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Abstract— We consider a discrete-time linear quadratic
Gaussian networked control setting where the (full information)
observer and controller are separated by a fixed-rate noiseless
channel. The minimal rate required to stabilize such a system
has been well studied. However, for a given fixed rate, how
to quantize the states so as to optimize performance is an
open question of great theoretical and practical significance.
We concentrate on minimizing the control cost for first-order
scalar systems. To that end, we use the Lloyd–Max algorithm
and leverage properties of logarithmically-concave functions to
construct the optimal quantizer that greedily minimizes the
cost at every time instant. By connecting the globally optimal
scheme to the problem of scalar successive refinement, we argue
that its gain over the proposed greedy algorithm is negligible.
This is significant since the globally optimal scheme is often
computationally intractable. All the results are proven for the
more general case of disturbances with logarithmically-concave
distributions.

I. INTRODUCTION

The demand for new and improved control techniques
over unreliable communication links is constantly growing,
due to the rise of emerging opportunities in the Internet of
Things realm, as well as due to new surprising applications
in Biology and Neuroscience. One of the most widely
studied such networked control setups is that of control over
discretized packeted communication channels [1]–[5]. This
setup can be further divided into two regimes: fixed-rate
feedback — where exactly r bits can be noiselessly conveyed
from the observer/encoder to the controller/decoder [6], [7],
and variable-rate feedback — where r bits are available on
average and the observer/encoder can decide how many bits
to allocate at each time instant [8].

Although much effort has been put into determining the
conditions for the stabilizability of such systems, less so
has been done for determining the optimal attainable control
costs — which are of great importance in practice — with
several notable exceptions [9]–[11].

In this work, we construct algorithms for the fixed-rate
feedback setting.

However, in contrast to the works of Minero et al. [12] and
Yüksel [7], which concentrated on the conditions for system
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stabilizability, using adaptive uniform and logarithmic quan-
tizers,1 respectively, we attempt to optimize the control cost.

To that end, we concentrate on the class of disturbances
that have logarithmically-concave (log-concave) probability
density functions (PDFs) (the Gaussian PDF being an impor-
tant special case), for which the Lloyd–Max algorithm [13,
Ch. 6] is known to converge to the optimal quantizer [14]–
[16]. Using Lloyd–Max quantization at every step, proposed
previously by Nakahira [17] (albeit without any optimality
claims), and proving that the resulting system state — which
is composed of the scaled sums of quantization errors of the
previous steps and the new disturbances — continues to have
a log-concave PDF, leads to an optimal greedy algorithm.

To tackle the more challenging task of designing a globally
optimal quantizer, we recast the problem as that of designing
an optimal quantizer for the problem of sequential coding of
correlated sources [18] (see also [19] and references therein).

An extreme case of this problem is provided by that of
linear quadratic regulator (LQR) control, where the only
disturbance is the initial state with log-concave PDF. This
problem is equivalent, in turn, to that of successive re-
finement [20], which can be regarded as a special case of
sequential coding of correlated sources. Surprisingly, for
the latter, a computationally plausible variant of the Lloyd–
Max algorithm exists [21] that is known to achieve globally
optimal performance for log-concave functions [22].

Although greedy optimization is known to be subopti-
mal [23], simulations for the LQR case show that the gain of
the globally optimal algorithm over the optimal greedy one
is modest even at low rates (for which the gain is expected to
be the largest). This, in turn, suggests that the optimal greedy
algorithm will remain close in performance to the optimum
for the more general case where the state is driven by i.i.d.
log-concave disturbances, which includes linear quadratic
Gaussian (LQG) control.

We conclude the paper by noting that in the limit of
high rate, Bennett’s approximated quantization law [13,
Ch. 6.3] provides the (approximate) optimal quantizer, which
is successively refinable, suggesting, in turn, that the optimal
greedy algorithm is near optimal in this limit.

II. PROBLEM SETUP

We now formulate the control–communication setup, con-
sidered in this work. We use a discrete-time model spanning
the time interval [T ] , {1, 2, · · · , T}. The plant is a discrete-
time linear scalar stochastic system

1It is impossible to stabilize an unstable system using fixed-rate static
quantization if the distributions of the disturbances or the initial state have
unbounded supports [4, Sec. III-A].



xt+1 = Axt + wt + ut, t+ 1 ∈ [T ], (1)

where xt, wt, ut ∈ R are the system state, disturbance and
control action at time t, respectively. We consider two setups
for the disturbance sequence {wt}:
• Independent and identically distributed (i.i.d.): {wt}

are i.i.d. according to a known log-concave PDF fw(w).
• LQR: w0 is distributed according to a known log-

concave PDF fw(w); wt = 0 for all t > 0.
We further denote the variance of fw by W and assume,
w.l.o.g., that it has zero mean.
Definition 1 (Log-concave function; see [24]). A function
f : R→ R≥0 is said to be log-concave if log ◦f is concave:

log f
(
λx+ (1− λ)y

)
≥ λ log f(x) + (1− λ) log f(y),

for all λ ∈ [0, 1] and x, y ∈ R; we use the extended definition
that allows f(x) to assign zero values: log f(x) ∈ R∪{−∞}.
Remark 1. The Gaussian PDF is a log-concave function.

We assume the observer has perfect access to xt at time t.
However, in contrast to classical control settings, it is not co-
located with the controller and communicates with it instead
via a noiseless channel of data rate r. That is, at each time t,
the observer, which also takes the role of the encoder Et,
can perfectly convey a message (or “index”) of r bits, `t ∈
{0, . . . , 2r − 1}, of the past states, to the controller:

`t = Et(xt),
where we denote at , (a1, a2, . . . , at) and use the conven-
tion that at = ∅ for t ≤ 0. We further set `0 = `T = 0.

The controller at time t, which also takes the role of the
decoder Dt, recovers the observed codeword `t and uses it
to generate the control action

ut = Dt
(
`t
)
.

Our goal is to minimize the following average-stage linear
quadratic (LQ) cost upon reaching the time horizon T ∈ N:

J̄T ,
1

T
E

[
QTx

2
T +

T−1∑
t=1

(
Qtx

2
t +Rtu

2
t

)]
=

1

T

T∑
t=1

Jt , (2)

where {Jt} are the instantaneous costs

JT , E
[
QTx

2
T

]
; Jt , E

[
Qtx

2
t +Rtu

2
t

]
, t ∈ [T − 1]. (3)

The weights {Qt} and {Rt} penalize the state deviation and
actuation effort, respectively.

III. GREEDY OPTIMAL CONTROL

In this section we consider the i.i.d. disturbance setting.
We recall the Lloyd–Max algorithm and its optimality guar-
antees in Sec. III-A, which are subsequently used in Sec. III-
B to constructed a greedy optimal control policy.

A. Quantizer Design
Definition 2 (Scalar quantizer). A scalar quantizer Q of rate
r is described by an encoder EQ : R → {0, . . . , 2r − 1}
and a decoder DQ : {0, . . . , 2r − 1} → {c[0], . . . , c[2r −
1]} ⊂ R. We define the quantization operation Q : R →
{c[0], . . . , c[2r− 1]} as the composition of the encoding and

decoding operations: Q = DQ◦EQ.2 The reproduction points
c , {c[0], . . . , c[2r−1]} are assumed to be ordered, w.l.o.g.:3

c[0] < c[1] < · · · < c[2r − 1].

We denote by I[`] the collection of all points that are mapped
to index ` (equivalently to the reproduction point c[`]):

I[`] , {x|x ∈ R, EQ = `} = {x|x ∈ R,Q = c[`]}.

We shall concentrate on the class of regular quantizers.

Definition 3 (Regular quantizer). A scalar quantizer is
regular if every cell I[`] (` = 0, . . . , 2r − 1) is a contiguous
interval that contains its reproduction point c[`]:

c[`] ∈ I[`] = [p[`], p[`+ 1]) , ` = 0, . . . , 2r − 1,

where p , {p[0], . . . , p[2r]} is the set of partition levels —
the cells boundaries. Hence, a regular scalar quantizer can
be represented by the input partition-level set p and the
reproduction-point set c , {c[0], . . . , c[2r − 1]}.

Cost: The cost we wish to minimize is the mean squared
error distortion between a source w with a given PDF fw
and its quantization Q(w):

D , E
[
(w −Q(w))2

]
(4a)

=

2r−1∑
`=0

∫ p[`+1]

p[`]

(w − c[`])2fw(w)dw. (4b)

Denote by D∗ the minimal achievable distortion D; the
optimal quantizer is the one that achieves D∗.
Remark 2. We shall concentrate on log-concave PDFs fw,
which are therefore continuous [24]. Hence, the inclusion or
exclusion of the boundary points in each cell does not affect
the distortion of the quantizer meaning that the boundary
points can be broken systematically.
Remark 3. If the input PDF has an infinite/semi-infinite
support, then the leftmost and/or rightmost intervals of the
quantizer are open (p[0] and/or p[2r] take infinite values).

The optimal quantizer satisfies the following necessary
conditions [13, Ch. 6.2].

Proposition 1 (Centroid condition). For a fixed partition-
level set p (fixed encoder), the reproduction-point set c
(decoder) that minimizes the distortion D (4) is

c[`] = E
[
w
∣∣ p[`] < w ≤ p[`+ 1]

]
, ` = 0, . . . , 2r − 1. (5)

Proposition 2 (Nearest neighbor condition). For a fixed
reproduction-point set c (fixed decoder), the partition-level
set p (encoder) that minimize the distortion D (4) is

p[`] =
c[`− 1] + c[`]

2
, ` = 1, 2, . . . , 2r − 1, (6)

where the leftmost/rightmost boundary points p[0]/p[2r] are
equal to the smallest/largest values in the support of fw.

2The encoder and decoder that give rise to the same parameter are unique
up to a permutation of the labeling of the index `.

3If some inequalities are not strict, then the quantizer can be reduced to
another quantizer with lower rate.



The optimal quantizer must simultaneously satisfy both
(5) and (6); iterating between these two necessary conditions
gives rise to the Lloyd–Max algorithm.

Algorithm 1 (Lloyd–Max).
Initial step. Pick an initial partition-level set p.
Iterative step. Repeat the two steps

1) Fix p and set c as in (5),
2) Fix c and set p as in (6),

interchangeably, until the decrease in the distortion D per
iteration goes below a desired threshold.

Props. 1 and 2 suggest that the distortion at every iteration
decreases; since the distortion is bounded from below by
zero, the Lloyd–Max algorithm is guaranteed to converge to
a local optimum.

Unfortunately, multiple local optima may exist in general,
rendering the algorithm sensitive to the initial choice p.

Nonetheless, sufficient conditions for the existence of a
unique global optimum were established in [14]–[16]. These
guarantee that the algorithm converges to the global optimum
for any initial choice of p. An important class of PDFs that
satisfy these conditions is that of log-concave PDFs.

Theorem 1 ( [14]–[16]). Let the PDF fw be log-concave.
Then, the Lloyd–Max algorithm converges to a unique solu-
tion that minimizes the mean squared error distortion (4).

B. Controller Design

We now describe the optimal greedy control policy. To that
end, we make use of the following lemma that extends the
control–estimation separation principle to networked control.

Lemma 1 ([25], [9]). The optimal controller is given by

ut = −Ktx̂t, x̂t , E
[
xt
∣∣`t] ,

where Kt is the optimal LQR control gain, given by [26]:4

Kt =
Lt+1

Lt+1 +Rt
A, Lt = Qt +

Lt+1Rt
Lt+1 +Rt

A2, (7)

with LT+1 = 0. Moreover, this controller achieves the cost

J̄T =
1

T

T∑
t=1

(
LtW +GtE

[
(xt − x̂t)2

] )
, (8)

with Gt = Lt+1A
2 − Lt +Qt.

Remark 4. Lem. 1 holds true for any memoryless channel,
with x̂t = E [xt|`t], where `t is the channel output at time t.

The optimal greedy algorithm minimizes the estimation
distortion E

[
(xt − x̂t)2

]
at time t, without regard to its effect

on future distortions. To that end, at time t, the transmitter
and the receiver calculate the the PDF of xt conditioned on
`t−1, fxt|`t−1 , and apply the Lloyd–Max quantizer to this
PDF. We refer to fxt|`t−1 and to fxt|`t as the prior and
posterior PDFs, respectively.

Algorithm 2 (Optimal greedy control).
Initialization. Both the encoder and the decoder set

4We set LT = QT and KT = 0 for RT = 0.

1) {Lt,Kt|t ∈ [T ]} as in Lem. 1, for the given T , {Qt},
{Rt} and A.

2) `0 = x0 = u0 = 0.
3) The prior PDF: fx1|`0(x1|0) ≡ fw0

(x).

Observer/Encoder. At time t ∈ [T ]:
1) Observes xt.
2) Runs the Lloyd–Max algorithm (Alg. 1) with respect to

the prior PDF f(xt|`t−1) to obtain the quantizer Qt(xt)
of rate r; denote its partition and reproduction sets by
pt and ct, respectively.

3) Quantizes the system state xt [recall Def. 2]:

`t = EQt(xt), x̂t = Qt(xt) = DQt(`t).

4) Transmits the quantization index `t.
5) Calculates the posterior PDF f(xt|`t):5

f(xt|`t) =

{
fxt|`t−1(xt|`t−1)/γ, xt ∈ [pt[`t], pt[`t + 1])

0 otherwise

where γ ,
∫ pt[`t+1]

pt[`t]

fxt|`t−1(α|`t−1)dα.

6) Determines the next prior PDF using (1), ut = −Ktx̂t:

fxt+1|`t
(
xt+1|`t

)
=

1

|A|
fxt|`t

(
xt+1 − ut

A

∣∣∣∣`t) ∗ fw (xt+1) ,

where ‘∗’ denotes the convolution operation, and the
two convolved terms correspond to the PDFs of the
quantization error A(xt − x̂t) and the disturbance wt.

Controller/Decoder. At time t ∈ [T ]:
1) Runs the Lloyd–Max algorithm (Alg. 1) w.r.t. the prior

PDF f(xt|`t−1) as in Step 2 of the observer/transmitter
protocol.

2) Receives the index `t.
3) Reconstructs the quantized value: x̂t = DQt

(`t).
4) Generates the control actuation ut = −Ktx̂t.
5) Calculates f(xt|`t) and f(xt+1|`t) as in Steps 5 and 6

of the observer/transmitter protocol.

Theorem 2. Let fw be a log-concave PDF. Then, Alg. 2 is
the optimal greedy control policy.

The following is an immediate consequence of the log-
concavity of the Gaussian PDF.

Corollary 1. Let fw be a Gaussian PDF. Then, Alg. 2 is the
optimal greedy control policy.

Recall that the Lloyd–Max Algorithm converges to the
global minimum for log-concave PDFs. Consequently, in
order to prove the greedy optimality of Alg. 2, we need to
show that all the prior PDFs {f(xt|`t) : t ∈ [T ]} are log-
concave. We provide a formal proof of this result in [27],
which relies on the following log-concavity properties.

5This expression follows from the regularity assumption.



Assertion 1 ([24]). Let f(x) and g(x) be log-concave func-
tions. Then, the following are also log-concave functions:
• Affinity: cf(ax+ b) for any constants a, b, c ∈ R.

• Truncation:

{
f(x) x ∈ I
0 otherwise

, for any interval I ,

possibly (semi-)infinite.

• Convolution: f(x) ∗ g(x).

IV. GLOBALLY OPTIMAL LQR CONTROL

In this section, we study the LQR control setting, namely,
the case where w0 has a log-concave PDF fw and wt = 0
for all t ∈ [T − 1]. Clearly, this is equivalent to the case of
a random initial condition x0 and wt ≡ 0 for all t, and is
therefore referred to as LQR control.

We construct a globally optimal control policy in Sec. IV-
B by connecting the problem to that of scalar successive
refinement [21], [22], which is formulated and reviewed
in Sec. IV-A. The resulting quantizers are commonly referred
to as multi-resolution scalar quantizers (MRSQs).

A. Successive Refinement

A T -step MRSQ successively quantizes a single source
sample w ∈ R with PDF fw using a series of rate r
quantizers QT : At stage t ∈ [T ], r bits are available for
the re-quantization of the source w, and are encoded into
an index ` ∈ {0, . . . , 2r − 1}. `t, along with all previous
indices `t−1, is then used for the construction of a refined
description ŵt = Qt(w).

Definition 4 (MRSQ). A T -step MRSQ of rate r is described
by a series of T encoders (EQ1

, . . . , EQT
) and a series of T

decoders (DQ1
, . . . ,DQT

), with EQt
: R→ {0, . . . , 2r − 1}

and DQt
: {0, . . . , 2r−1}t → {ct[0], . . . , ct[2

tr−1]} serving
as the encoder and decoder at time t, respectively. We define
the quantization operation Qt : R→ {ct[0], . . . , ct[2

tr−1]},
at time t, as the composition of all the encodings until time
t and the decoding at time t: Qt = DQt

◦ (EQ1
, . . . , EQt

).

This definition means that, although the overall effective
rate of the quantizer at time t is tr, only the last r bits,
corresponding to `t, are determined during time step t. At the
decoder, these bits are appended to the previously determined
and received (t − 1)r bits (corresponding to `t−1), for the
construction of a description of w at time t, ŵt = Qt(w).

Definition 5 (Regular MRSQ). A T -step MRSQ is regular if
the quantizer at each step t ∈ [T ] is regular and the partitions
of subsequent stages are nested, as follows. For each time
t ∈ {2, . . . , T}:

pt [` · 2r] = pt−1[`]; ` = 0, . . . , (t− 1)r − 1, (9)

where pt is the partition-level set of the quantizer at time t.

Remark 5. The relation in (9) implies that given pT , the
partitions of all the previous stages can be deduced.
Remark 6. Counterexamples for both discrete and continuous
PDFs have been devised, for which regular MRSQs are
strictly suboptimal [28], [29]. However, none such are known

for the case of log-concave input PDFs. Furthermore, by
using Bennett’s law [13, Ch. 6.3], regular MRSQs have been
proved to be optimal in the limit of high rate [22, Sec. VII].

Our goal here is to design an MRSQ that minimizes the
weighted time-average squared quantization error D̄ of an
input w with a given PDF fw(w) and positive weights {G̃t}:

D̄ =

T∑
t=1

G̃tE
[
{w − ŵt}2

]
. (10)

We next present a Generalized Lloyd–Max Algorithm due
to Brunk and Farvardin [21] for constructing MRSQs, which
is in turn an adaptation of an algorithm for scalar multiple
descriptions by Vaishampayan [30]. Similarly to the standard
Lloyd–Max algorithm (Alg. 1), the generalized variant iter-
ates between structuring the reproduction point sets cT given
the partition pT (recall Rem. 5), and vice versa.

Furthermore, the centroid condition of Prop. 1 remains
unaltered, as it does not have any direct effect on other stages,
and is calculated separately for each stage. The partition of
earlier stages, on the other hand, has a direct effect on the
boundaries of newer stages, due to the nesting property (9).
Consequently, the nearest neighbor condition of Prop. 2 is
replaced by a weighted variant [21], [30].

Proposition 3 (Weighted nearest neighbor). The optimal
partition pT for a given sequence of reproduction-point sets
cT is determined by the weighted nearest neighbor condition:

pT [`] = max
0≤i≤2Tr−1:αi<α`

β` − βi
2(α` − αi)

(11a)

pT [`+ 1] = min
0≤i≤2Tr−1:αi>α`

β` − βi
2(α` − αi)

(11b)

for 0 ≤ ` ≤ 2Tr − 1, where

at[`] ,
⌈
(`+ 1)2(T−t)r

⌉
− 1,

α` ,
T∑
t=1

G̃tct[at[`]], β` ,
T∑
t=1

G̃tc
2
t [at[`]].

Remark 7. α` and β` can be viewed as weighted centroid and
squared centroid, respectively. In these terms, the partition
points in (11a) and (11b) reduce to the midpoints of adjacent
centroids of the standard Lloyd–Max algorithm (6).

Similarly to the optimal one-stage quantizer of Sec. III-A,
the optimal MRSQ has to satisfy both the centroid condition
of Prop. 1 and the weighted nearest neighbor condition of
Prop. 3, simultaneously. Iterating between these conditions
gives rise to the Generalized Lloyd–Max algorithm.

Algorithm 3 (Generalized Lloyd–Max).
Initial step. Pick an initial partition pT .
Iterative step. Repeat the two steps

1) Fix pT and evaluate cT as in (5),
2) Fix cT and evaluate pT as in (11),

interchangeably, until the decrease in the weighted distortion
D̄ is below a desired accuracy threshold.

As in the standard Lloyd–Max algorithm, Alg. 3 may
converge to different local minima for different initializations



pT . And similarly, sufficient conditions can be derived for
the existence of a unique local — and thus also global —
minimum [22]. Log-concave PDFs satisfy these conditions,
suggesting that Alg. 3 is globally optimal for such PDFs.

Theorem 3 ([22]). Let the PDF f(w) be log-concave and
{G̃t} a positive weight sequence. Then, Alg. 3 converges to
a unique solution that minimizes the weighted mean square
error distortion (10) with weights {G̃t}.

B. Controller Design
The following is the counterpart of Lem. 1 for LQR

control, the proof of which can be found in [25], [9].

Lemma 2. Consider the LQR setting: w0 has a PDF fw,
and wt ≡ 0 for t ∈ [T − 1]. Then, the optimal controller
for the robust control problem (2) is the same as in Lem. 1

with (8) replaced by JT = L1W +
T∑
t=1

GtE
[
(xt − x̂t)2

]
.

In order to construct a globally optimal control policy, we
need to find a quantizer that minimizes

T∑
t=0

GtE
[
(xt − x̂t)2

]
. (12)

The following simple result connects this problem with that
of designing an MRSQ that minimizes (10).

Lemma 3. Let ŵt be the estimate of the source sample w0 at
time t ∈ {1, . . . , T}, produced by the MRSQ that minimizes
(10) with weights

G̃t = A2(t−1)Gt . (13)
Then, the quantizer x̂t that minimizes (12) is given by

x̂t = Ax̂t−1 + ut−1 +At−1 (ŵt − ŵt−1) , (14)

with ut = −Ktx̂t and Kt given in (7).

We are now ready to present the globally optimal control
policy for the LQR problem.

Algorithm 4 (Globally optimal LQR control).
Initialization. Both the encoder and the decoder:

1) Construct {Lt,Kt, Gt|t ∈ [T ]} as in Lem. 1 for the
given T , {Qt}, {Rt} and A.

2) Set G̃t = A2(t−1)Gt as in (13).
3) Construct the T -step MRSQ sequence (Q1, . . . ,QT )

using Alg. 3 for the source w0 and weights G̃t.
Observer/Encoder. Observes w0. At time t ∈ [T ]:

1) Generates the quantizer index: `t = EQt (w0).
2) Transmits `t.

Controller/Decoder. At each time t ∈ [T ]:
1) Receives `t.
2) Generates the description: ŵt = DQt

(`t) = Qt(w0).
3) Generates x̂t as in (14).
4) Generates the control actuation ut = −Ktx̂t.

Combining Lemmata 2 and 3, and Thm. 3 leads to the
global optimality of Algorithm 4.

Theorem 4. Let fw be a log-concave PDF. Then, Alg. 4
achieves the minimum possible average-stage LQ cost (2).

Fig. 1. Instantaneous costs Jt of the fixed-rate optimal greedy algorithm,
variable-rate upper bound JUB

t and JLB
t , as a function of the time t for

A = 1.2, W = 1, r = 1, Qt ≡ 1, Rt ≡ 0. The ’x’ marks correspond to
instantaneous costs Jt for 2tr contiguous intervals at time t for the fixed-
rate setting, where the gray-scale intensity of the ‘x’ marks for each interval
indicates the relative magnitude of probability of falling into that interval
at time t.

V. NUMERICAL CALCULATIONS

A. Greedy LQG Control

We now evaluate the instantaneous costs (3) of Alg. 2
for a standard Gaussian i.i.d. disturbance sequence {wt},
Qt ≡ 1, Rt ≡ 0, and A = 1.2. These costs are depicted
in Fig. 1 along with E

[
(x̂t − xt)2|`t

]
for all admissible `t

sequences. We compare them to the following upper and
lower bounds, also depicted in Fig. 1, which are valid for the
less restrictive case of variable-rate feedback [13, Ch. 9.9],
where the expected rate at time t is limited by r.

Proposition 4 ([10], [11], [19], [31]). Consider the setting
of an variable rate subject to an expected-rate constraint
r, i.i.d. Gaussian disturbances of variance W , Qt ≡ 1 and
Rt ≡ 0. Then, the instantaneous cost Jt is bounded as JLB

t ≤
Jt ≤ JUB

t , with JUB
0 = JLB

0 = 0 and

JLB
t+1 = A2JLB

t 2−2r +W,

JUB
t+1 =

2πe
12

A2JUB
t 2−2r +W.

B. LQR Control

We now compare the performance of the optimal greedy
and globally optimal algorithms for LQR control with A =
1.5, Qt ≡ 1, Rt ≡ 0, standard Gaussian disturbance w0,
wt = 0 for t ≥ 1, and time horizon T = 9. The accumulated
costs (2) for t = 1, · · · , 9 are tabulated in Table I.

VI. DISCUSSION

As is seen in Sec. V-B, even in the extreme case of
low-rate r = 1, the improvement of the globally optimal
algorithm is negligible compared to the achievable results
using the optimal greedy algorithm (fractions of a percent) —
a fact previously noticed in [23]. For high rates, the gap is
even smaller, as Bennett’s law [13, Ch 6.3] suggests that
scalar quantizers become successively refinable in this limit.



t Greedy Optimal
1 1.0000 1.0000
2 1.8176 1.8177
3 2.4125 2.4126
4 2.8099 2.8064
5 3.0614 3.0514
6 3.2156 3.2001
7 3.3079 3.2877
8 3.3624 3.3381
9 3.3941 3.3688

TABLE I
OPTIMALITY GAP OF THE GREEDY ALGORITHM FOR TIME HORIZON

T = 9 AND A = 1.5.

This seems to extend to the more general case of i.i.d.
disturbances (LQG case included), as adding a noise can
only reduce the gap between the two quantizers, suggesting
that the optimal greedy algorithm is essentially optimal for
all practical purposes.

An interesting avenue would be to explore an even lower-
complexity algorithm. A noteworthy attempt was made by
Yüksel who considered a low-complexity uniform adaptive
quantizer. Unfortunately, such quantizers, being inherently
symmetric, cannot stabilize any unstable system using one-
bit quantization rate, as no zooming in/out is possible this
way. This is in stark contrast to the Lloyd–Max based
algorithms that can become non-symmetric even for a rate
of one bit, via repeated convolution of same size PDF tails;
this is evident from Sec. V.

The algorithms in this work can be extended to the case of
a time-varying rate budget — including the important special
case of transmission over packet-erasure channels [12], [19],
[31] — where exactly rt bits are available at time t. For this
case, the greedy algorithm does not need to know the whole
rate-budget sequence at the start of transmission, whereas
the globally optimal algorithm needs to take into account
the exact nature of the statistics of the rate sequence (which
might not be available), complicating further its derivation
and implementation. Similar ideas seem to extend also to
the case of delayed packet arrivals, and are left for future
research.
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