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Abstract

We consider a discrete-time linear quadratic Gaussian networked control setting where the
(full information) observer and controller are separated by a fixed-rate noiseless channel. We
study the event-triggered control setup in which the encoder may choose to either transmit
a packet or remain silent. We recast this problem into that of fixed-rate quantization with
an extra symbol that corresponds to the silence event. This way, controlling the average
transmission rate is possible by constraining the minimal probability of the silence symbol.
We supplement our theoretical framework with numerical simulations.

Introduction

The demand for new and improved control techniques over unreliable communication
links is constantly growing, due to the rise of emerging opportunities in the Internet of
Things and Cyber-physical systems. The cyber part of the latter is relies, in turn, on
networked control, in which control is carried over discretized packeted communication
channels [1–5].

Unfortunately, the rapid rise in the number of users sharing the same physical
media for communications often creates network congestion problems and calls for a
demand for reduced-communication approaches.

To reduce the number of physical packets transmitted over the network, communi-
cation techniques that convey information by relying on silence and timing have been
proposed both for transmitting data [6, 7] and for stabilizing control system [8–13].

However, although much effort has been put into determining the conditions for
the stabilizability of such systems, less so has been done for determining the optimal
attainable control costs.

In this work, we consider the event-triggered control problem, in which the en-
coder can either transmit packet of a fixed rate R (which can be zero; this corresponds
to transmitting empty packets, i.e., packet baring no content that only signal a trans-
mission) or remain silent. We develop a quantization framework for this setting by
adding a quantization cell that corresponds to “silence”, i.e., 2R + 1 cells in total. By
requiring the probability of this cell to be above a minimal value, we are able to control
the average transmission rate of the scheme (which is equal to the sum of the prob-
abilities of the remaining cells). Clearly the additional “silent cell” allows to convey
extra information such that the effective rate exceeds the physical transmission rate.

We concentrate on the case of discrete-time linear plants with disturbances that
have logarithmically-concave (log-concave) probability density functions (PDFs) (with
the Gaussian PDF being an important special case). Such PDFs are unimodal—a



property that allows to concentrate on quantizers with contiguous quantization cells.
Furthermore, it has been recently proved that for disturbances having a log-concave
PDF, the resulting control states are guaranteed to have log-concave PDFs at every
step [14] (this does not hold for general unimodal PDFs [15]) and that therefore apply-
ing the Lloyd–Max algorithm [16, Ch. 6.3] w.r.t. this PDF, at every step, is (greedily)
optimal in for time-triggered control (when the encoder cannot remain silent).

Problem Setup

We now formulate the control–communication setup, considered in this work. We use
a discrete-time model spanning the time interval [1 : T ] , {1, 2, · · · , T} for T ∈ N,
where [i : j] , {i, i+1, . . . , j} for i, j ∈ Z, such that i ≤ j. The plant is a discrete-time
linear scalar stochastic system

Xt+1 = aXt +Wt + Ut, t ∈ [0 : T − 1] , (1)

where Xt,Wt, Ut ∈ R are the system state, disturbance and control action at time t,
respectively. {Wt} {Wt} are independent and identically distributed (i.i.d.) according
to a known log-concave PDF fW (w) with variance σ2

W , and assume, w.l.o.g., that it
has zero mean.

Definition 1 (Log-concave function; see [17]). A function f : R→ R≥0 is said to be
log-concave if log ◦f is concave. We use the extended definition that allows f(x) to
assign zero values: log f(x) ∈ R ∪ {−∞}.
Remark 1. The Gaussian PDF is a log-concave function.

We assume the observer has perfect access to xt at time t. However, in contrast
to traditional control, the observer is not colocated with the controller and may
communicate with it instead via a noiseless channel of data rate R. We shall consider
two settings.

Time-triggered control. Here, the encoder always sends a packet of rate R. That is,
at each t, the observer, which also takes the role of the encoder Et, can perfectly convey
a message (or “index”) of R bits, `t ∈

[
0 : 2R − 1

]
, of the past states, to the controller:

`t = Et(X t), (2)

where we denote at , (a1, a2, . . . , at) and use the convention that at = ∅ for t ≤ 0.
We further set `0 = `T = 0.

The controller at time t, which also takes the role of the decoder Dt, recovers the
observed codeword `t and uses it to generate the control action

Ut = Dt

(
`t
)
.

Event-triggered control. The encoder may avoid sending a packet to reduce the
average transmission rate. We shall view this event as an extra possible index value.

Our goal is to minimize the following average-stage linear quadratic (LQ) cost
upon reaching the time horizon T ∈ N:

J̄T ,
1

T
E

[
qTX

2
T +
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qtX
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2
t
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where {qt} and {rt} are non-negative weights, and {Jt} are the instantaneous costs

Jt , E
[
qtX

2
t + rtU

2
t

]
, t ∈ [1 : T − 1] , (3a)

JT , E
[
qTX

2
T

]
. (3b)

Optimal Greedy Control

In this section we consider the time-triggered setting. We first recall the Lloyd–Max
algorithm and its optimality guarantees and then use them to construct a greedy
optimal control policy.

Quantizer Design

Definition 2 (Scalar quantizer). A scalar quantizer Q of rate R is described by an
encoder EQ : R→

[
0 : 2R − 1

]
and a decoderDQ :

[
0 : 2R − 1

]
→ c , {c[0], . . . , c[2R−

1]} ⊂ R. We define the quantization operation Q : R → c as the composition of
the encoding and decoding operations: Q = DQ ◦ EQ.1 The reproduction points
{c[0], . . . , c[2R−1]} are assumed to be ordered, w.l.o.g.:2 c[0] < c[1] < · · · < c[2R−1].
We denote by I[`] the collection of all points that are mapped to index `:

I[`] , {x|x ∈ R, EQ = `} = {x|x ∈ R,Q = c[`]}.

We shall concentrate on the class of regular quantizers .

Definition 3 (Regular quantizer). A scalar quantizer is regular if every cell I[`], ` ∈[
0 : 2R − 1

]
, is a contiguous interval that contains its reproduction point c[`]:

c[`] ∈ I[`] = [p[`], p[`+ 1]) , ` ∈
[
0 : 2R − 1

]
,

where p ,
{
p[0], . . . , p[2R]

}
is the set of partition levels—the boundaries of the cells.

Hence, a regular scalar quantizer can be represented by the input partition-level set
p and the reproduction-point set c ,

{
c[0], . . . , c[2R − 1]

}
. We further take p[0] and

p[2R] to be the left-most and right-most values of the support of the source’s PDF.

The cost we wish to minimize is the mean squared error distortion between the
source W with a given PDF fW and its quantization Q(W ):

D , E
[
{W −Q(W )}2

]
=

2R−1∑
`=0

∫ p[`+1]

p[`]

(w − c[`])2 fW (w)dw. (4)

Denote by D∗ the minimal achievable D; the optimal quantizer achieves D∗.

Remark 2. We shall concentrate on log-concave PDFs fW , which are therefore con-
tinuous [17]. Hence, the inclusion or exclusion of the boundary points in each cell
does not affect the distortion of the quantizer, meaning that the boundary points can
be broken systematically.(semi-i)nfinite support, then the leftmost and/or rightmost
intervals of the quantizer are open (p[0] and/or p[2R] may take infinite values).

1The encoder and decoder that give rise to the same parameter are unique up to a permutation
of the labeling of the index `.

2If some inequalities are not strict, then the quantizer can be reduced to a lower-rate quantizer.



The optimal quantizer satisfies the following necessary conditions [16, Ch. 6.2].

Proposition 1 (Centroid condition). For a fixed partition-level set p (fixed encoder),
the reproduction-point set c (decoder) that minimizes the distortion D (4) is

c[`] = E
[
w
∣∣ p[`] < w ≤ p[`+ 1]

]
, ` ∈

[
0 : 2R − 1

]
. (5)

Proposition 2 (Nearest neighbor condition). For a fixed reproduction-point set c (fixed
decoder), the partition-level set p (encoder) that minimize the distortion D (4) is

p[`] =
c[`− 1] + c[`]

2
, ` ∈

[
1 : 2R − 1

]
, (6)

where the leftmost/rightmost boundary points p[0]/p[2R] are equal to the smallest/largest
values of the support of fW .

The optimal quantizer must simultaneously satisfy both (5) and (6); iterating
between these two necessary conditions gives rise to the Lloyd–Max algorithm.

Algorithm 1 (Lloyd–Max quantization).
Initial step. Pick an initial partition-level set p.
Iterative step. Repeat the two steps

1. Fix p and set c as in (5),

2. Fix c and set p as in (6),

interchangeably, until the decrease in the distortion D per iteration goes below a
desired accuracy threshold.

Props. 1 and 2 suggest that the distortion at every iteration decreases; since the
distortion is bounded from below by zero, the Lloyd–Max algorithm is guaranteed to
converge to a local optimum.

Unfortunately, multiple local optima may exist in general, rendering the algorithm
sensitive to the initial choice p.

Nonetheless, sufficient conditions for the existence of a unique global optimum
were established in [18–20]. These guarantee that the algorithm converges to the
global optimum for any initial choice of p. An important class of PDFs that satisfy
these conditions is that of log-concave PDFs.

Theorem 1 ([18–20]). Let the PDF fW be log-concave. Then, Alg. 1 converges to a
unique solution that minimizes the mean squared error distortion (4).

Controller Design

We now describe the optimal greedy control policy. To that end, we make use of
the following lemma that extends the control–estimation separation principle to net-
worked control.



Lemma 1 ([21], [22]). The optimal controller is Ut = −ktX̂t, where X̂t , E [Xt|`t]
is the MMSE estimate of Xt, and Kt is the optimal LQR control gain, given by [23]:

kt =
st+1

st+1 + rt
a, st = qt +

st+1rt
st+1 + rt

a2,

with sT = qT and sT+1 = kT = 0. Moreover, this controller achieves a cost of

J̄T =
1

T

T∑
t=1

(
stσ

2
Wt

+ gtE
[
(Xt − X̂t)

2
] )
,

with gt = st+1a
2 − st + qt.

Remark 3. Lem. 1 holds true for any memoryless channel, with X̂t = E [Xt|`t], where
`t is the channel output at time t.

The optimal greedy algorithm minimizes the estimation distortion E
[
(Xt − X̂t)

2
]

at time t, without regard to its effect on future distortions. To that end, at time t,
the encoder and the decoder calculate the PDF of xt conditioned on `t−1, fXt|`t−1 via
sequential Bayesian filtering [24], and apply the Lloyd–Max quantizer to this PDF.
We refer to fXt|`t−1 and to fXt|`t as the prior and posterior PDFs, respectively.

Algorithm 2 (Optimal greedy control).

Initialization. Both the encoder and the decoder set

1. {st, kt|t ∈ [1 : T ]} as in Lem. 1, for the given T , {qt}, {rt} and a.

2. `0 = X0 = U0 = 0.

3. The prior PDF: fX1|`0(x1|0) ≡ fW (x1).

Observer/Encoder. At time t ∈ [1 : T − 1]:

1. Observes the current state xt.

2. Runs the Lloyd–Max algorithm (Alg. 1) with respect to the prior PDF fXt|`t−1 to
obtain the quantizer Qt(xt) of rate R; denote its partition and reproduction sets by
pt and ct, respectively, and the cell corresponding to pt[l]—by It[l].

3. Quantizes the system state xt [recall Def. 2]: lt = EQt(xt) =: Et(xt), x̂t = Qt(xt) =
DQt(lt), where Et(xt) is the overall action of the observer/encoder at time t (2).

4. Transmits the quantization index lt.

5. Calculates the posterior PDF fXt|`t(xt|lt):3

fXt|`t(xt|lt) =

{
fXt|`t−1(xt|lt−1)/γ, xt ∈ It[lt]
0 otherwise

; γ ,
∫ pt[lt+1]

pt[lt]

fXt|`t−1(α|lt−1)dα.

3We use here the regularity assumption.



6. Determines the next prior PDF using (1), ut = −ktx̂t:

fXt+1|`t
(
xt+1|lt

)
=

1

|a|
fXt|`t

(
xt+1 − ut

a

∣∣∣∣lt) ∗ fW (xt+1) ,

where ‘∗’ denotes the convolution operation, and the two convolved terms correspond
to the PDFs of the quantization error a(Xt − X̂t) and the disturbance Wt.

Controller/Decoder. At time t ∈ [1 : T − 1]:

1. Runs the Lloyd–Max algorithm (Alg. 1) w.r.t. the prior PDF fXt|`t−1 as in Step 2 of
the observer/encoder protocol.

2. Receives the index lt.

3. Reconstructs the quantized value: x̂t = DQt(lt).

4. Generates the control actuation ut = −ktx̂t := Dt(x̂
t).

5. Calculates fXt|`t and fXt+1|`t as in Steps 5 and 6 of the observer/encoder protocol.

Theorem 2. Let fW be log-concave. Then, Alg. 2 is the optimal greedy control policy.

This theorem was proved in [14], using Thm. 1 and the following result.

Assertion 1 ([14]). The prior PDFs {fXt|`t : t ∈ [1 : T ]} are log-concave if regular
quantizers are used at every time step.

Event-triggered Control

In this section, we adopt the greedy algorithm to the event-triggered control setting.
We concentrate on the cases of packets of zero (empty packets) and single bit rates,

as in these regimes the advantage of the algorithm is most pronounced and the expo-
sition of the algorithm is the simplest; extension to higher rates is straightforward.

The two [one] cells corresponding to the single-bit [empty] packet along with the
silence symbol form a three-level [two-level] algorithm. We add a constraint δ on
the minimal probability of the silent symbol; clearly, the average transmission rate is
equal to R̄ , E [R] ≡ 1 − δ for R = 1. To optimize performance, the silence symbol
needs to be assigned to the cell with the maximal probability:

max
`

∫ p[`+1]

p[`]

fW (w)dw ≥ δ, (7)

where ` ∈ {0, 1, 2} [` ∈ {0, 1}]. The cell-index ` that achieves the maximum in (7)
corresponds to the silent cell ; we denote this index by `∗.

Hence, the standard Lloyd–Max quantizer of Alg. 1 in each time step should be
replaced by the following algorithm, which first checks whether standard three-level
[two-level] Lloyd–Max quantization satisfies the constraint (7) and, if not, runs the
algorithm with the constraint (7) imposed on a different cell each time, and chooses
the one that achieves minimal average distortion. With the constraint imposed on



a particular cell, the algorithm iterates between two steps: choosing the optimum c
for a fixed p and choosing the optimum p for a fixed c. The first step is the same as
the standard Lloyd-Max quantizer. For the second step, the Karush–Khun–Tucker
(KKT) conditions are employed [25, Ch. 5]. We start with the simple case of R = 0.

Algorithm 3 (Minimal cell-probability constrained quantization for R = 0). Apply
Alg. 1. If the constraint (7) is satisfied for the resulting quantizer, use this quantiza-
tion law. Else increase move the (only) boundary to increase the probability of the
larger-probability cell until it satisfies (7).

Algorithm 4 (Minimal cell-probability constrained quantization for R = 1). Uncon-
strained algorithm. Apply Alg. 1. If the constraint (7) is satisfied for the resulting
quantizer, use this quantization law. Else, set p[0] and p[3] to the smallest and largest
values of the support of fW , and run the following.

0) `∗ = 0.

(a) Set p[1] such that
∫ p[1]

p[0]
fW (w)dw = δ.

(b) Compute c[0] as in (5).

(c) Run Alg. 1 for the remaining two cells (with p[0], p[1], c[0] remain fixed), to
determine p[2] and c[2].

(d) Denote the resulting overall quantizer and distortion byQ0 and D0, respectively.

1. `∗ = 1.
Initial step. Pick an initial partition-level set p.
Iterative step. Repeat the following steps

(a) Fix p and set c as in (5),

(b) Fix c and set p as in (6),

(c) If p does not satisfy the constraint (7), set p, in accordance with the KKT
conditions, as the solution of

δ =

∫ p[2]

p[1]

fW (w)dw (8a)

p[2] =
c[0]− c[1]

c[2]− c[1]
p[1] +

c[2]2 − c[0]2

2(c[2]− c[1])
(8b)

(d) If no solution to (8) exists, replace (8b) with the choice that gives the smaller
distortion out of p[1] = p[0] and p[2] = p[3],

until the decrease in the distortion D per iteration is below a desired accuracy thresh-
old. Denote the resulting quantizer and distortion by Q1 and D1, respectively.

2. `∗ = 2.



(a) Set p[2] such that
∫ p[3]

p[2]
fW (w)dw = δ.

(b) Compute c[2] as in (5).

(c) Run Alg. 1 for the remaining two cells (with p[2], p[3], c[2] remain fixed), to
determine p[1] and c[1].

(d) Denote the resulting overall quantizer and distortion byQ2 and D2, respectively.

3. Set the quantizer to Qi, where i∗ = arg mini=0,1,2Di.

Replacing the Lloyd–Max quantizer of Alg. 1 with the constrained variant of Algs.
3 or 4 gives rise to the following event-triggered variant of Alg. 2.

Algorithm 5 (Greedy event-triggered control).
Initialization. Both the encoder and the decoder

1. Run steps 1–3 of the initialization of Alg. 2.

2. Set δ = 1− R̄.4

Observer/Encoder. At time t ∈ [1 : T − 1]:

1. Observes xt.

2. Runs Alg. 4 with respect to the prior PDF fXt|`t−1 and the maximal probability
constraint δ to obtain the quantizer Qt; denote its partition and reproduction sets by
pt and ct, respectively, the index of the silent cell—by `∗t , and the cell corresponding
to pt[`]—by It[`].

3. Quantizes the system state xt as in Step 3 of the observer/encoder protocol of Alg. 2.

4. If lt 6= l∗t , transmits the index lt; otherwise, remains silent.

5. Calculates the posterior PDF fXt|`t and the next prior PDF fXt+1|`t as in Steps 5 and
6 of the observer/encoder protocol of Alg. 2, respectively.

Controller/Decoder. At time t ∈ [1 : T − 1]:

1. Runs Alg. 4 [Alg. 3] w.r.t. the prior PDF fXt|`t−1 as in Step 2 of the observer/encoder
protocol.

2. Receives the index lt: in case of silence, recovers lt = l∗t .

3. Reconstructs the quantized value: x̂t = DQt(lt).

4. Generates the control actuation ut = −ktx̂t.
5. Calculates the posterior PDF fXt|`t and the next prior PDF fXt+1|`t as in Steps 5 and

6 of the observer/encoder protocol of Alg. 2, respectively.

4Recall that we assume R̄ ∈ (0, 1].



(a) R = 1 (b) R = 0

Figure 1: Average-stage LQ cost J̄ versus time t for a = 1.5, qt ≡ 1, rt ≡ 0 and an i.i.d.
standard Gaussian disturbance sequence in (1), under event-triggered control with different
(minimal) silence probabilities δ, for R = 0 and R = 1.

Numerical Calculations

We compare in Fig. 1 the performance of Alg. 2 of rate R = 1 with the event-triggered
algorithm (Algs. 3 and 4) for various transmission rates R̄, for the LQG setup with
a = 1.5, qt ≡ 1, rt ≡ 0, and i.i.d. standard Gaussian disturbance (σ2

W = 1).
Note that for δ ≤ 0.5 in Fig. 1b and rate R̄ = 1 in Fig. 1a correspond to two- and

three-level 2, respectively, since the constraint 7 is trivially satisfied in these cases.

Future Work

(Unconstrained) Lloyd–Max quantization (Alg. 1) is guaranteed to converge to the
global optimum for log-concave PDFs. It would be interesting to prove a similar result
for its constrained variant—Alg. 4. We verified this numerically for Gaussian, expo-
nential and Laplace PDFs and conjecture that it holds true for all log-concave PDFs.
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[4] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Stabilization and Op-
timization Under Information Constraints. Boston: Birkhäuser, 2013.
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