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Abstract—This work considers the joint source-channel prob-
lem of transmitting a Gaussian source over a two-user multiple-
input multiple-output (MIMO) broadcast channel. We show the
existence of non-trivial channels, where the optimal distortion
pair (which for high signal-to-noise ratios equals the point-to-
point distortions of the individual users) may be achieved. A
condition for existence of a joint triangularization of the MIMO
channels which shapes the ratio of the diagonals to a desired
form is derived. Whenever possible, all diagonal elements but
one are made equal. We then employ a hybrid digital-analog
scheme to the source, where the digital part is sent over the
equal subchannels and the analog refinement is sent over the
remaining one.

I. INTRODUCTION

The choice of modulation domain plays a major role in com-

munication, both in deriving performance limits and in the de-

sign of practical schemes which decouple the signal processing

task of channel equalization from coding. For example, the ca-

pacity of the Gaussian inter-symbol interference (ISI) channel

is given by the water-filling solution, applied in the frequency

domain; the same transformation also allows to use popular

schemes such as Orthogonal Frequency-Division Multiplexing

(OFDM) which employs the discrete Fourier transform. The

singular value decomposition (SVD) plays a similar role for

multiple-input multiple-output (MIMO) channels. Common to

both cases is diagonalization: they yield parallel independent

equivalent channels. Capacity, however, can be achieved for

both the ISI and MIMO channels using non-orthogonal equiv-

alent channels, by a receiver which performs triangularization

of the channel1 (rather than diagonalization) and then decision-

feedback equalization or successive interference cancellation

(SIC). This is done without performing any transformation at

the encoder. It is therefore natural to ask, what can be achieved

by allowing both an encoder transformation (in addition to the

decoder one) and SIC.

One such direction, pursued by Jiang, Hager and Li [1], is

the generalized triangular decomposition (GTD): a matrix A
is decomposed as

A = UTV † , (1)

where U and V are unitary matrices, V † is the complex
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1Outside the high signal-to-noise ratio regime, “near triangularization” is
performed as an optimal balance between residual interference and noise.

conjugate of V and T is upper-triangular.2 It is shown that

the transforming matrices U and V exist if and only if the

diagonal elements of T obey a multiplicative majorization

relation with the singular values of A. Since the product of

these diagonal elements equals the product of the singular

values of A, the decomposition performs diagonal shaping:

it distributes the total gain between the diagonal elements

in a desired way. An important special case is where it is

desired to have balanced gains, i.e., the diagonal elements of

T should be equal (allowing for equal-rate codebooks) [2]. In

that case, named the geometric mean decomposition (GMD),

the majorization condition holds for any A.
We take a different path, in which we strive to jointly

shape the diagonals of two matrices, for the purpose of multi-

terminal communication. Since with this approach the choice

of basis depends upon more than one communication link,

we call it network modulation. We jointly triangularize two

matrices A1 and A2 as

Ai = UiTiV
† , i = 1, 2, (2)

where U1, U2 and V are unitary and T1 and T2 are upper-

triangular. Having the same matrix V on one of the sides of

the decomposition corresponds to applying the same trans-

formation, and is thus suitable to two links originating (or

terminating) at the same node. It turns out that in different

network applications, it is important to shape the vector of

ratios between the diagonals. We show that the relevant

condition for achievability of a ratio vector is a multiplicative

majorization relation with the generalized singular values [3]

of the pair (A1, A2). As in the single-user case, this condition

is always satisfied if we are interested in a constant ratio vector.

In [4] this was used to introduce a transmission scheme for

broadcasting digital data over two MIMO links.

In this paper we prove the sufficient and necessary condition

for the achievability of a general ratio vector, and use it for the

problem of transmission of an analog source over two MIMO

links, or, in information-theoretic terms, joint source-channel

coding (JSCC) of a source over a broadcast (BC) channel.

Transmission over a BC channel is indeed one of the

main applications of JSCC, as in such a scenario it may be

greatly superior to source-channel separation. In a classical

2An upper-triangular matrix of dimensions m×n is defined as one having
zero entries beneath its main diagonal.



example, a white Gaussian source needs to be transmitted over

a single-input single-output (SISO) additive white Gaussian

noise (AWGN) channel with unknown signal-to-noise ratio

(SNR), with one channel use per source sample, under mean-

squared error (MSE) distortion. For our purposes we consider

the case that the SNR may take one of two values, which we

may think of as corresponding to a setup with two users, a

“strong” one (having a high SNR), and a “weak” one (lower

SNR). While analog transmission is known to achieve the op-

timal performance for any channel SNR, the separation-based

scheme (concatenation of successive-refinment and broadcast

codes) yields a tradeoff, where if we wish to be optimal for

the weak user, then both users have the same distortion, while

optimality for the strong user means that the distortion for the

other user is trivial (equals the source variance).

In this work we replace the SISO links by MIMO ones, so

that there is a mismatch in degrees of freedom. In particular,

the problem subsumes the better known problem of transmis-

sion over a colored and/or bandwidth-mismatched Gaussian

BC [5], [6]; however, none of the schemes proposed are strictly

optimal. We present a simple outer bound on the achievable

distortions region of the MIMO BC channel, as well as propose

an inner bound which achieves it for high SNR, in certain

cases. For the case of two transmit antennas, non-asymptotic

optimality is shown for certain cases. This applies to some

cases of color and bandwidth mismatch, although not to the

white bandwidth (BW) expansion one.

II. BACKGROUND: MIMO CHANNELS AND UNITARY

TRIANGULARIZATION

In this section we show how the single-user MIMO capacity

may be achieved using multiple SISO codebooks with SIC

over an equivalent channel obtained by unitary triangulariza-

tion of the form (1). The exposition follows the universal

matrix decomposition (UCD) [2], which is in turn based upon

the derivation of the MMSE version of V-BLAST. Later in the

paper we take the triangularization to be one which is simul-

taneously good for two users. We will further consider in the

sequel hybrid analog-digital (HAD) transmission rather than

fully digital; these issues are suppressed for now. We assume

throughout the paper perfect channel knowledge everywhere.

We consider a point-to-point (complex) MIMO channel:

y = Hx+ z , (3)

where x and y are the channel input and output vectors

of dimensions Nt × 1 and Nr × 1, respectively; H is the

channel matrix of dimensions Nr ×Nt and z is the additive

Gaussian noise vector of dimensions Nr × 1. Without loss of

generality, we assume that the noise elements are mutually-

independent, identically-distributed and circularly-symmetric

with unit variance. The capacity of this channel is given by

C(H,P ) = max
Cx

I(H,Cx) (4)

where the maximization is over all channel input covariance

matrices Cx, subject to a power constraint trace (Cx) ≤ P ,

and I(H,Cx) , log det
(

I +HCxH
†
)

is the maximal mu-

tual information (MI) attainable using covariance matrix Cx.

When coding over a domain different than the channel input

domain (e.g., time or space), one may start with a virtual

input vector x̃, related to the physical input by the linear

transformation: x = C
1/2
x V x̃. 3 We form the vector x̃ in turn

by taking one symbol from each of Nt parallel codebooks,

of equal power 1/Nt, and the unitary matrix V is the linear

precoder which performs the basis transformation. Recalling

the GTD (1), one may suggest to choose V by applying a

triangularization to F , HC
1/2
x .

After the receiver applies the transformation U †, it is left

with an equivalent triangular channel T , over which it may

decode the codebooks using SIC. Unfortunately, while this

“conserves” the determinant of HCxH
†, it fails to do so

when the identity matrix is added as in the mutual information

I(H,Cx) (4). Thus, this is optimal in the high SNR limit only,

and an MMSE variation is needed in general, as follows.

We start by applying unitary triangularization to an aug-

mented matrix:
[

F
I

]

, G = UTV †, (5)

where the identity matrix I has dimensions Nt × Nt. At the

receiver we compute: ỹ = Wy, where W consists of the first

Nt rows of U . This results in an equivalent channel:

ỹ = W (FV X̃ + z) = WW †T x̃+Wz , T̃ x̃+ z̃.

Note that since W is not unitary, the statistics of z̃ differ from

those of z; denote the covariance matrix of the equivalent noise

by Cz = WW †. Finally, SIC is performed, i.e., the codebooks

are decoded from last to first, using:

y′j = ỹj −

Nt
∑

l=j+1

T̃j,l
ˆ̃xl ,

where ˆ̃xl is the decoded symbol from the l-th codebook.

Assuming correct decoding of “past” symbols, i.e. ˆ̃xl = x̃l for

all l > j, the scalar channel for decoding of the j-th codebook

has signal-to-intereference and noise ratio (SINR)

Sj = Var
(

x̃j

∣

∣

∣
ỹ, x̃Nt

j+1

)

=
T̃ 2
j,j

[Cz ]j,j +
∑j

l=1 T̃
2
j,l

. (6)

The following shows optimality of the scheme.

Proposition 1: Suppose that for some channel H and input

covariance matrix Cx, the augmented channel matrix can be

triangularized as in (5). Then the decomposition satisfies:
Nt
∑

j=1

logT 2
j,j = I(H,Cx) , (7)

and the SINRs Sj (6) of the transmission scheme above satisfy:

1 + Sj = T 2
j,j , ∀j = 1, . . . , Nt . (8)

For a proof see [2, Lemma III.3 and Corollary III.4]. This

proposition completes the recipe for a digital transmission

scheme which achieves I(H,Cx): for a given input covariance

3The square root of a Hermitian positive-definite matrix A, denoted by

A1/2, is defined as the matrix satisfying: A = A1/2
(

A1/2
)†
.



matrix Cx, choose the individual codebook rates to approach

Rj = logT 2
j,j . (9)

By (8), the successive decoding procedure will succeed with

arbitrarily low error probability for these rates. By (7), the sum

of the codebook rates equals the MI over the channels. Taking

the covariance matrix Cx maximizing (4), achieves capacity.

III. JOINT TRIANGULARIZATION WITH SHAPED

DIAGONAL RATIO

In this section we prove the necessary and sufficient con-

dition for the existence of the joint triangularization (2).

Throughout the section, we make the following assumption

on the dimensions and ranks of the matrices.

Definition 1 (Proper dimensions): An m × n matrix A is

said to have proper dimensions if it is full-rank and m ≥ n.
Note that augmented matrices of the form (5) satisfy this

condition for any channel matrices. For stating the existence

condition, we need the following definitions.

Definition 2 (Generalized singular values [3]): For any

(ordered) matrix pair (A1, A2), the generalized singular

values (GSVs) are the positive solutions a of the equation

det
{

A†
1A1 − a2A†

2A2

}

= 0 .

Let the GSV vector µ(A1, A2) be the vector of all GSVs (with
their algebraic multiplicity), ordered non-increasingly.4

For matrices of proper dimensions, µ is of length n.
Remark 1: When A1 and A2 are square and non-singular,

µ(A1, A2) consists of the singular values of A1A
−1
2 .

Definition 3 (Diagonal ratios vector): Let T1 and T2 be

two upper-triangular matrices of proper dimensionsm1×n and

m2×n, respectively, with non-negative diagonal elements. The

diagonal ratios vector r(T1, T2) is the n-length vector which

contains all ratios T1;j,j/T2;j,j , ordered non-increasingly.

Definition 4 (Multiplicative majorization): Let x and y be

two n-dimensional vectors satisfying
∏n

j=1 |xj | =
∏n

j=1 |yj|.
Then we say that x majorizes y (x � y) if for any 1 ≤ k < n,

k
∏

j=1

|xj | ≥
k
∏

j=1

|yj | .

We are now ready to prove the main result of this section.

Theorem 1: Let A1 and A2 be two matrices of proper

dimensionsm1×n andm2×n, respectively. Then the joint uni-
tary triangularization of (2) exists iff µ(A1, A2) � r(T1, T2).
Proof idea: The direct follows the same lines as the proof in

[4] for the constant ratio between diagonals case, by using the

GTD with diagonal r(T1, T2) instead of the GMD. Denote

the n × n upper sub-matrices of T1 and T2 by [T1] and

[T2], respectively. The converse is based upon the fact that

µ(A1, A2) = µ(T1, T2) = µ([T1], [T2]).
Remark 2: By the unitarity of U and V , the products of µ

and r are equal. Thus, the majorization relations mean that

the diagonal ratios are always “less spread” than the GSVs.

4We define a GSV to be infinite, if the corresponding GSV of the matrices
in reverse order is zero. If the number of finite and infinite solutions is smaller
than n, this suggests that the column rank can be reduced without changing
the problem; we shall assume the problem is in its reduced form.

Remark 3 (Relation to GSVD): The GSVD [3] can be

stated in a triangular form (2), with diagonals ratio

r(T1, T2) = µ(A1, A2). Thus, the GSVD is a limiting case

with maximal ratio spread.

Remark 4 (Relation to GTD): Taking in the joint decom-

position H2 = I yields the GTD of H1 [1]; further, the

GSV become the singular values vector of H1. The existence

condition, in turn, reduces to the Weyl condition (see e.g. [1]).

In this sense, the condition in Theorem 1 may be seen as a

generalized Weyl condition for joint triangularization.

Remark 5 (Relation to the generalized Schur decomposition):

This decomposition, also called the QZ-decomposition [7],

is a special case of (2) with U1 = U2. It can be shown that

the diagonal ratio vector induced by this decomposition is

unique, i.e., requiring that the unitary matrices are the same

on both sides prohibits shaping of the diagonal ratio.

IV. HDA TRANSMISSION FOR SOURCE MULTICASTING

In the joint source-channel problem of interest, an i.i.d.

circularly-symmetric Gaussian source S needs to be repro-

duced at two destinations, over a MIMO BC channel, i.e.

the channel to each destination is given by (3), where the

input x is common to both. We measure the quality of the

reproductions Ŝi using the MSE distortion measure. Thus, we

wish to maximize the tradeoff between the signal-to-distortion

ratios (SDRs), defined as

SDRi ,
Var (S)

Var
(

Ŝi − S
) , i = 1, 2 . (10)

The achievable SDR region S(H1, H2) is defined as the

closure of all pairs which can be achieved by some encoding-

decoding scheme. A simple outer bound on this region follows.

Proposition 2: S(H1, H2) ⊆ S̄(H1, H2), where the bound-
ing region S̄(H1, H2) is given by:

⋃

Cx:trace(Cx)≤P

{

(SDR1, SDR2) : log(SDRi) ≤ I(Hi, Cx)
}

.

The proof follows that of the classical source-channel

converse [8], taking into account that both users share the

same channel input. Our main result states that this is indeed

achievable for some channels.

Theorem 2: Let µ be the GSV vector of the augmented

channel matrices (5) with input covariance matrix Cx. Then
SDR-pairs satisfying log SDRi ≤ I(Hi, Cx) are achievable, if

Nt
∏

j=1

µj ≤ 1 ≤

Nt−1
∏

j=1

µj . (11)

Proof: It follows by Theorem 1 that there exists a joint

unitary triangularization with diagonal ratios vector which is

all one except for the last element. The diagonal of Ti can thus

be made to satisfy T1;j,j = T2;j,j , tj for j = 1, . . . , Nt − 1.
If we were to send digital data over the MIMO-BC channel

using this particular triangularization, then by (7) we could

send over these Nt − 1 channels a rate of:



Rdigital ,

Nt
∑

j=2

Rj =

Nt
∑

j=2

log t2j .

This does not change if we replace, in the transmission

scheme, x̃1 by a different signal of the same variance P/Nt.

Furthermore, regardless of the signal x̃1, if the codebooks

of subchannels 2, . . . , Nt − 1 are correctly decoded then, by

Proposition 1, receiver i obtains an equivalent channel for

j = 1 with an SNR of SNRanalog,i = (Ti;1,1)
2−1. At this stage

we have turned the MIMO BC channel into the combination

of a digital channel of rate Rdigital and a SISO BC channel

of signal-to-noise ratios SNRanalog,i. Using an optimal HDA

scheme with Nt − 1 digital layers and one analog provides

[5]: log SDRi = I(H1, Cx), which completes the proof.

Theorem 2 does not imply that S̄(H1, H2) is fully achiev-

able. However, if the channel matrices are of proper dimen-

sions, then in the limit of high SNR (as the choice Cx = I
becomes optimal), the region of Theorem 2 coincides with

S̄(H1, H2). This is also the case for Nt ≤ 2 (for any SNR).

as is indicated by the following Lemma.

Lemma 1: Let H1, H2 be two matrices of proper dimen-

sions, with n = 2 columns, and denote their corresponding

augmented matrices (5) by G1, G2, resp., for some Hermitian

matrix Cx ≥ 0. Then if one of the elements of µ(H1, H2)
is at least one and the other is at most one, then so are the

elements of µ(G1, G2).
Corollary 1: Let H1, H2 be channel matrices with Nt = 2.

If µ(H1, H2) is mixed, then the bounding region S̄(H1, H2)
of Proposition 2 is achievable.

V. BW EXPANSION OVER TWO PARALLEL CHANNELS

Consider the two-input two-output case:5

Hi =

[

αi 0
0 βi

]

, i = 1, 2 . (12)

The bounding SDR region of Proposition 2 now becomes:
⋃

0≤γ≤1

{

(SDR1, SDR2) :

SDRi ≤
(

1 + |αi|
2γP

)(

1 + |βi|
2(1 − γ)P

)

}

. (13)

Here γP is the portion of P sent over the first band.

We can point out a few special cases where points on the

surface of this region are achievable by known strategies.

1) No BW expansion: analog transmission. If one of the

bands has zero capacity, e.g., βi = 0, (13) reduces to

SDRi ≤ 1+ |αi|
2P – achievable by analog transmission.

2) Equal SDRs: digital transmission. A point on the bound-

ary which satisfies SDR1 = SDR2 may be achieved by

quantizing the source and then using a digital common-

message code for the BC channel.

3) One equal band: HDA transmission. If for one of the

bands the gains are equal, e.g., |β1| = |β2| = β, we
can quantize the source and use a point-to-point digital

5Being diagonal, this channel may be obtained from a single-input single-
output Gaussian inter-symbol interference channel which has a two-step
frequency response, by applying the discrete Fourier transform.
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Fig. 1: Performance for α1 = 1, β1 = 10,α2 = β2 = 2,P = 1.

code over that band. The quantization SDR may approach

SDRdigital = 1 + β2γP . The quantization error may be

sent over the other band in an analog manner, yielding

an additional gain of 1 + |αi|
2(1− γ)P at each decoder,

achieving the bound (13).

Using network modulation, we can extend the HDA trans-

mission (case 3 above), by transforming a diagonal channel

where none of the gains is equal between users, to an equiv-

alent triangular channel where for one of the bands the gain

is equal. This can be done under the condition (11), which

specializes to (allowing to swap roles between matrices):

|α1|
2 ≥ |α2|

2 and |β1|
2 ≤ |β2|

2 (14)

or vice versa. This is an “anti-degradedness” condition: no user

can have better SNR on both bands. It is not known whether

this condition is necessary, but at least for the case where

both channels are white (αi = βi), it was shown in [6] that

simultaneous optimality is not possible.

Figure 1 shows a numerical evaluation of performance for

some gain values. It can be appreciated that the optimal

performance imposes almost no tradeoff between users; indeed

in the limit of high SNR, both can have their optimal point-to-

point performance. For comparison, we show the performance

of a separation-based scheme, where a successive-refinement

source code is transmitted over a digital broadcast channel

code, as well as that of a “naı̈ve” HDA scheme, where

transmission is digital over one band and analog over the other.
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