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Abstract—The problem of multicasting common data to several
users over multiple-input multiple-output (MIMO) Gaussian
channels is studied. A closed-loop setup is considered where
the channel matrices are known to the transmitter and respec-
tive receivers. An incremental-redundancy (rateless) scenario is
considered, where the effective rate is measured by the time
that each user needs to stay online until it is able to decode
the message. A practical transmission scheme for the two-user
case is proposed which, by linear pre- and post-processing
combined with successive decoding and interference cancellation,
transforms the two MIMO channels into a set of parallel channels
with no loss of mutual information, where each user needs to tune
in for a duration of time proportional to its individual capacity.
This scheme is used for designing a practical transmission scheme
for the Gaussian MIMO half-duplex relay channel. We then turn
to the related scenario of transmission to a single user over a
MIMO channel with unknown but constant signal-to-noise ratio
(SNR), for which we develop an optimal low-complexity hybrid
ARQ coding scheme, which is optimal for two SNRs and propose
a scheme for more SNRs, the loss of which vanishes when the
SNRs are high. Finally, we show that even when applied to single-
input single-output (“scalar”) channels, the scheme provides a
practical solution for cases not covered by previous work.

I. INTRODUCTION

Incremental redundancy (IR) (or “rateless”) coding plays

an important role in many communication problems as a

means to efficiently cope with channel uncertainty. The design

of IR coding schemes recently has received renewed strong

interest in the coding community, motivated by a number of

emerging applications in Gaussian networks, e.g., as a means

of facilitating relaying and multicasting.

A remarkable example of such codes for erasure channels

are the Raptor codes of Shokrollahi [1], which build on the LT

codes of Luby [2], [3]. An erasure channel model (for packets)

is most appropriate for rateless coding architectures anchored

at the application layer, where there is little or no access to the

physical layer. Apart from erasure channels, there is a growing

interest in exploiting rateless codes closer to the physical layer,

where AWGN models are more natural; see, e.g., [4] and the

references therein. Accordingly, considerable work has been

done on designing good (capacity-approaching) IR codes for

the (scalar) AWGN channel, see e.g., [4]–[9]. Incorporating

multiple antennas at both the transmitter and the receiver, may

allow great improvement over their single-antenna counter-

parts. Thus, rateless transmission over multiple-input multiple-

output (MIMO) channels looks appealing and has received

recent attention, see, e.g., [10]–[12].

In this work we consider the case of multicasting the

same message to several users over different Gaussian MIMO

channels (“broadcast channel”) sharing the same input, where

we assume perfect knowledge of all channel matrices (“closed

loop”) at all transmission ends. We focus on the case of two

users, for which we derive a transmission scheme that by linear

pre- and post- processing transforms the problem into a set of

virtual parallel AWGN channels, over which standard (fixed-

rate) codes designed for the scalar AWGN channel may be

used.

In “classical” multicasting, one wishes to optimize the

input probability distribution such that the minimal mutual

information (MI) (corresponding to the worst channel w.r.t.

this input) is maximized. This way, one guarantees this same

transmission rate to all the users, whereas users which have

higher MI do not exploit their excess rates, and wait until the

end of the transmission block before recovering the message.

In some scenarios, however, this excess MI can be utilized to

shorten the transmission period required by the stronger users

to recover reliably the message, by designing an appropriate

rateless scheme. This is useful in different relaying scenarios;

see, e.g., [13]–[15] and references therein.

From an information-theoretic prospective, constructing

such a scheme is possible [16]. From a coding perspective,

however, such a scheme requires the design of special codes,

as well as joint encoding and decoding of all antennas signals,

which is computationally demanding.

An interesting special case of the aforementioned problem

is that of a single user transmitting over a known channel but

unknown signal-to-noise ratio (SNR), both remaining constant

(“slow fading”) throughout the whole transmission.

In this work we derive an optimal, yet low-complexity,

rateless scheme for transmitting a common message to two

users over MIMO channels. The approach builds on a recent

work [17] which presents a coding scheme for equal-rate

transmission of a common message to two users. We extend

the latter scheme by combining space and time dimensions

to obtain effective higher-dimensional MIMO channels for

the augmented inputs and outputs, and demonstrate that this

scheme becomes useful even when designing rateless codes

for single-input single output (SISO) channels.

This approach is then applied for the Gaussian MIMO relay

channel (depicted in Figure 1), when working in “half-duplex”

mode. In the “half-duplex” mode, the relay cannot receive and

transmit at the same time, and is restricted to performing only
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Fig. 1. Gaussian MIMO relay channel.

one of these tasks at each time instance.

Mitran et al. [13] proposed a practical scheme for this sce-

nario, which employs rateless coding: Transmission is divided

into two phases, where during the first (“listening”) phase, the

transmitter multicasts to the relay and the receiver, at the end of

which the relay is able to recover the message conveyed by the

transmitter; during the second (“collaboration”) phase, both the

relay and the transmitter transmit coherently, until the receiver

is able to decode the message as well.1 In [13], knowledge of

the channel matrices at the respective receivers (destination

nodes) only was assumed, and not at the transmitters (orig-

inating nodes). Thus, restricting attention to white channel

inputs only was sufficient. Note that such a scheme requires

the use of codes for channels with varying SNR, which are

not easy to construct and require a “bit-loading” mechanism

which impairs designing a practical scheme that approaches

the optimum performance of this setting. Since in our problem

we assume perfect knowledge of all channel statistics every-

where, this allows to further improve this scheme in terms

of achievable rates as well as approaching it using linear

transformations, successive interference cancellation (SIC) and

fixed-rate scalar Gaussian channel codes.

In the current work we show how this optimum performance

can be achieved using linear transformations along with suc-

cessive interference cancellation (SIC) and good scalar fixed-

rate AWGN codes.

We further discuss the problem of transmission over a

known channel with unknown SNR, where the SNR can

take one of several distinct values. For the case of two

possible SNRs (corresponding to two blocklengths), we use the

proposed two-user MIMO rateless scheme, whereas for more

SNRs we show how using the universal channel decomposition

[18], along with scalar rateless codes, allows to approach

optimality up to a loss which vanishes for high SNRs.

In this work we concentrate mainly on the case of two

users. Nonetheless, extensions to more than two users can be

constructed, as explained in [19].

II. THE MIMO BROADCAST RATELESS PROBLEM

We consider a channel model where the received signal of

user i (i = 1, 2) is given by

yi = Hix+ zi , (1)

where yi is a N
(i)
r × 1 vector, x denotes the Nt× 1 complex-

valued input vector limited to an average power P per symbol,

1Note that this scheme assumes a degraded relay channel, namely that
the relay is able to recover the message prior to the receiver; otherwise, the
receiver is able to decode the message before the relay, and this scheme
reduces to that of a “silent” relay throughout the whole transmission process.

Hi is the N
(i)
r × Nt complex channel matrix to user i, and

zi is assumed to be a circularly-symmetric Gaussian vector of

zero mean and identity covariance matrix (We denote matrices

by capital letters. Vectors are denoted by bold letters).

The rate achievable with an Nt × Nr channel matrix H
and input covariance matrix K , E{xxH} is equal to the

Gaussian MI between the input and output vectors:

R(H,K) , log
∣

∣INr
+HKH†

∣

∣ , (2)

where | · | denotes the determinant and INr
is an identity

matrix of dimension Nr. The point-to-point capacity of user

i is given by Ci = R(Hi,Ki), where Ki is the covariance

matrix maximizing (2) for H = Hi.

In a two-user rateless setting, the transmitter needs to send

the same k bits to both receivers. Each user “listens” to the

transmission from time instance 1 until it is able to reliably

decode all bits, then it may tune out. The online time of user

i, ni, is the number of channel uses which it requires, and the

resulting effective rates are given by:

Ri =

⌊

k

ni

⌋

, i = 1, 2 , (3)

where ⌊·⌋ denotes the “floor” operation. The following, due to
Shulman [16]. states the optimal rates.

Proposition 1: The effective rate pair (R1, R2) is achiev-

able under power constraint P if and only if there exists a

covariance matrix K with trace{K} ≤ P such that:

R(Hi,K)

Ri
+ Ci

[

1

Ri
−

1

Rī

]+

≥ 1 , i = 1, 2 ,

where [a]+ , max {a, 0} and

ī =

{

2 i = 1
1 i = 2

.

This result can be understood as follows. Without loss of

generality, assume that R(H1,K) ≥ R(H2,K). For the first

n1 = k/R(H1,K) channel uses, the transmitter uses the

covariance matrix K . After these uses, the first user already

has enough mutual information to decode the message, and

may tune out. Once only the second user is online, the

transmitter switches to the optimal K2. With this,

n2 − n1 =
k − n1R(H2,K)

C2

additional uses are needed until the second user has enough

information as well. We see, then, that the only compromise

is in the choice of covariance matrix for the first period;

given this choice, each receiver is able to use all the mutual

information provided by the channel, as if it were in a point-to-

point scenario. Unfortunately, this information-theoretic result

does not tell us how to achieve these rates using practical

codes; in the sequel, we construct schemes with reduced

complexity which use scalar AWGN codes along with linear

processing and successive interference cancellation (SIC).

Remark 1: We note that the problem simplifies significantly

if we constrain the transmitter to always use a white input. In



this case, the achievable rates, according to Proposition 1, are

those satisfying:

Ri ≤ R

(

Hi,
P

Nt
INt

)

= log

∣

∣

∣

∣

INt
+

P

Nt
HiH

†
i

∣

∣

∣

∣

.

Thus, we conclude that these white-input rates are always

achievable in the rateless setting. In the high-SNR limit (i.e.,

for fixed non-singular channel matrices where P → ∞), these

rates are optimal. For other SNRs, however, such inputs are

not optimal and other covariance matrices in Proposition 1

need to be considered.

III. CODES FOR COMMON-MESSAGE MULTICASTING

In this section we describe the main tool which is used in

this work. We follow [17] where a practical coding scheme

is introduced for a related problem, where data needs to be

multicasted to two users using the same effective rate.

We start with Nt codebooks, each one of them good for a

SISO Gaussian channel of rate Rj to be determined. At each

time instance we form a vector x̃ using one sample from each

codeword. The transmitted vector is given by

x = K1/2V x̃ , (4)

where E
{

x̃
†
x̃

}

= 1 and V is unitary, and hence the power

constraint is satisfied. Receiver i (i = 1, 2) computes2

ỹi = U †
i yi , (5)

and then decodes the Nt codes using SIC, starting from x̃Nt
,

where x̃i denotes the i-th entry of x̃. With respect to the

virtual MIMO channel from x̃ to ỹi, define the successive-

decoding signal-to-interference plus noise ratio (SINR) for the

j-th symbol as:

Si,j = Var
(

x̃j

∣

∣

∣
ỹi, x̃

Nt

j+1

)

. (6)

The following theorem, due to [17], shows that this strategy

is optimal.

Theorem 1: For any two channel matrices H1 and H2,

and input covariance matrix K such that R(H1,K) =
R(H2,K) = R there exist U1, U2 and a unitary V such that

the SINRs Si,j (6) satisfy:

S1,j = S2,j ∀j = 1, . . . , Nt

Nt
∑

j=1

log(1 + S1,j) = R .

By the first equation, codebooks of rate Rj = log(1+S1,j)
can be decoded by both receivers; by the second equation, the

sum of these rates equals the optimum.

Remark 2: Using an input covariance matrix K over the

channels described by the channel matrices H1 and H2, is

mathematically equivalent to working with a unit covariance

matrix INt
over equivalent channel matrices F1 , H1K

1/2

and F2 , H2K
1/2, respectively.

2Ui (i = 1, 2) are not necessarily unitary.

IV. TWO-USER RATELESS MIMO SCHEME

Let us first restrict attention to integer ratios between the

effective rates, i.e., assume that for the covariance matrix K
used, there exists an integer m ≥ 2, such that

n2 = m · n1 . (7)

We can look at the n2 channel uses as n1 uses of the equivalent

channels, represented by the block-diagonal matrices:

H1 =











H1 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0











, H2 =











H2 0 · · · 0
0 H2 · · · 0
...

...
. . .

...

0 0 · · · H2











,

where Hi is of dimensions mN
(i)
r ×mNt (i = 1, 2).

Note that if for the equivalent (“augmented”) channel input,

denoted by χ, we take a covariance matrix

K =











K 0 · · · 0
0 K2 · · · 0
...

...
. . .

...

0 0 · · · K2











,

then using (7) and (3), the effective rates of these equivalent

channels are equal (see (3), i.e.,

R , R (H1,K) = R (H2,K) . (8)

Consequently, we can apply the multicast scheme of The-

orem 1 to the augmented matrices H1 and H2 and input

covariance matrix K, or alternatively to the equivalent channel

matrices F1 , H1K
1/2 and F2 , H2K

1/2 with unit covari-

ance matrix (see Remark 2), such that, the optimum rates, as

given by Proposition 1, are achieved.

Scheme 1:

1) Construct mNt optimal codes of length n1 for scalar

AWGN channels with SNRs equal to the SINRs in (6)

and at each augmented channel use form a vector χ̃ using

one sample from each codeword.

2) Combine all these codewords by multiplying χ̃ by the

unitary matrix V of (4) of dimensions mNt ×mNt:

χ = K1/2V χ̃ . (9)

3) At the first n1 time instances, transmit a sub-vector

composed of the first Nt entries of the corresponding

vector χ.

4) The first user, after receiving the first n1 output vectors,

multiplies them by Ũ1 of dimensions mNt×N
(1)
r , which

is equal to the first N
(1)
r columns of U1 of (5). 3 Finally,

it decodes the codewords using SIC, resulting in the

performance of (6).

5) The second user, continues to receive the rest of the

(n2 − n1) transmitted vectors. It then interleaves the

received output vectors in the following way: It divides

3The other columns of U1 must be all-zero since the corresponding channel
outputs are noise only, thus the size can be reduced.



all of its n2 received vectors into blocks of length n1,

and takes the first vector of each block to construct the

first equivalent (“augmented”) output vector, then takes

the second output vector of each block, etc. It then mul-

tiplies each such equivalent vector by U2 of dimensions

mNt ×mN
(2)
r , and finally decodes the codewords using

SIC, resulting in the performance of (6).

Remark 3: This scheme can be generalized from integer

ratios to any rational ratio between the effective rates, by

taking an appropriate numbers of (non-zero) blocks on each

of the augmented matrices.

Remark 4: A similar scheme can be constructed for varying

(known) blocks on the diagonal of H2. This becomes useful

for certain cases, e.g., the “half-duplex” relay treated in

Section VI. In the case of different blocks on the diagonal,

however, the covariance blocks in K will vary as well. Yet,

even in this more general case, only fixed-rate scalar AWGN

codebooks need to be employed.

In the special case of the rateless problem where the channel

matrix is equal for all users, up to a multiplicative factor α:

y = αHx+ z , (10)

whereas α is known to the receiver but not to the transmitter.4,

Hybrid ARQ may be used as a means to obtain efficient (rather

than choosing the rate conservatively) transmission. Since the

channel matrix is known up to a constant factor, one might

think that applying the singular-value decomposition (SVD)

to that matrix provides a good solution. However, using the

SVD results in virtual AWGN channels the gains of which are

different in general (being equal to the singular values of H).

In our case, H is multiplied by α, thus multiplying all the

virtual scalar channel gains by the same factor. Unfortunately,

in order to design a perfect rateless scheme for a specific

set of ratios between the block lengths (e.g., m in (7), for

two blocks), a specific set of ratios between the possible

channel gains exists, which depends on the first (possible)

channel gain; see [4]. A better approach would be to transform

the channel into one where all sub-channel gains are equal,

thus solving the difficulty above. Such a transformation is

offered by the geometric mean decomposition (GMD) [20],

which decomposes the matrix using unitary transformations,

to achieve a triangular matrix with a constant diagonal. This

solution still suffers from two drawbacks. First, the GMD

is only optimal in the high-SNR limit. Indeed, a variant

named uniform channel decomposition (UCD) [18] exists,

but it requires knowledge of the SNR and thus cannot be

implemented when the gain α is unknown. Second, it still

requires to implement a SISO rateless scheme over each of the

sub-channels; the design of good rateless codes for the AWGN

channel is still an open problem in general, see Section V in

the sequel. In the case where the gain α is known to be one of

two values (either α1 or α2), we can overcome the difficulties

described above by directly applying Scheme 1. Thus we have

an optimal and practical solution for the two-user case.

4This is equivalent to not knowing the white noise level 1/ |α|2.

V. APPLICATION TO SISO RATELESS CODING

In this section we show that the approach in this work may

be helpful even outside the MIMO setting. Consider the case

of a SISO channel, i.e., the channel matrices in (1) reduce to

a scalar. This always falls under the “unknown SNR” category

(discussed in IV), and without loss of generality we take H =
1 in (10). This problem is closely related to that of rateless

coding for scalar Gaussian channels considered in [4].

In [4], the channel is given by:

y = αx+ z

where α takes one of the values α1, α2, . . ., where

i · log(1 + |αi|
2) = R .

A practical scheme based on linear pre- and post-processing

and SIC was proposed for values α1, . . . , αM , and it was

shown that a perfect solution (i.e. capacity-achieving) exists

for M = 2 for any R, or for M = 3 up to some critical value

of R.

The case M = 2 falls under the category of channels

addressed in Section IV, with the augmented matrices being

H1 =

[

α1 0
0 0

]

, H2 =

[

α2 0
0 α2

]

.

Interestingly, the explicit computation of the matrices

U1, U2, V of that scheme exactly coincide with the matrices

derived in [4]. However, our approach provides a straightfor-

ward extension to other cases, with either two channel uses

or more, as long as the channel materialization is known to

be one of two options. Specifically, let α1,1, . . . , α1,M and

α2,1, . . . , α2,M be the sequences of SNRs according to both

options, such that:

M
∑

i=1

log(1 + α1,i) =

M
∑

i=1

log(1 + α1,i) = R.

Then our scheme achieves exactly the optimum rate R. This

holds also in the specific case where the trailing SNRs of one

of the sequences are zero, and hence applies to the two-option

rateless coding problem.

VI. APPLICATION TO HALF-DUPLEX RELAY

In this section we show how the proposed MIMO rateless

scheme of IV yields a practical scheme for the Gaussian

MIMO relay problem, in the half-duplex mode. This channel,

depicted in Figure 1, is described as follows. The transmitter

sends a signal to both the receiver and the relay. In addition,

the relay transmits a signal to the receiver. The transmitted

signals pass through Gaussian MIMO channels. This channel,

depicted in Figure 1, is described by:

yrel = Ht,relxt + zrel ,

yr = Ht,rxt +Hrel,rxrel + zr ,

where we denote channel output vectors (of lengths M ) by

y, and channel input vectors of lengths N – by x, using

subscripts r, t and rel to indicate ‘receiver’, ‘transmitter’ and



‘relay’, respectively. The channel inputs are subject to the

same power constraint P ;5 we denote the channel matrices

of dimensions M × N by H with two subscripts, where the

first (left) subscript indicates the channel input (“originating

node”), and the second (right) subscript indicates the channel

output (“destination node”).

As explained in the introduction, in the half-duplex mode,

the relay is restricted to transmitting or receiving at each time

instance, but cannot do both. Thus, the transmission is broken

into two phases where in the first the relay “listens”, until it

is able to recover the transmitted message, whereas during the

second phase it collaborates with the transmitter, to achieve

better reception quality.

Denote by K1 the covariance matrix used by the transmitter

during the first transmission phase, lasting n1 time instances,

and by K2 – that of the second phase, which lasts n2 − n1

(the total transmission length is n2).

Since, during the second transmission phase, there are two

distinct encoders generating signals which pass through differ-

ent channels (before being summed), one may attain a greater

“coherence gain” by applying, in addition to the “coloring” by

non-white covariance matrices, a unitary transformation Ṽrel

at the relay. The improvement due to the introduction of an

additional unitary transformation at the relay is apparent in

the scalar (SISO) case: In this case, the gains have different

phases, and by applying a unitary transformation at the relay

(corresponding to multiplying by a phase factor in the scalar

case), the phases of both the encoder and the relay can be

aligned to attain coherent combining.

Assume for simplicity that for the chosen covariance ma-

trices K1, K2 and Krel and unitary matrix Ṽrel, n1 = m · n2.

This can be generalized in a straightforward manner to any

rational ratio, as explained in Remark 3.

Thus, by applying Scheme 1 with the equivalent matrices:

F1 =











Ht,relK
1/2
1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0











,

F2 =




















Ht,rK
1/2
1 0 · · · 0

0
Hrel,rK

1/2
rel Ṽrel

+Ht,rK
1/2
2

· · · 0

...
...

. . .
...

0 0 · · ·
Hrel,rK

1/2
rel Ṽrel

+Ht,rK
1/2
2





















,

we achieve a rate of R = mini=1,2 log
∣

∣

∣
I + FiF

†
i

∣

∣

∣
(see also

Remark 4).

Thus, by optimizing over all admissible covariance matrices

K1,K2 andKrel (satisfying the power constraints), and unitary

5We assume, w.l.o.g., that both xt and xrel are subject to the same power
constraint, as any difference may be absorbed in the channel-matrices.

matrices Ṽrel at the relay, along with matching the appropriate

ratios between n2 and n1, a rate of

R = max
K

min
i=1,2

log
∣

∣

∣
I + FiF

†
i

∣

∣

∣
(11)

can be approached, where F1 and F2 have n1 and n2

number of blocks on their diagonals, respectively. Thus, we

constructed a scheme that uses only linear transformations,

SIC and scalar AWGN codes, which approaches the rate (11).

Finally, note that this scheme proves useful even in the SISO

(“scalar”) case, as it allows the construction of good practical

transmission schemes, avoiding the need of special codes and

codes for channels with varying SNR.
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