-JET with edge effects [12]). Let H1, . . . ,HK

be K proper matrices of dimensions Nr × N
(1)
t , . . . , Nr ×

N
(K)
t , resp., and construct their time-extended matrices with

N blocks, H1, . . . ,HK , resp., according to (19). Denote Ñ ,
N−NK−2

r +1. Then, there exist matrices U,V1, . . . ,VK with
orthonormal columns of dimensions NrN × NrÑ ,N

(1)
t N ×

NrÑ , . . . , N
(K)
t N ×NrÑ , resp., such that

Tk = UTHkV
T
k , k = 1, . . . ,K ,

where T1, . . . ,TK are lower-triangular matrices of dimensions
NrÑ ×NrÑ with equal diagonals of unit product.

Since limN→∞ Ñ/N = 1, we have the following.

Theorem 3. For the K-user MIMO DMAC (9), the region of
all non-negative rate tuples (R1, . . . , RK) satisfying

K∑
k=1

Rk ≤
Nr

2
log

(
min
k
Pk

Nr

)
is achievable.

Proof: Fix some large enough N . Construct the channel
matrices H1, . . . ,HK as in (19), and set U, V1, . . . ,VK

and T1, . . . ,TK according to Theorem 2. Now, over nN
consecutive channel uses, apply the natural extension of the
scheme of Section V to K users, replacing {Uk}, V, {Tk} with
the obtained matrices. As in the proof of Theorem 1, we can
attains any rate approaching

K∑
k=1

Rk ≤
NrÑ

2
log

min
k=1,...,K

Pk

Nr
.

As we used the channel nN times, we need to divide these
rates by N ; Using lim

N→∞
Ñ/N = 1 completes the proof.

By comparing Proposition 2 with Theorem 3 in the limit of
high SNR, we can extend Corollary 2 as follows.

Corollary 3. The capacity region of the K-user MIMO
DMAC (9) with any proper channel matrices H1, . . . ,HK is
given by CHSNR + o(1), where CHSNR is given by all rate
pairs satisfying:

K∑
k=1

Rk ≤
Nr

2
log

 min
k=1,...,K

Pk

Nr


and o(1) vanishes as min

k=1,...,K
PK →∞.

VII. DISCUSSION: GENERAL CHANNEL MATRICES

The proposed scheme can be readily applied to the MIMO
two-way channel, which can be seen as containing a MIMO
DMAC; see [14]–[16].

Furthermore, in this paper we restricted attention to full
rank channel matrices having more columns than rows. In
this case, the column spaces of both matrices are equal.
Indeed, the scheme and inner bound of Sections V and VI
can be extended to work for the general case as well; this
requires, however, introducing an output projection at the
receiver, which transforms the channel matrices to effective
proper ones. Since all interferences need to be canceled out
for the recovery of the transmitted messages, it seems that
such a scheme would be optimal in the limit of large transmit
powers P1, . . . , PK → ∞. Unfortunately, the upper bound
of Proposition 1, which is equal to the maximal individual
capacity, is not tight in the non-proper matrix case, and calls
for further research.
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